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Mathematics. — “On continuous vector distributions on surfaces”.
(2rd communication)*). By Dr. L. E. J. Brouvwer. (Commu-
nicated by Prof. D. J. KorrEwke).

(Communicated in the meeting of February 26, 1910).

§ 1.

The tangent curves to a finite, uniformly continuous vector distri-
bution with a finite*) number of singular points in a singly connected
wmner domain of a closed curve.

Let y be the domain under consideration, then we can represent it on
a sphere, so we can immediate]y formulate on account of the property
deduced in the first communication (see there page 855):

TurorEM 1. A tangent curve, which does mot indefinitely approach
a point zero, s either a simple closed curve, or its pursuing as well
as its recurring branch shows one of the jfollowing characters: 1st.
stopping at a point of the boundary of v; 27, spirally converging
to a simple closed tangent curve; 39, entering into a simple closed
tangent curve.

MWe now shall farther investigate the form (in the sense of analysis
situs) of a tangent curve r, of which we assume, that at least one of
the two branches (e.g. the pursuing branch) approaches indefinitely
one or more points zero, i. e singular points of the vector distribution.

We start the tangent curve in a point 4, (not a point zero) and we
pursue that curve in the following way : By 3. we understand a
distance with the property that in two points lying inside the same
geodetic circle described with a radius f:, and possessing both
a distance > & from the points zero, the vectors certainly make an

1 -
angle < e with each other. We farther choose a fundamental series

of decreasing quantities &,, &, &, .... converging to 0, and of corre-
sponding decreasing distances S , B, ,...., which all we suppose,
if « is the distance of A, from the points zero, to be smaller
than a—e,.

We then prove in the manner indicated in the first communication
p. 852, that, when pursuing r from 4, a point B, is reached,
possessing a distance B, from 4,; we call the arc 4,B, a fy-arc.
According to our supposition there now exists a finite number n, in

i

1) for the first communicatioh see these Proceedings Vol. XTI 2, p. 830.
%) This restriction we shall drop in a following communication.
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such a way, that after having completed n, Bi-arcs, but not yet
n,—+1 B.-arcs, we reach a point 4,, where for the first time we have
approached the points zero as far as a distance . Then again there
is a finite number n, in such a way that, baving completed from
4, n,, but not yet n, 1 p.-arcs, we reach a point 4,, where for
the first time we have approached the points zero as far as a distance
&,. From there we pursue r with B,-arcs and continue this process
indefinitely.

If we understand by m(e,) the maximum distance from the points
zero, which » reaches when being pursued after having for the first
time approached the points zero as far as a distance &, then a first
possibility is, that m(e,) converges with &, to zero.

In that case the pursuing branch converges to one single point
zero and it is an arc of simple curve, stopping ot that point zero.

We now suppose the second possibility, that m(e,) surpasses for each
&, a cerlain finite quantity e. Then we can effect (by eventually
omitling a finite number of terms of the series of g,’s), that each

1 1
& <§e and each Bsn<é-e.

On the pursuing branch then certainly two points P, and @, can
be indicated both at a distance ¢ from the points zero, and separated
on r by at least one point at a distance &, from the points zero,

1
whilst the distance between P; and Q, is < Zﬁ;n Let P.Sand QU

be pursuing g.-arcs, and P, R and €,7 recurring p:-arcs.

1Tg, 1,

-

Let H, be a point of 7'U, having from P, the smallest possible
distance, then H, cannot coincide with 7" or U, so that the
geodetic arc P, H, is in H, normal to the vector direction, and the
vector directions in all points of that geodetic arc, forming with
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' 1 : ‘ .
each other an angle <§n, are directed to the same side of the

geodetic arc: P H,.

Let X, be the last point of intersection of the arc: P, H, of r w1th
the geodetic arc P, H,. Then the arc K, H, of » and the geodetic are
K .H, form a simple closed curve, and we prove in the manner
indicated on page 853 of our.first communication, that either the
pursuing branch of » from H, lies in the inner domain, and the
rvecurring branch from XK, in the oater domain, or the pursuing
branch from H, in the outer domain, and the recurring branch
from XK, in the inner domain.

Let wus first assume that the pursuing branch lies in the nner
domain, then certainly two points P, and @, can be chosen on it,
both at a distance ¢ from the points zero and separated on » by at
least one point at a distance &, from the points zero, whilst the distance

1
between P, and Q, is < " B. . With the aid of those two points we

construct in the same way as above now a simple closed cuxve,
consisting of an arc K, H, of » and a geodetic arc K, H,, in whose
mner domain lies the pursuing branch of r from H,.

(Yoing on in this way we construct a fundamental series of closed
curves 1, %y, U, . ... lying inside each other. If there is a domain
or set of domains (, common to all the inner domains of these
carves (which, as we shall presently show, is really the case) then
the boundary of G can only be formed by points belonging to none
of the curves wu,, %, U,,... but being limit points of fundamental
series of points lying on those curves

We assume.q > p, and B to be a. paint of u, having a distance
>3 & and >38 from the points zero. Let C be the first point
when recwrring from B, and D the first point when' pursuing from

|
3 1 /
B, which reaches a*distance 'é*ﬂ;p from B, then we'shall assume for
a moment that there exidts on- u,, but wof on the arc CD, a point
. 1 .
S lying at a distance <-4—[Psp from B, and we shall show that
this assumption- leads to an. abﬁurdity ,

Let S¥ be a recurring -55 -arc and SWapmsumg - B, -arc

bn wu, then the'arcs CD and® V'W can have no point in ’cﬁommon,
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and the geodetic arc K, H,, belonging to w, has either no point
in common with ¥ W, or none with CD.

In the firsl case we determine on V' W a point M, having from
B a distance as small as possible. The geodetic arc SM is then in
M normal to VW, and has a last pomnt of intevsection N with CD,
so that the geodetic arc NM forms with one of the arcs, NM of
g, NOt containing e.g. the point C, a closed curve; wu,, taken with
a, certain sense of cireuit, would at M enter one of the two domains
determined by this closed curve, 1o leave it no more; further C
would lie outside that domain; thus u, would never be able to
reach C, with which the absurdity of our assumption has been proyved.

In the.second ease we determine on CD a point M having from
S a distance as small as possiblenand on the geodetic are SM the
last point of intersection N with ¥ W. The further reasoning remains
analogous to the one just followed : the parts of the arcs VW and
CD are only interchanged.

Let now B, be the only limit point of a certain fundamental
series of points B,, B,, B,, ..., lying respectively on u,, u,, u,, . ..
We assume that B, is not a point zero; it has then for a suitably
selected p a. distance >4 ¢, and >-L13;,u from the points zero.

Let farther each mybe > p and let B, Bu,, Bu,, ... be a fun-
damental series contained in the series Just mentloned whose points

have all from B. a distance < &, and < 3 ﬁ

If then further on ths dlffelent Uy, B D"’k are pursuing, B,,,kC,,,

m I ]C

1
recurring — B: -arcs, we prove by the reasoning followed in the
g g %, P y g

first communication p. 854, that there exists a seriess Cy D, ,
CoyDyys Coy Doy, . ... converging uniformly to an are C,D. of a
tangent curve u» in such a way, that all arcs 0,7 D,,,r lie on the
same side of C. Da.

o
' L . .1
If. we. describe round B, a geodetic circle with radius 5 [
P
then it cuts from C, D, an arc FI containing B.; this ave divides

its inner domain into two regions, into one of which, to be called ¢,
neither the arcs O’ ,,k, nor any “other parts of the curves Uy, caht
1
penetrate, as they would get there a distance <—ﬁe from B,
As further the region ¢ cannot lie outside all curves Uny 50 it must

lie inside all curves Uy : ‘
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So there is certainly a domain or a set of domains @, common
to all the inner domains of the’curves uz, and to the boundary of G
belong all points of the limit set 2 of the wi’s, which are not points
zero, thus also all points of 2, which are points zero, as the latter are
limit points of the former ones. So the boundary of & is identical
to the ]irpit set of the w.’s, is therefore coherent and identical to
its outer circumference, whilst abroad from the points zero it consists
of tangent curves to the vector distribution, which on account of the
existence of the domain ¢ can show nowhere in a non-singular point
the character mentioned in theorem 1 sub 3.

We shall now show that a tangent curve ' belonging to the boun-
dary of G cannot have the property of =, that its pursuing or
recurring branch converges spirally {o the boundary of a domain or
set of domains G.

We should then namely be able to form, in the same way as was
done above and in the first communication for o, also for »” a closed

- . 1
curve a4 consisting of a geodetic arc ézﬁak and an arc ¢’ of 7/,

joining the same two points X’ and A’. And there would exist arcs
of » which would converge uniformly to ¢’ from the same side, e.g.
from the inner side of /. But when pursuing such an arc ¥ of r
situated in sufficient vicinity of ¢’, we should never be able to return
between ¥ and ¢’.

As farthermore in the case considered here, that the pursuing branch
of » lies in the inner domain of u,, it is also excluded, that r’
reaches the bonndary of y, only one form remains possible for ,/,
namely that of an arc of simple curve, starting from a point zero,
and stopping at a point zero. (For the rest these two end points can
very well be identical). t

Of such tangent curves there can be in the boundary of G at
most two, which possess the same end points, when these end points
are different ; but there can be an infinite number, which are closed
in the same point zero. Of these however there are only a finite
number, of which the exfent surpasses an arbitrarily assumed finite
limit. For, each of these contributes to ' a domain with an area,
which surpasses a certain finite value.

The curves 7 whose extent surpasses a certain finite limit are run
along by a u of sufficient high index in the same order, as they
succeed each other on the outer circumference of . From this
ensues that for all curves r' the pursuing sense belongs to the same
sense of circuit of the outer circumference of G- ,
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1f the pursuing branch of r lies in the oufer domain of u,, the
preceding holds with slight modifications. A point of the limit set
of the wu;'s now necessarily bounds a region belonging to y, and
lying outside all wu;’s, only then when it is not a point of the
boundary of y. The dnner circumference, to which » now converges
spirally on the inner side, consists here again of arcs of simple curve,
which are tangent curves to .the vector distribution, but these tangent
curves can lie entirely or partially in the boundary of y.

However they have all again a pursuing sense belonging to the
same sense of circuit of the circumference.

)

We now agree about the following: When a pursuing branch of a
tangent curve reaches a point zero, we continue'1t, if possible, along
a pursuing branch, starting from that point zero, and not meeting
the former within a cerlain finite distance; but if such a continuation
is impossible, we stop the branch at that point zero, and so we do
likewise when the branch has entered into a closed curve or has
approximated spirally a circumference. Then we can resume the
preceding reasonings as follows:

TupormM 2. A tangent curve is either a simple closed curve, or
save its ends it 1s an arc of simple curve, of which the pursuing as
well as the recurring b-anch shows one of the jfollowing characters:
ast, stopping at a pomt of the boundary of v; 2°. stopping ai a
point zero; 314, entering into a simple closed tangent curve; 4W. spirally
converging to a circumference, consisting of ome or more simple
closed tangent curves.

From this ensues in particular:

TaoreM 3. A tangent curve cannot return into indefinite vicinity
of one of s points, after having reached a finite distance from if,
unless 1t be to close ilself in that point.

That the last theorem is not a matter of course, is evident from
the fact thal it does not hold for an annular surface. On this it is
easy 1o construcl tangent curves of the form pointed out by Loruntz
(Enz. der Math. Wiss. V 2, p. 120, 121).

We finally notice that the vector distribution considered in this §,
does not possess of necessity a singular point (as is the case on the
sphere). This is proved directly, by considering in the inner domain
of a circle, situated in a Euclidean plane, a vector everywhere constant.

§ 2.

The siructure of the field in the vicinity of a non-singular point.

To classify the singular points we shall surround each of them
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with a domain which we shall cover entirely with tangent curves
not crossing each other and we shall investigate the different ways in
which that covering takes place in different cases. For the sake of
more completeness and as an introduction we first do the same for
a non-singular point.

Let P be the point under con31de1at10n, _BES an arc of tangent
curve 7 containing P, UV an arc containing P of an orthogonal
curve of the vector distribution. We draw through U and V
tangent curves e, and e,, and through R and S orthogonal curves
y and d, and we let the four points R, S, U, and V converge
together to P. Before they have reached P, a moment comes when
a,, a,, v, and d form a curvilinear rectangle, inside which lies P,
and inside which lies no point zero of the vector distribution, thus
inside which on account of the first communication no closed
tangent curve can be drawn.

We shall cover this curvilinear rectangle with tangent curves
not crossing each other.

1
We number «, with 0, r with 5 @ with 1. Let Q1 be a point
4
inside or on the rectangle 4, B, S R (fig. 2) having from o, and r

4 3 x

Fig.’ 2. Non-singular point.

a distance as large as possible. We draw through Ql a tangent curve

1, about which we agree, that, if it meets e, or #, we shall continue
4

it, by pursuing or recurring e, or 7, until we come upon y or d.
Then @1 is a tangent curve joining two points A1 and B1.of

4 4 4
% and ¢ between a, and r. In the same way we construct inside
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the rectangle 4, B, SR a tangent curve 3, joining two points
4
As and Bs of y and J between rand e,. The rectangle 4, B, B, 4,
4 4

is then divided into four regions. In these we choose in the way
described above successively the points Qr, @3, @5, Q7, draw
§ 8 8 8 '

through @1 a tangent curve ¢! joining two points A1 and B1 of ¢
8 8 8 8
and d, and we deal analogously with the other three points.

. . . . a
Going on in this manner we construct for each fraction §;< 1a

tangent curve es joining two points of y and dJ; two of these curves
on

chosen arbitrarily can coincide partially, but they cannot cross each
other.

All these tangent curves must now cover everywhere densely the
inner domain of the rectangle 4, B, B, 4,. For, if they left there
open a domain G, then a domain G', bounded by two tangent curves

a
with indices v and would convetge to G. For 7 sufficiently

on
great however the point Q41 would then lie inside &, thus in
gn+1
contradiction to the supposition also a tangent curve e2a41 would

ont1
pass through @.
From this ensues, that, if we add the limit elements of the tangent
curves a5, which are likewise tangent curves, the inner domain of
A -
the rectangle A, B, B, A, is entirely covered, and further there is
for each real number between 0 and 1 one and not more than one
of these tangent curves having that number as its index.

§ 3.

The structure of the field in the vicinity of an isolated
singular point. First principal case.

We surround the point zero P, supposed isolated, with aTsimple
closed curve ¢, inside which lies no further point zero. And we
assume as a first principal case that ¢ can be chosen in such a way
that inside ¢ no simple closed tangent curve exists, inside which P
lies. On account of the first communication there can exist inside ¢

neither a simple closed tangent curve, outside which Plies. We now
distinguish 2 cases:
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a. There exists inside ¢ a simple closed tangent curve ¢ through
P. We can then choose ¢ smaller, so that it meets ¢, thus containing
in its inner domain a tangent curve ¢, which (in its pursuing
direction) runs from P to ¢, and another g, running from ¢ to P,
and we further look for such tangent curves inside ¢ which cross
neither o, nor ¢,. Of the possible kinds of tangent curves mentioned
at the conclusion of §1 we shall agree about those, which enter into a
closed tangent curve, to continue them along that tangent curve until
they reach either P or ¢, and to stop there. Spirally converging to
an _inner . circumference cannot appear, as the other end of such a
tangent curve would be separated from P as well as from ¢, and so
would determine a closed tangent curve, outside which P would be
lying, which is impossible. Neither can appear spirally converging to
an outer circumference, as P would have to lie in that outer cireum-
ference and the spiral would necessarily have to cross ¢, and @,.

0. There exists inside ¢ no simple closed tangent curve through
P. Then inside ¢ there exists no simple closed tangent curve at all,
so that again spirally converging is excluded. -

In any case, if we agree not to continue a tangent curvé, when
1t reaches P or ¢, we can distinguish the tangent curves inside ¢, and
not cwssmg 0, and ¢, if the latter exist, into three categories:

. Closed curves, containing P but not reaching c.

Q“d. Ares of curve, joining two points of ¢, but nmot containing P.

3d. Ares of curve which run from P to a point of ¢ (positive
curves of the third kind) or from a point of ¢ to P (negative curves
of the third kind).

Of this third kind there must certainly exist tangent curves. For
otherwise the closed sets determined by the curves of the first, and
by those of the second kind would cover the whnle mner domain of
¢, thus would certainly possess a point in common ; through this point
however a curve of the third kind would pass.

So we can commence by constructing one curve of the third
kind and we choose eventually ¢, for it. [f possible, we then draw
a second curve of the third kind not crossing the first and we choose
eventually ¢, for it. Into each of the two sectors, determined in this

 way inside ¢, we introduce if possible again a curve of the third
kind, not crossing the already existing ones, and chosen in such a
way that it reaches a distance as great as possible from the two
curves of the third kind, which bound the sector, whilst, if the new
curve terminates somewhere on one of the curves bounding the sector,
we farther follow the latter curve. In each of the sectors, deter-
mined after that in the inner domain of ¢, we repeat if possible, this
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insertion, and we continue this process as often as possible, even-
tually to an indefinite number of insertions.

¢ If in this manner we have obtained an infinite number of tangent
curves of the third kind, they determine limit elements which each
are either again a tangent curve of the third kind, or contain such
a curve as a part. And in particular a fundamental series of positive
xespectively negative curves of the third kind determines in its limit
elements again positive respectively negative curves of the third kind.

After addition of these Imit curves of the third kind we are,
however, quite sure that no new curves of the third kind not crossing
the existing ones can be inserted. This 1s evident from a reasoning
analogous to that followed in § 2. The whole of the curves of the
third kind, obtained now, we shall call a system of base curves of
the virinity of P.

An arbitrary positive base curve and an arbitrary negative one
enclose inside ¢ a sector, of which the area cannot fall below a
certain finite limit. For otherwise we should have a fundamental series
of positive base curves, and a fundamental series of negative ones,
possessing the same base curve as a limit element, which is impossible,
as that limit base curve would have to be positive as well as negative.

So the nner domain of ¢ is divided nto a finite number of sectors
which can be brought under the two following categories:

First category. Sectors bounded by a positive and a negative base
curve, between which lie no further base curves. The areas of these
sectors surpass a certain finite limit. ' -

Second category. Sectors bounded by two positive (respectively two
negative) base curves and containing only positive (respectively negative)
base curves. A sector of this category can reduce itself in special
rcases to a single base curve.

We shall first treat a sector of the first category and to that end
we first notice that outside a curve of the second kind lying in it
(i.e. between that curve and ¢) lie only curves of the second kind,
and inside a curve of the first kind lying in it only curves of the
first kind. }

If we draw in the sector a well-ordered series, continued as far
as possible, of curves of the second kind enclosing each other, then
it converges either to a curve of the second kind, or to two curves

;of the third kind and between them a finite or denumerable set
of curves of the first kind, no¢ enclosing each other, and nof
approaching ¢ indefinitely.

; 1f we can construct an infinite number of such series not enclosing
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each ofher, then there are among them which cut from the sector
an area as small as one likes, and at the same time the maximum
distance, which such a series reaches from ¢, decreases under each
finite limit.

And analogously, if we draw in the sector a well-ordered series,
continued as far as possible, of curves of the first kind enclosing
each other, it converges either to a curve of the first kind, or to two
curves of the third kind and between them a finite or denumerable
set of curves of the second kind, no¢ enclosing each other, and not
approaching P indefinitely. '

If we can construct an infinite number of such series not enclosing
each other, then there are among them which enclose an area as
small as one likes, and at the same time the maximum distance,
which such a series reaches from 2P, decreases under each finite limit.

From this ensues that for the sectors of the first category we have
to distinguish two cases: ’ .

Furst case. There are curves of the second kind in indefinite
vicinity of P. Then the domain of the curves of the second kind is
bounded by the two base curves which bound the sector, and =z
finite or denumerable number of curves of the first kind, not enclosing
each other, and not approaching c¢ indefinitely, in whose inner domains,
which we call the leaves of the sector, can lie only curves of fthe
first kind.

The region outside the leaves can be covered as follows with curves
of the second kind not crossing each other: we first construct one
which reaches a distance as great as possible from ¢ and the boundary
of the leaves; in this way two new regions are determined, in each
of which we repeat this insertion. This process we continue indefini-
tely, and finally we add the limit curves. That then the region

outside the leaves is entirely covered,
is evident from the reasoning fol-.
lowed in § 2.
" And in the same way we fill each
of the leaves with curves of the first
kind not crossing each other. The
whole of the tangent curves filling
the sector finally geis the form in-
dicated in fig. 3. The sectors being
L in the discussed first case we shall
Fig. 3. Hyperbolic sector. call hyperbolic sectors.

Second case. There are no curves of the second kind in indefinite

vicinity of P. Then the domains covered by these curves are cut off from

‘




(797 ) \

the sector by a finite or denumerable number of curves of the second
kind, not enclosing each other, and no¢
approaching P indefinitely. These do-
mains we take from the sector (conse~
quently modify an arc of ¢), and there
remains a new sector, bounded by the
same base curves as the old one, but
consisting of one leaf inside which lie <
only curves of the first kind. This leaf
we can fill with curves of the first kind
not crossing each other (see fig. d).
These sectors of the second case, P
which are reduced to a single leaf, Fig. 4. Elliptic sector.
we shall call elliptic sectors.

We now pass to the discussion of a sector of the second cutegory,
of which, to fix our ideas, we assume, that it is bounded by two
positive base curves. ’

Let us consider the set of points lying in the sector or on its

boundary, through which curves of the second kind not crossing
the base curves can be drawn. This set of poinis cannot approach
P indefinitely, as otherwise it would give rise {0 a negative curve
of the third kind not crossing the base curves, which is excluded.
In the same way as for the elliptic seclors we destroy the regions
covered by this set of poinis, and there remains a sector of the
second category bounded by a modified arc of ¢, inside which no
curves of the second kind not crossing the base curves can be drawn.
In the modified sector we now consider the set of points, through
which curves of the first kind not crossing the base curves can be
drawn, and it is clear that this set of points cannot indefinitely
approach the just now modified curve ¢. The regions covered by it
are therefore bounded by a finitc or denumerable number of curves
of the first kind, not enclosing each other,
not indefinitely approaching ¢, and each
enclosing a domain which forms a leaf,
not differing from those appearing in

the hyperbolic sectors.
By the method applied above already
several {imes the vegion oulside the
leaves can be filled with curves of the

F third kind (for instance we can choose
Fig. 5. Parabolic sector. for them the system of base curves
49
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present already in the sector), and finally each of the leaves with
curves of the first kind (see fig. 5). ! )

The sectors of the second category we shall call positive (resp,
negative) parabolic sectors.

In special cases the whole inner domain of ¢ can reduce itself to
a single positive (resp. negative) parabolic sector. A point zero whére
this occurs we shall call a source point resp. vamishing pomnt.

§ 4.

The structure of the field in the vicinity of an isolated
singular point.  Second principal case.

In this case any vicinity of P contains a simple closed tangent
curve inside which P lies. We can then consirnet a fundamental
series ¢, ¢, ¢",.... of simple closed tangent curves converging to P,
of which each following one lies inside each preceding one, and we
can fill in the following way the inner domain of ¢ with tangent
curves not crossing each other.

In each annular domain between two curves ¢® and ¢+l we
choose a point having from the boundary of that domain a distance
as great as possible and we lay through it a tangeul curve situated
in the annular domain. According to § 1 it is either closed or
it gives rise to two closed curves, situated in the annular domain
with its bonndary, into which it terminates or {o which it converges
spirally, and which we draw likewise. (These closed tangent curves can
enlirely or partially coincide
with ¢ or D). So the
annular domain is either made
singly connected or it is divided
into two or three (annular or
singly connected) new domains.

In each of these we again
choose a point having from the
boundary a distance as great
as possible and we lay through
it again a fangent curve. A
singly connected domain is
cerfainly divided by it info
two singly connected domains;
on an annular domain it has
the eftect just now menfioned.

We repeal this process inde-
Fig. 6. Rolation point, finitely. For' cach domain il can




( 729 )

happen only once thal it undergoes no division; after that namely
it becomes singly connecied, so is divided at each new insertion of
a tangent curve (see fig. 6).

We finally add the limit curves, and we prove in the same way
as in § 2 that then through each point of the inner domain of ¢
passes a tangent curve. -

A point zero being in the second principal case we shall call a
rotation point.

So we can say:

TwroreM 4. An isolated singular point is either a rotation point,
or a vicinity of it can be divided into a finite number, of hyperbolic,
elliptic, and parabolic seclors.

The filling of a vicinity of a non-singular point in § 2 furnishes
in this terminology two hyperbolic and two parabolic sectors.

We must add the observation that in the most general case, where
neither in a singular, nor in a non-singular point the tangent curve
is determined, sometimes by a modified method of construction, the
structure of the first principal case can be given to a vicinity of a
point zero being in the second principal case.

Even the form of the sector division of the first principal case is then
not necessarily unequivocally determined. Out of the reasonings of the
following § we ézm, however, deduce that, if modificalions are
possible in the form of the sector division, the difference of the number
of elliptic sectors and the number of hyperbolic sectors always
remains the same.

§ 5.

The reduction of an isolated singular point.

For what follows it is desirable to represent the domain y on a
Euclidean plane, and farther to substitute for the curve ¢ a simple
closed curve ¢ emerging nowhere from ¢, containing likewise P in
its inner domain, and consisting of arcs of tangent curves and of
orthogonal curves. In the second principal case this is already
attained, and in the first pmnmpal case we have to modify in a
suitable way only those arcs of ¢ which bound the hyperbolic and
the parabolic sectors.

In a hyperbolic seclor we effect this by choosing a point on each
of the two bounding base curves, and by drawing from those points
H and K inside into the sector orthogonal ares not intersecting one
another, Then there is certainly an arc of a curve of the second kind

493
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joining a point B of one of these orthogonal arcs with a point C of the
other, and we bound the modified sector by the orthogonal arcs AR
and CK and the tangent arc BC.

If a parabolic sector is bounded by the base curves Z and %, itis
always possible to choose Dbetween them a finite number of base
curves X, ,k,,....k, in such a way, that each %, and 4,4, can
be connected, inside the sector but outside the leaves lying in it,
by an orthogonal arc. By those orthogonal arcs and the arcs of base
curves joining their eundpoints we bound the modified sector. The
simple closed curve ¢’ oblained in this way has a direction of tangents
varying everywhere continuously, with the exception of a finite number
of rectangular bends. To a definite sense of circuit of ¢', which we
shall call the positive one, corresponds in each point of ¢’ a definite
tangent vector, and for a full circuit of ¢' that tangent vector
describes a positive angle 2. .

We shall now consider two successive parabolic sectors, s, and
m,, of whirh (for the positive sense of circuit) the first is positive,
therefore the second negative, and we suppose them to be separated
by a hyperbolic sector ~. On the orthogonal arcs belonging to the
boundary of a, the given vector then forms with the tangent vector

1
an angle (272 — 5)” (measured in the positive sense), on the orthogonal

1
arcs belonging to the boundary of m, an aungle <2n—f- 5) .

The transition takes place along the tangent arc belonging to the
boundary of =, by a negative rotation over an angle @ of the given
vector with respect to the tangent vector.

The same remains the case if we suppose @, to be negative, =,
to be positive. - -

But if we suppose £ to be an elliptic sector, then the transition
under discussion lakes place along the tangent arc bounding r, by a
positive rotation over an angle & of the given veclor With/respectto
the tangent vector.

As now the total angle, which the given vector describes for a
full circuit of ¢/, is equal to the total angle which the tangent veclor
describes plus the total angle which the given vector describes with
respect to the tangent vector, the former angle is equal to & (2 4 n,—n,),
where 7, vepresenis the number of clliptic sectors, n, the number of
hyperbolic” onles.

Let further j be an arbitrary simple closed curve enveloping P,
but enveloping no other singular point, then we can transform ¢’ into
j by continnous modification in such a way, that at every moment
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P, but no other singular poimnt, is enveloped by the modified curve.
If we consider for each of the intermediary curves the total angle
which the given vector describes by a positive circuit, then on one
hand it can only have continuous modifications and on the other
hand it must remain a multiple of 2s. Thus it remains unchanged,
and we can formulate:

Tororen 5. The total angle which, by a circust of a simple closed
curve enveloping only one point zero, the vector describes in the sense
of that circuit. is equal to m (2 n, —mn,), where n, represents
the number of elliptic sectors, n, the number of hyperbolic ones, which
appear when a vicinity of the point zero is covered with tangent curves
not crossing each other.

In particular for source points, vanishing points and rotation poinis
this angle is equal to 4 2.

We now surround / with a simple closed curve x which can be
supposed as small as one likes, and we leave the vector distribution
outside » and on % unchanged, but inside » we construct a modified
distribution in the following way :

Let us first suppose that for a positive circuit of % the vector
describes a positive angle 2nw. From an arbitrary point @ inside
» we draw to = n arcs of simple curve B, 8,, ...Bs not cutting
each other and determining in this order a positive sense of circuit.
Let us call ,% the arc of = lying between 8, and g,4.1, and G, the
domain bounded by 8,, ,» and B,1;. Along 8, we bring an arbitrary
continuous vector distribution becoming nowhere zero and passing on %
into the original one. Then along B, such a one passing on x and
in ( into the already existing vectors, that along the boundary of
(7, positively described the veclor turns a positive angle 2a. Then
along B, such a one passing on = and in” @ into the existing vectors,
that along the boundary of G, positively described the vector turns
a positive angle 2, etc.

As the angle described by the vector in a positive circuit of % is
equal to the sum of the angles described in positive circuits of
the boundaries of the domains G|, G,,.... Gy, it is finally evident,
that also for a positive circnit of G, the vector describes a positive
angle 2.

In each of the domains (7, with boundary =, we choose a simple
closed curve ¢, nol meeting 2, of which in a suitable system of
coordinates the equation can be ertten in the form aﬂ -+ 9 J~—7"

Inside and on ¢, we introduce a ﬁmte continuous vector dlstrlbutlon
vanishing only in the point (0,0),, which is direcled along the lines
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y . : :
Y — « and from the point (0,0),. This veclor describes along ¢, a

&
P
positive angle 2, just as the existing one along x,. If then according

to ScuounrLis we fill the annular domain between 2, and ¢, with
simple closed curves enveloping each other and as functions of a
cyclic parameler passing continuously into cach other, then we can
thereby at the same time make the veclor distribution along =, pass
continuously into that along ¢,, and in this way give to the annular
domain between 2, and ¢, a finite continuous vector distribution
vanishing nowhere. Inside %, we have now obtained a finite con-
tinuous vector distribution, having but one point zero, namely the
point (0,0),, and that a source point of very simple structure, which
we shall call a radiating point.

And the inner domain 'of x is covered with a finite continuous
vector distribution passing on z into the original one and possessing
inside #, instead of the original point zero P, » radiating points.

Let us furthermore suppose that for a positive circuit of # the
vector describes a negative angle 2wz, In an analogous way as
above we then divide the inner domain of z into n regions G, with
boundaries :,, and we bring along each of these boundaries such a
vector distribution, that for a positive circuit of %, the vector describes
a negative angle 2.

The curves ¢, are introduced again as above, but inside and on
¢, we introduce a finite continuous vector distribution vanishing only
in the point (0,0),, which is directed along the lines 2,y, = «. For
a positive circuit.this vector describes along c, a negative angle 2z,
just as the existing vector along x,.

So the annular domain between x, and ¢, can be filled up in an
analogous way as just now with a finite continuous vector distribu-
tion vanishing nowhere, and the whole distribution inside », possesses
then only ome point zero, namely the point (0,0),, having four
hyperbolic sectors of very simple form (the four separating parabolic
sectors are each reduced {o a single line), which structure we cha-
racterize by the name of reflexion point. .

After this the inner domain of = is covered with a finite continuous
vector distribution passing on x inlo the original’ one and possessing
inside x, instead of the original poini zero P, n reflexion points.

Let us finally suppose that for a circuit of 2z the total angle
described by the vector is zero. We can then choose inside x such
a simple closed curve ¢, that in a suitable system of coordinates its
equation can be written in the form a* 4-y* =+, Inside and on ¢
we introduce a finite continuous vector distribution vanishing nowhere,
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which is divected along the lines y = «. The total angle described by
this veclor along ¢ is zero, jusi as Ithe one described by the existing
veetor along =. The annular domain between % and ¢ can thus be
filled up as in the {wo preceding cases with such a finite continunous
vector distribution, that the whole distribution inside = is now free
of points zero.

So we can formulale:

Tmrorim 6. A finile continuous wvector distribution with a finite
number of points zero can be transformed, by modifications as small
as one likes inside vicinities of the points zero which can be chosen
as small as one likes, into a new finite continuous vector distribution
which has as points zero only o finite number of radiating points,
and «a finite number of reflexion points.

In particular those points zero about whick the angle, described
by the wector for « positive circuit, is positive, are broken up into
radiating points ; those about which this angle is negative, are broken
up into reflexton points; whilst those for which it is zero, vanish.

In a following communication we shall extend this theorem to
distributions with an infinite (denumerable or continuous) number of
points zero. ‘

§ 6.

i
A

Remarks on the tangent curves and singular points on a sphere.

If we have on a sphere a finite continuous vector distribution
with a finile number of singular points, then the reasonings of § 1
lead with small modifications to:

Trrorim 7. A tangent curve to «a finite continuous vector distribution
with a jinite number of singular points on a sphere is either a
simple closed curve, or save its ends it ws an arc of simple curve, of
which the purswing as well as the recurring branch either stops at a
pomt zero, or enters into a simple closed tangent curve, or conwverges
spirally to a circumference consisting of one or more simple closed
tangent curves.

From this ensues that also on a sphere a tangent curve cannot
return into indefinite vicinity of one ofits points, after having reached
a f{inite distance from it, unless it be, to close ilself in that point.

Out of the reasoning of § 1 we can deduce [arthermore withoul
difficnlty that a fundamental series of closed tangent curves with
the property that of the two domains determined by one of them,
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one contains no poinfs of he preceding, the other no points of the
following curves, converges either to a single singular point, or to
the ouler circumference, consisting of simple closed tangent curves,
of a domain or set of domains. i

Let now an arbitrary finite continuous vector distributionon a sphere
be given. On account of § 5 we reduce it by means of in-
definitely small modifications o a “reduced distribution”, possessing
as singular points only radiating points and reflexion points, and we
investigate the tangeut curves of that reduced distribution.

A closed tangent curve can possess no radialing points, but reflexion
points it can possess (ils.langent direction shows there a rectangular
bend). .

On the other hand a tangent curve can only stop at a radiating point.

We now consider an arbitrary tangent curve: according to theorem
7 it is either an arc of simple curve joining two radiating points,
or 1. gives rise to a simple closed tangent curve j,, which divides
the sphere into two domains G and G'.

Then on j, no radiating pomnt can lie, but we shall prove, thatin
G as well as in G there must lie one.

If namely there were no radiating point in ¢, we could consider
within G a new tangent curve, and as this would not be able to
stop in G, it would on account of theorem 2 give rise to a new
simple closed tangent curve j, enclosing a domain G, being a part
of . Within &, we could again consider an arbitrary tangent curve,
and in this way we should arrive al a simple closed tangent curve
J, enclosing a domain G, being a part of G,

Continuing this process indefinitely we construct a fundamental
series of closed tangent curves j,, 7,/ Jss -+ - ., Which cannot con-
verge to a single singular point, as neither a radiating point nor a
reflexion point confains closed tangent curves in an indefinitely small
vieinity. On account of the remark made at the beginning of this §
there must thus be at least one domain G, bounded by a simple
closed tangent curve j,, and contained in each of the domains
G, G, Gy, .

Within G we could again construct a closed tangent curve juq1
bounding a domain G,y being a part of G, and we could continue
this process to any index of the second class of numbers, which
on the other hand is impossible, as the set of domains &F — @,
G—@,,... Go—Gog, ... Go—Gup,. .. must remain denumerable.

So we finally formulate:

Turorem 8. A reduced distribution on a sphere possesses at least
two radiating points.






