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Mathematics, — “The oscillutions about a position of equilibrium
where a simple linear relation ewists between the frequencies of
the principal vibrations.”” (Second part). By H. J. E: Burn.
(Communicated by Prof. D. J. Korrewre.)

(Communicated in the meeling of February 26, 1910).

S=4.Y

§ 14. In this case the ordinary expansions in series hold as

] 2
long as 7—?— is great with respect to (]%) (see page 7 of the paper by

1 1

Prof. Korrrwre, mentioned above). The difficulty arises as soon as 2
: n,

L\
has fallen to the order (EL) . The calculations not getting simpler

1
with the absence of a residue of relation, we shall immediately

assume a residue of relation of, order 1’
When the relation

ny, + 0 = 3n,
exists and we proceed to investigale with a view to this which
terms in (2) (page 620 of these Proceedings) become disturbing in
the sense indicated in § 3, we easily see that no terms of order A
appear among the disturbing ones. So when determining the first
approximation we may omit the terms of order A* in the equation
of the surface, which terms agree with the just mentioned terms
of order 2% It then becomes

1 \ | .
= (68" 4 ¢y® + e2* + 02’y + e’y -+ ey’ 4 6y);

for we need not lake for the first approximation in the equations
of movement any terms of ‘higher order than A%

The abridged equations of motion, containing only terms of order
h, still run as follows:

z + 2, ¢=0,

y -+ 26,y = 0.
Now
n,= V2, , n,=12¢,
are the frequencies of the principal vibrations.

1) For the case S =3 see 18t part, pages 619—635 of these Procecdings.
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So

2¢, = (3n, — @)%
We change the abridged equutions into:
a—]— n,t =20,
y+mty=0;"
but then we must admit inio the function 2 a term:
3n, 0 y°
The canonical solution of the abridged equations is:

Ve,

cos (n,t + 2n,B,),

{7 e

1
[24
y = Ve, cos (3nt 4 6n,8,).
3n,
To find which functions the «’s and 3’s are of ¢{, we must in-
vestigate which form the function R now assumes.

§ 15. As the disturbing terms in the equations of motion are of

order A’ we shall find that «,, a,8,, and L’, can never exceed
order %. Of this we may make use to simplify the terms of order /°

containing 2,%,2% and *. We may namely replace in those terms:
& by « —n,®a?,

12 2,2
) ” aa_gnly’

T, —n e
and
. — 9, y.
Then the equations become:
@+ n a4 de, a° + 3¢, 2%y + 2, vy* + e, y* + )

4 (]

2
A0 (g 4 9a) & — T2 (2 481yt e = 0.
7 7

lz./.—|- In,?y — Bn, oy + e, &® + 2¢; &% - Be, ay® 4 4e, y* +

On,* 18n.°
+ ;‘; (¢, + 9a)y — g’f‘ (o + 817 y=10.)

Now the terms of order A* are all disturbing except ¢,4° in the
firsst and 3e, zy* in the second equation; so these may be omitted.

The terms 3¢, 2%y in the first and ¢,z in the second equation
owe their disturbing property to the supposed relation.

The remaining terms are always disturbing, also when no relation

exists.
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To ftransform the equations to such a form that the distarbing
terms may be regarded as derivatives of one and the same funetion
resp. to @ and y, let us consider the term with 2y® in the first and
that with 2’y in the second equation. If we substitule the expressions
found above as first approximation for 2 and y in these terms, after
the development of the products and powers of the cosines among
others terms will appear, differing only in coefficient from the
expressions indicated for x and y; the remaining terms which appear
are not disturbing. From this ensues thal we may replace :

~ 1l a,
in the first equation: zy* by — -—x
. . 1 a
in the second equation: z*y by -2—7—1——2 Y.
1

Accordingly the equations may be written :

w—{—nla,—{—(liel ) 8 4 e, at y-{—( —{—Z—{a)w:O,

. ' 1458111"
y+9n1“yi-l-(4es— ; )y“+e,w“ +
- g

-

€y 8lm,*
+(—6n19+nz @ + )yzo-

We thus see that they take the form of:

. . oR

s+ nfe——=0,
0a

- oR

y+ Iy —=0;
0y

where :

 R— ﬂ o+ (e 7290, L A ;
— 1" 292 ¢ 5 q )J (gn 2+ )"" "!‘

1 81n,*
+ - <—6n1 + a2 2) y* e, by,
1

§ 16. We must now write R as function of the «’s and s by
substituting for « and y, in the expressions obtained, the expressions
by which they are represented at first approximation, and by retaining
only those terms in which ¢ does not appear explicitly. Thus we

arrive at:
. 3 1

1 1 z -
——R:?aalﬁ—}-bala,—}—?ca.‘“ + o' A e, +m a,? a2 cos g,



where :

¢ == 6n,A* ’

= 6nl (51_52)‘

The system of equations giving the time-variability of the «’s and

f’s, is now:

3 1
%—_—ZJ\’m a‘_lags‘in(p,
dt 1 1 2

3 1
da - =
—2 = —2Nm, ¢,% a,2 sing,
dt
11
ag 3 - =
T;:““1‘|‘b“g+3m1“12"‘22"0530’
3

d 1 - —=
%:bal—l—cag—}-g’]ﬁ—l-—z—mlal?a,

where XN is put instead of 3n,.
From this system it appears at once that:
da, da,

e ode

)

therefore
a, + e, = constant.
i

So we put:

a,=R**n?*Rh*§ s a, = R’ n,* ke (1=8).

Furthermore according to §4:
1

o] co

¢,

1 1
ey ae,® -+ ba, a, + E-caz’ + o' Ma; +m a

is an integral of the system.

By introduction of § this integral takes the form of:

515 (1—8) cos = p§* + g5 +

(17)

2 ¢os ¢p == constant

(18)



where :

1
1 1 ' c
rT=— —5 ¢ 29 2 -+ 1 pa)?
m, 2 n,*R*  n'R,
where C' represents a constant, dependent on the initial state.

The first equation of (17) becomes by the introduction of &:
a2

—=_ CNYR EVE(1=8).singp. . . . .
== m, R N*1* . EVT(1—8).sin g (19)
By eliminating ¢ between (18) and (19) we arrive at:

a5

== —2—- my R,* NPR? . dL.
Ve 1—8) — (8 + g5+ J
Let
f)=8 01— — (p=* + 95 + 1),
then f(<) >0 for the initial value of , butf (L) < 0 for { = 0 and
£ =1; so f({) becomes zero for two values £, and {, lying between
0 and 1. :

So £ will generally vary periodically between two limits. It may
be expressed in the time with the aid of elliptic functions, after
which 8,, B,, @, apd y are also known as functions of the time.

For the extreme values zero and one of the modulus x of the

=) €. —L,)
(3—§2) (a'—§1)’

has two real roots e and 3 besides £, and §,) we get special cases.

elliptic functions ‘(-/. = when the equation f&)=0

Osculating curves.

§ 17. At first approximation we have found :

‘a
1 ¢os (n, t + 2n, B)),

O = nl
Va

Yy =

¥=13

2 cos (3n, t + 6n, B,),

nl

where the e’s and s slowly vary with the time.

By introduction of £ and ¢ and by change of the origin of timne
we find that we may determine the equation of an osculating curve
by eliminating ¢ between
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a=R Ay Lcosn t
and

1 b
Y= _‘B_Ro V1L cos (32, t — o).

For { and ¢ we must substitute the values, which these quantities
bave at the moment for which we wish to know the osculating
curve.

The osculating curves are ILissajous curves answering to the value

1 .
ry for the ratio of the periods of the vibrations. They are described

2 —_
in the rectangles having as sides 2 R, AV and _3_1%0 AV1—t.

As [ varies between two limits the rectangles in which the curves
ave described lie between two extremes. The vertices lie on the

2
circumference of an ellipse having 2 2, 2 and 5 R,/ as lengths of

axes.
The shape of the curve described in a definite reclangle is still
dependent on the value of ¢, i.e. on the value of the difference in
phase at the moment of the grealest deviation to the right.
To an arbitrary value of ¢ the wellknown Lissajous curve with

s

g 3x .
two nodes of fig. 8 answers. For p=g or— the curve is sym-

=

metrical in respect to the axes; the nodes lie in the X-axis on
1 .
either side of O at distances ?Ro b (fig. 9). For ¢ =0 or & we get

a curve, which is* described in both directions alternately and which
passes through O (fig. 10).

In fig. 11 we find some of those osculating curves represented
for a definite case of motion: two’ belonging to ¢ == a; #two for

- . . . 7
=73 and one for an arbitrary value of (p( >?) .

d
Out of (19) follows that i— =0 for sing=20. In the extreme

rectangles the curves are described which we have for ¢ = 0 or .
Now a number of different cases are possible, of which we gel a
clear representation by representing equation (18)in polar coordinates.
In fig. 12 some of the curves obtained in this way are represented,
where ¢ is taken as polar angle, V'1—C as rudius veetor. The different
shapes of the curves correspond to the roots of the equation:

PL=0—@F+¢+=0 . . . . (0
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The cases are:
1. The curve indicaled in the figure by --- keeps to the right or
to the left of O,; ¢ changes between two limits; the limits are

equal and opposite; the positive is smaller than g For the extreme
values of { we find ¢ either both times O or both times .
b4 2
2. The curve — — — interseets the straight line ¢ = 3 at two points

above O, and at 2 points below O,. For the extreme values of §
we again find ¢ either both times O or both times .

3. The curve consists of two closed parts (a continuous line in the
figure), which surround O,. Now ¢ assumes all values. For the
extreme values of § =0 one time ¢ = 0 and ¢ = & the other.

The transition case between 2 and 3 is represented by — . __ . __.

Fig. 11 relates to the 2nd case; for the two extreme values of ¢
we find ¢ = 7.

Special cases.

§ 18. These occur for the extreme values of the modulus x of the
elliptic functions; two roots of equation (20) have coincided.

1. x=1. The elliptic functions pass into hyperbolic ones. The
geometrical representation just now discussed of the relation between
¢ and ¢ and already mentioned as transition case between the
second and third cases bas a node sitnated on the axis of the angles.
The form of motion approaches asymptotically to a form of motion
belonging to ¢ =0 or ¢ = .

2. 2=0. The elliptic functions pass into goniometrical ones. The
curve of fig. 12 becomes an isolated point C' (special case belonging
o the 1st case of § 17 as limiting case) or it consists of an isolated
point and a closed curve (special case belonging to the 31 case of
§ 17 as limiting case). If the initial value of £ coincides with the
twofold root of (20) we find that { remains constant; ¢ is conti-
nually O or &. Thus the same curve is continnally described.

Arbitrary mechanism with 2 degrees of freedom jfor which S = 4.

§ 19. In the case that n, =3n, -+ ¢ the terms of order 1* can
give no disturbing terms in the equations of motion.
S0 we may write:

l 3
U:gnl”gl’—]--.}nz’g,'—}— U“
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wheve U, represents a homogeneous function of degree 4 in ¢, and

¢.- Furthermore we find :
T=7]z“(:712+%?2!=2 +- li-P1g'12 + P?Q.IQ; + 3P q.za;

where :
P =a q° + az‘h%:l'aa%?’
Po=10,9" 45,99 + b 3"
Pa:clql2 +02g1 Q2 "}' caﬂnﬂ‘
the a’s, 0’s, and ¢’s being constants. -
The equations of LAGRANGE become :

b= P = Pl S =S
19p, OP)\., U,
(Ga-5)w =5
§2+n?’q,=— 2§1—P3§2+
1 9P, dP\., OP,.. 10P,.. 90,
(G DL LR St il

In the same way as was done in §15 we may replace é,, s>
¢.*, and ¢,° in the terms of order A’ by others. .

Now in the first equation a term — a,¢,¢,¢. appears which
we must consider separately (in the second equation also there are
terms containing g, ., but these are not disturbing).

We introduce for this a new variable ¢', in such a way that:

1
9’1 =0 + Z‘ @, 1" 9

Then we find :
| N S .
i =%+ a0 q,+§azqz(¢zlql+q1)+agqlqlqz,

where ql and ¢, in the terms of order 4* may again be simplified.

Of the terms now appearing in the equations of motion the following
are disturbing:in the first equation those with %%,, ¢,°, ¢,%¢, and ¢,¢.*,
in the second those with 4’¢,, ¢,% ¢,° and ¢,’q,. Now justasin§ 15
the terms with g,¢,” in the first equation, those with g¢,*g, in the
second equation may still be simplified.

If we perform these calculations the result proves that the terms
of order 4* to be inserted in the equations may be put in this form :

Phtq, + eq®q, + cq,® in the first  equation.
Qtq, + fo) +4dg.* ,, 5, second
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Here P and Q are homogeneous quadratic functions of /e, and
Ve,; and

1
€= ’Z‘ (3"'12 - n'zn) @, + b1n22 -

1 -
f=— 5na, + 3bn,* — 1
(The terms — 3/ in ¢ and —/ in f originate from the term
lg,*q, appearing in U,).
In the terms of higher order we may substitute 3n, for n, in the
coefficients. We then find:

e—3 ’(——%—a,-{—3bl)n1’—l$,
) 1 )
= — 5 + 385, |n*—1

So we find that
. e= 3L

We may now write the equations of motion:
‘ o R

q w. "q =

1 1 41 aq !

1

. oR

qs "I— nsg 2 = R

) : * =%
where

1 1 1 1
R= ? 'Ph2912 + "2_ Q]]’-%z + fq:% + Z 091‘ + ':1_ d%"

So they get the same form as for, the simple mechanism so that
in case S=4 also the horizontal plOJeLtIOII of the point moving
over the surface may be 1ega1ded as representative point for an
arbitrary mechanism with 2 degrees of freedom.

S=2.

§ 20. So we suppose that the relation exisis:
n, =n, + 0

0 . )/
where ~ is of order (R——L—) However, as we have already seen in

n, .
the cases S=3 and S=4 in which way such a residue of relation
may be taken into account by inserting in the function B a term
with ga,, we restrict ourselves here to the case that the residue of
relation is zero, therefore: '

Ay

Il

n

, =0, =0

50
Proceedings Royal Acad. Amsterdam, Vol. XIIL

-10 -
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For the surface the lowest point is an umbilical point. To this
belongs as special case the surface of revolution with the Z-axis as
axis of revolution, which case is treated by Prof. Korrewee at the
close of his treatise quoted before.

Omitting the terms of higher order than A*, because in the equations
of motion we admit no terms of higher order than A?, and omi}ting
the terms of order A*, because in the equations of motion no terms
of order 1’ can be disturbing, we may write the equation of the
surface:

1
&= Tq_ (("1"",2 _I' csyg + elm4 + en""'s:‘/ + eamﬂy’ + 23 '7".’/ﬂ + 653/4)1

where we avail ourselves of the fact, that by means of a rotation
of the system of coordinates round the Z-axis the coefficients of
2y® and 2’y may be rendered equal.

The solution at first approximation is:

&= e cos (nt 4 2nB,),

n
y = @ cos (nt -+ 2nfB,);,
n

where n=V"2¢, =V 2¢,.

§ 21. Let us now pass to the simplification of the equations of
moiion. Corresponding to what was said in § 15 for the case S=<4
we may here replace in the terms of order 2* of the equations of

n\lotion :

2* by e, — nia?,
?'/: » @, — n'yt,
r " — n’z,
" — n*y.
The equations become :

. nt 2nt
e ety 2oyt o (o) o (5 ) 2=

. nt 2nt - 2
Y+ n'y-+e,o 4 20,0%y 4 Be,uy® 4oy’ + 7 (o, +a)y— 3 (=*+y7) y=0.

Here we may omit no terms, for all the terms of order A® are
disturbing. The equations may be written as follows:

7 + nix -5 = 0,

) R
3/+"’?/—5*y—=03’

-11 -
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where we must take
— B=ea 4 o0ty - o0’y + oy’ + oyt +
- n4 no
+ 2_92 (al + aa) (wz + y‘) - _2_.;2 (‘1"2 + yz)z.
§ 22. If we substitute in the function R for  and y the expressions
assumed at first approximation and if we retain only those terms
not containing f explicitly, we arrive at

-

1 1 )
—R == aa,® 4 beye, + e ca,? + feya, sin® @ + f, (e, + a,) V' ¢, e, c0s ¢,

where
o Sy
4n* ~ By’
3e n®
b= 24
Sn? + 8g?’
e, af
° dnt " By’
7 g
— b
f= 4n? + 4g*’
3e
f1 - g;;; ’

P= 2n (Bl - Bg)'
The system of differential equations indicating the time-variability
of the @’s and f’s becomes: '

de -
EZ = — 4nfa,a, sin @ cos ¢ + 2nf, (¢, + a,) Vea,a, . sing \
da, . —

= = + 4dnfa,a, sin @ cos ¢ — 2nf, (¢, + a,) l/arloz2 . sin g,

@1)

d 1 — s
o, = aa, + ba, + fa,sin’ 9 - —f,| 3V aya, + «, l/ix—— ¢os @,
dt - 2 o,

d o 1 e
%’_ = ba, + e, + fa, sin’ @ |- Ef’ (al l/% +8Vaa, )00593'
2

It appears at once from the system that:
de, da,

1
—F+—=0
dt+dt !

50
: a, -+ o, = constant.

50%

-12 -
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Another integral is according to § 4:

1 1 -
5 aa,” + ba,a, + N e, + fa,e,sin o + £, (¢ + o) Ve, cos (p==const._

§ 25. The results become very intricate for the general case. This
is evidenily a consequence of the circumstance, that in the function B
appear cosg and sin’¢g or in other words cos ¢ and cos 2¢. The
problem is considerably simplified if we suppose /; = 0, thus ¢, = 0,
which means, that we suppose the planes XZ and YZ to be planes

of symmetry for the surface.
Let us again introduce £, so that
a, = R, WL, a, = R (1 — ),
then the last integral may be written in the form :
VIA—Dwsg=plL*+q¢L+n
so that we can perform again all integrations in finite form, and z
and y may then be found as functions of the time.

. Osculating curves.

§ 24. We return to the general case and shall proceed to investigate
what becomes of the osculating curves. They are ellipses whose
equations are found by eliminating ¢ between

= —l/—ntﬁ cos (nt -+ 2nB))
and
y= Kn‘é cos (nt + 2nB,).

By changing the origin of time we see that for a definite osculating
curve we can also find the equation by elimination of ¢ between

al
& == —— 08 Nt
n

and
y = —@ cos (nt — (p),
n

so @ represents the difference in phase.
When ¢ bas an arbitrary value, the ellipse has an arbitrary shape

and position.
If =0 or & a straight line is described passing through O,

If ¢ =g— the axes of the ellipse lie along the axes of coordinates.

-13 -
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The ellipses are described in rectangles having their sides parallel

to the axes and whose vertices, as is evident from
o, -+ a, = constant,
lie on the circumference of a circle.

To investigate the change in shape and position we may write
down the well-known relations which may serve for the calculation
of the axes of the ellipse and the angle of inclination of the long
axis with the X-axis. If Ak and Bk are half the larger and half
the smaller axis and if & is the angle in view, then these relations
become : -

] 1 »°R7k* 1
A BRT e, st 0 T T T 1)
1 nt
QI I (2)
A*B*ht oy, sin’ @
2Va
tg 20 = — 1% os g .. N )
e — o

From (1) and (2) we now deduce at once: The sum of the
squares of the axes of the ellipse is constant. .

§ 25. From what we have just found we can easily prove that
in case the surface is a surface of revolution the osculating ellipse
has an invariable shape.

Then namely we find:

—R=1a(e,}a,) + fa, a,sin® ¢,

where :
e, nt
a=—4—,
4n* ° 8¢*
7 e, n?
=T 4o
As
ta(a,40,) 4+ fa, a, sin® @ = constunt,
and also
. a, 4+ a, = constant,
we find

a, @, sin® ¢ = constanl.
From (2) it then follows that
ABI? = constan’', )

from which in connection with the close of § 24 we may con-
clude that

-14 -
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Ah = const. , Bh == const., .
and so our proposition is proved.

If in further consideration of the case of the surface of revolution
we wish to see in what way & varies, we have lo write down the
differential equations giving the variability of the @’s and §’s. They
now become: )

de, ,

~— == —4dnfa, a,snegwsyp,
dt

d

7? = 4dafa a,smpcosg,
ag;, e
2= a(ta) + st g,
dﬁ?_ .‘:2
E—’*a(cﬁ'l'as) +.fa1 sme @ .

ag,

ap
We see {hat in i) and
dié dt

an equal constant term a (a, 4-e;) = a R * /*

appears. This means that the frequency n is modified by an amount
of 2ne B2 W
When we now differentiate according to ¢ the relation

2V a,a,
tg 260 = 12 s ¢
a,—d,
we may arrive after some reduction at:
dé
— = — 2 fa* ABI*
dt 7 b

from which it is evident, that the ellipse revolves with a consiant
angular velocity.

These results agree quantitatively with those found by Prof.
KORTEWEG.

§ 26. The change in shape and position of the osculating curve
does not seem to become simple for the general case n, = n,.

Let us therefore restrict ourselves to the case ¢, == 0; then the
XZ-plane and the YZ-plane are planes of symmetry for the surface.

The first equation of (21) now becomes

d
5{1—:— 4 nf a, a, sin ¢ cos @.
Or by introduction of £:
d
gtg = — 4 nf R 1§ (1—L) sin @ . cos .

-15-
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The relation between ¢ and ¢ becomes:

pt g5+ 0

—_— . - . - . . -42
e 22

Here o again varies periodically between a greafer and a smaller

cos® ¢ =

value. Now however d_ti may become equal to O for sine =20

and for cos @ =0. Thus barring special cases there are 3 general
cases

1st. For the extreme values of § cos @ = (). Then in the extreme
rectangles ellipses are described with the axes along the X-axis
and F-axis (fig. 13).

2nd, For the extreme values of £ sinp=0. In the exireme
rectangles siraight lines are described (fig. 14).

314, For one of the extreme values of & sinp =0, for the other
cosp = 0. (fig. 15).

Special cases.

§ 27. These we have again for the extreme values of the modulus
% (z has the same form as in § 16) of the elliptic funections; which
occurs when 2 roots of the equation;

FO=2 + g+ 80 —0) - (2 4 g5 + 9 =0

have coincided.

The special case” corresponding to B of § 9 and the second of
§ 18 occurs bere in two ways. We vefer to the cases in which
the same straight line is continually described (coutinually stn ¢ = 0;
when the surface is surface of revoiution, this form of motion
is possible in every wmeridian) and that continually the same ellipse
is described {cos p = 0; this becomes for the surface of revolution
the uniform motion in a parallel circle).

The special case corresponding 1o 4 of §9 and o the first of
§ 18 exists here too. The form of motion approaches asymptotically
the motion in a definite ellipse.

LFhwelope of the osculating curves.
§ 28. Two cases may be indicated, in which the envelope assumes

a simple shape.
1. For p=—1, ¢g=1 in (22) (the case of a surface of revolution),

the envelope has degenerated into two concentric circles.
2. For p=0 and ¢ =0 in (22) the envelope has degenerated into

two pairs of parallel lines, enclosing a rectangle.

Arbitrary mechanism with 2 degrees of freedom jfor which S=2.

§ 29. The equations of LacrANGE get quite the same form here

-16 -

T e S

R T i




( 750 )

as for S=4. In the terms of order /* we may in the same
way substitute other terms for the terms g¢,, ¢,, ¢,% and ¢,*.

0P, . . R
Then we have to reduce the terms ——¢,¢, and —-—¢, g, -
0g, Og,

To this end we introduce ¢', and ¢', in such a way, that

. 1 . 1 .
91:gl+zazgl 92+?aa%fla‘°
! 1 2 1 2
Qazgz_l"’zclqlgz —}-?C,QI g, -

After these reductions it is evident that the terms of order A® in

the first equation assume {he form:
a

a, a, 1 :
— & o + (a,—b,+¢,) n? ¢ + '2_02_265 n? % +

1 1
+ 2“1 913 + (? a2+bl) 912 q; — (ax—gbz'l‘cl) 14 Qag - (_2_ 03— 363)923'

4
We now substitute ?q," for B*h*q,. This is allowed, because
{

. . 4 .
substituting ¢, = Bh cos (nt + 2) in 5 g,°, we obtain Lesides a term
B*h*q, terms which are non-disturbing.
We wish to investigate whether the disturbing terms in the twn
equations are again derivatives of the same function. For this we

need not consider the terms with ¢, and ¢.°, in the first equation
and those with ¢, and ¢,® in the second. The remaining terms become:

in the first equation:
1 1 1
(‘é" az“,' bl) 912 9 — (aa 2bz + cl) 4 gzﬂ + ‘é‘ (ba + ? cz) 923'

In the second:

1/1 1
£ (—2- “u+b1) @ - gaa"'zba'l‘%) 7" ¢ + (bs -+ 0} 02) ‘A

So tinally we find that the disturbing terms are derivatives of the'

same function I; so the equations become:
. \ o0R
% +n B _‘a‘é::oi

| a2
where R="Pi*¢?* + Q]z,’2 .+ U,,

when P and @ are homogeneous quadratic functions of Ve, and
Vo, and when U, is a homogeneous tunction of order four of ¢, and
¢, The rvesults found for the simple mechanism hold therefore for
an arbitrary mechanism with two degrees of freedom.
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