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Mathematics, - "T/w usci!laLiuJ7,)' aóou! ct posüzon oJ equilibJ'iwn 
1O"'e7'e a simple linea?' 1'elation eJJists uetween tlte jhquencies of 
t!te Jl1'incipal vibmtions.'· (Second pari). By H. J. E: BETR. 
(Oommunicated by Prof. D. J. KOlt'rEWEG.) 

(Communicated in the meeting of February 26, 1910). 

§ 14. ln this case the ordinal'y expansions in series hold as 

long as - is gl'eat with respect to - (see page 7 of the paper by Q (h)~ 
n l RI 

Prof. KOH,TEWl!iG, mentioned aboye). ~he dif:ficulty al'Ïses as soon as.f 
n l 

( 
7t )~ bas fallen to the order Rl . The calculations not getting simpier 

\vith the absence of a residue of l'elation, we sha11 inunediately 
assume a residue of relation of(order h2

• 

When the relation 

n~ + Q = 3nl 

exists and we proceed to investigate with a view to this which 
terms in (2) (page 620 of tl~ese Proceedings) become disturbing in 
the sense indicated in § 3, we easily see that na terms of order h~ 

appeal' among the distnrbing ones. So when determining tlle fh'st 
approximation we may omit the terms of order h3 in the equation 
of the surfäce, which terms agl'ee with the .iust mentioned tel'ms 
of order h~. It then becomes 

1 
z = - (Cl{/]~ + cay2 + el ,'V

4 + e2,v3'!} + e3,v2y~ -I- e4,vy3 + e5y4); 
g 

for we need not take fol' the first appl'oximation in the equations 
of movement any terms of 'higher order than ha. 

The abridged equations of motion, containing only terms of order 
h, still run as fo11ows: 

~ + 2c I .'V = 0, I 
y + 2c~ y = 0. 

Now 
nl = V2c1 , n2 = V 2ca 

are the fl'equencies of the pl'incipal vibrations. 

1) Iror the case S = 3 see 1 st part, pages 619-635 of these Proceuuings. 

- ----~----------- -- -- -"--_ .... _-- -----------'-'-----
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80 
2c3 = (3n l - Q)2. 

We change the ahridged equa,tions into: 

.;; + n/ !IJ = 0, I 
y + 9n l ~ '!J = 0 ; \_ 

but then we must admit into the function R a term: 
3n1Qy 2. 

The canonical sollltion of tlle abridged equations is: 

Val 
.1J = -- cos (nI t + 2nl~I)' 

n l 

Va2 
y = -- cos (3n lt + 6nl~2). 

3nl 

To find whirh fllnctions the a'S and ls are of t, we must in
vestigate whieh form the function B now assumes. 

§ 15. As the distnrbing terms in the equations of motion are of 

order h 3. we shall find that ~l' ~2' ~l' aud ~z ean nevel" exceed 
order h. Of this we may make use to simpli(y tbe terms of order h3 

containing X, y, ,v2, and ~i2. We may namely replace in those terms: 

1/;2 by al - nl
2 !lJ2, 

y2 
" 

a2 - 9nl2 y2, 

{IJ 

" 
. - nl- al 

and 

y " 
- 9nl

2 y. 

Then the equations become: 

.~. + 11 1
2 

al + 4el .?J3 + 3e2 [lJ2y + 2e3 .'lJy. + e4 y3 + 
+ 11~4 (al + 9(

2
) {I] _ 21:1

6 

([IJ. + 81 y2) m = 0.1 
g- g-

~ï + 9nl
2 Y - 6n l QY + e2 ,1]3 + 2e3 {1]2 y + 3e4 [lJy 2 + 4e6 y3 + \ 

9n 4 18n 6 

-1 __ 1_ (al + 9a.)y ___ 1 ([lJ2 + 81 y2) Y = o. 
g2 g2 I 

Now the terms of order 1~3 are all distmbing except e4y3 in the 
first and 3e4 'JJy2 in the second equation; so these may be omitteel. 

The terms 3e
2 

x2y in the first anel e2 ;c3 in the second equation 
owe their clisturbing pl'operty to the sl1pposed l'elation. 

The remaining tel'ms are always distul'bing, also when 110 relation 
exists. 
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To tmnsform the equations to slIelt a form that the distlll'bing 
terms may be regarded as del'ivatives of one anel the same fllnrtion 
resp. to .'1J and y, let 11S considel' the term with .'Vy2 in the th'st and 
th at with x 2y in the second eqnation. If we substituLe ihe expressions 
found above as fil'st approximation for x anel y in these terms, aftel' 
the development of the produets anel powers of the cosines among 
othel's terms wiII appeal', cliffering onIy in coeflirien1. from tho 
expressions indicated for ,vanel y; the remaining terms whieh appeH.r 
are not disturbing. From this ensues that we ma,)' replace: 

, 1 a 
in the nrst equation: ,vy~ by 18 n

1

22 x, 

1 al 
in the second eql1ation: ,v2y by - -2 y. 

2 n1 

Accordingly the equations may be written: 

We thus see that they take the form of: 

. àR l tV + n1
2 

tV - àllJ = 0 , . 

. , àR 
y + 9n1

2 
y - ày = 0 ; 

where: 

- R = e - - IU
4 -I- e - --- y4 + - - ct + - a ,u2 _I-( n/) ( 72911 1

6

) 1 ( ea n1
4

) 

1 2g2 6 2t 2 9n/ 2 g2 1 

~ 16. We must now wóte Tl as function of the a's anel {J's by 
substituting fol' X and y, in the expressions obtaineel, the expressions 
by whi('.h they are l'epl'esented at first approximation, anel by l'etaining 
only those terms in whièh t does nol appeal' explicitly. Thus we 
arl'ive at: 
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3e1 U 1
2 

a=-4 4+-S 2' n 1 g 

b __ e3_ 
- ISn

1
4 ' 

e5 9n1
2 

c = 1 OSn: + Si ' 

e ' m __ 2_ 

1 - 24n
1

4 ' 

Q 
Q=-672' 

n1n 

cp = 6n1 ({Jl-{J2)' 

The system of equations giving the time-variability of the a's and 
{J's, is now: 

da ~ 1 

_2 = _ '2.1Vm l al2 a22 sin lf, 
dt 

diJ 3 ~ ~ Tt = aal + ba2 + 2 mI a 1
2 az 2 cos cp , 

whel'e .N is put instead of 3n1• 

From th is system it appears at onee that: 

thel'efore 

80 we put: 

dal da2 

Tt+Tt=O, 

al -+= a2 = constant. 
\ 

al = Ro 2 nl~ h 2 
; 

Purthel'more aeeording to ~ 4 : 

is an integral of the system. 

2COScp; 

By introduetion of ; this integral takes the f01'111 of: 

; V; (1-;) cos cp = p;2 + q; + 1', 

(, 
. (17) 

. (IS) 
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wbere: 

.. =~ (-~c--$--;+~), 
mI 2 n l Ro' 1/ 1 Ro 

where Crepresents a constant, dependent on thc initial state. 
The fil'st equation of (17) becomes by the intl'oduction of ;: 

d; 2 V--- =- m l R.~ N3 h2 
.; ; (1-;). sin p. .. (19) 

dt 9 

By eliminating p between (18) and (19) we al'l'ive at: 

dÇ = ± ~ m
l 

Ro 2 X31~2 . dt. 
:-:V~;a=(l=;:;=) =(p==;2=+=q=Ç+=r=)2 9 

j(;) ça (l-S) - (p;~ + qS + r)2 , 

then f (;) > 0 fol' the initial value of ;, butf (Ç) < 0 for S = 0 and 
S = 1; so j(S) becomes zero for two values Sl and Çzlying between 
o and 1. 

So S wiH generally vary pel'iodically between two limits. It may 
be expressed in the time with the aid of elliptic functions, aftel' 
which {Jl' I~z' tC, apd y are also lmown as functions of the time. 

For the _ extreIQe values zero and one of the modulus " of the 

11 ' t' f ' ( V({J-a) (SZ-Sl) h tb t' .f'~) 0 e lp IC UTIctlOns ,,= ,wen e equa JOn J\f, = 
I (B-S z) (a-s l ) 

bas two real roots a and I~ besides Sl and Sz) we get special cases. 

OSGulatin,CJ CU1'ves. 

§ 17. At first approximation we have found: 

l/a1 
IV = -- cos (nl t + 2n l {Jl)' 

n l 

Va2 
y = -- cos (3n 1 t + 6n l (12)' 

3nl 

where the a's and {J's slowly vary with the time. 
r BJ' introduction of S and pand tly change of the ol'igin of time 
we find that we may determiIie the equation of n,n oscu]ating curve 
by eliminating t between 
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1 I 

'!J = -RQ 7~ VI-Ç cos (3n 1 t - g;). 
3 

Fot' ç and g; we must substiillte the values, which these quantities 
have at the momE'lJt for which we wish to lmow the osculating 
curve. 

The oscnlating curves are Lissajous curves answering to the value 
1 

- for the ratio of the periods of the vibrations. They are described 
3 

2 Vin the l'ectangles having as sides 2 Ro h Vç and 3" Ra h 1-ç. 

As ç varies between two limits tlJe l'ectangles in which the curves 
are descl'ibed lie between two extremes. The vertices lie on tile 

2 
circumfel'ence of an ellipse having 2 Ro hand 3 Ro ft as lengths of 

axes. 
The shape of the CUl'Ve dcscl'ibed in a defilJite l'eclangle is still 

dependent on the value of lf, i. e. on the value of tbe diffel'ence in 
phase at the moment of the gl'eatest deviation to the right. 

To an arbitl'al'y value of g; tIle welllmown Lissajous Cl1l've with 
:il' 3.IT 

two nodes of fig. 8 answel's. Fot' (fl = - or - the CUl'\'e is sym-
~ r 2 2 < 

metrical in respect to 1he axes; the nodes lie in the X-tuis on 
1 

eirher side of U at distances "2 R Q h (fig. 9). For g; = 0 Ol':ir we get 

ft curve, which is' descl'ibed in both dil'ections alternately and which 
passes through 0 (fig. 10). 

In fig. 11 we find some of those osculating curves repl'esented 
for a definite case of 1l10tion: two' belonging' to (p = .7l:; twa for 

g; = ~, and one 1'01' an al'bitl'ary vulne of g; ( > ;) . 
d~ 

Out of (19) follows tlJat :. -= 0 fol' sin g; = O. In th~ extreme 
dt 

l'ectangles the curves are described which we have for g; = 0 or :ir. 

Now a number of different cases are possible, of which we geL a 
clear representation by l'epl'esenting equation (18) in polar coordinates. 
In fig. 12 sorne of the curves obtaincd in th is waJy are represented, 

whel'e gl is taken as polal' angle, V 1-Ç as mdius vector. The different 
shapes of the curves cOl'l'espond to the roots of the equation: 

;3 (1 - s) - (p;2 + <iS + 1')2 = O. . (20) 
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The cases are: 
1. The curve indicated in the figure by - - - keeps to the right Ol' 

to the 1eft of Ol; cp changes between two 1imits; the limits are 

equa1 and opposite; the positive is smaller than ~. Fot' the extreme / 
2 

values of ç we find cp either both times 0 Ol' both times :Jr. 

:ft 
2. The curve - -- - intel'sects the straight line cp ="2 at two points 

above Ol and at 2 points below Ol. Fo!' the extreme ra lues of ç 
we again find cp either both times 0 or both times Jr. 

3., The curve consists of two closed parts (a continuous line in the 
fig ure) , whielt surround Ol. Now cp assumes all vallles. For the 
extreme values of ç rp = 0 one time cp = 0 and cp = Jl the other. 

The transitioll case between 2 and 3 is represented by _ . _ . _. 
Fig. 11 relates to the 2nd case; for the two extreme values of ç 

we find cp = :Jr. 

Special cases. 

~ 18. These occu!' for the extreme valnes of the modulus "of the 
elliptic fllnctions; two roots of equation (20) have coincided. 

1. " = 1. The ellipiic fUIlctions pass into hyperbolic ones. The 
geometrical repl'esentation just now chscussed of the l'elation between 
ç and rp and al ready mentioned as transition case beh;veen the 
second and thit·d cases bas a node situated on the axis of the angles. 
The form of motion approaches asymptotically to a form of motJon 
belonging to cp = 0 Ol· cp = :Jr. 

2. " = O. The elliptic funetions pass into goniometl'ical ones. 'fhe 
curve of fig. 12 becOlnes an isolated poil1 t C (special case belonging 
to the 1st case of ~17 as limiting case) or it cOllsists of an isolnted 
point and a closed CUl'\'e (special case belonging to the 31d case of 
~ 17 as limiting case). lf the initial valuc of ; coincides witl! the 
twotûlcl root of (20) we find that ç remains constant; (p is conti
nuall.r 0 Ol' Jr. Thus the same curve is contil111a1ly clescribed. 

ilrbit1'a1'Y mecltanis1n with 2 deg1'ees of fl'eedom f01' wltich S = 4. 

§ 19. In the case that n2 = 3n l + Q the tel'ms of order lt 2 can 
give no disturbing tel'ms in the equations of motion. 

So we mny wri te : 

U=1nl~q12+~n./q/+ Uil 
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where U4 l'epl'esents a homogeneous funr:tion of degl'ee 4 in ql and 
qz. FUl'thermore we find: 

where: 
l' = t ql2 -+- ~ q22 -I- t PI il2 -+- Pz il q~ -+- ! Pa i/i 

PI = al ql2 + az ql q2 -+- as qz2, 

Pz = bI q/ -+- bz ql qz -+- ba qz 2, 
P3 -= Cl ql2 -+- C2 ql q2 -+- C3 q, Z • 

the a's, b's, anel c's being eonstants. 
The eqnatioIls of LAGRANGE beeome: 

.. .... 1 àPl . àP .. 
+ ~ _ P P 2 I-+-qj n l qj - - I ql - 2 qz -"2 àql ql - àq2 ql q2 

-+- (!... àPa _ àPz) qz2 _ àU4 . 
2 àql - àqz àql 

qz -+- n22 q2 = - Pz ql - Pa q2 -+-

(
1 àP! àPz).. àPa" 1 apa' 2 à U4 -+- ---- q---q q ---q --
2 àq2 àql 1 àql I 2 2 àq2 2 àq2' I 

III the same way as was do ne in § 15 we may replaee ql' qz' 
q~2, and q/ in the terms of order h3 by others. 

Now jn the first equation a term -- az q1 q~ qz app~ars whieh 
we must eonsider separately (in the seeond equation also there are 

tel'ms containing q! qZ) but these are not disturbing). 
We introduee for this a new variabIe q' 1 in sueh a way that: 

, 1. 
q 1 = ql -+- "4 az ql- qz· 

Then we find: 
.. .. 1 .. 1 '" . . 
q'l = ql -+- "4 az qlz q2 -+- "2 az -qz (ql ql -+- ql') -+- az ql qj q2' 

where q~ and qz in the tel'ms of order ha ma)' again be simplified. 
Of the te\'ms now appearing in the equations of motion the following 

are distul'bing: in the first equation th08e with h2ql' q13, ql2qz anel qlq/, 
in the seeond those with /~Zq2' q1 3

, q/ and ql2q2. Now just as in § 15 
the terms with qlq,2 in the first eqnation, those with ql2q2 in the 
seeond equation may still be simplified. 

If we pel'form these calculations the l'esult proves that the tel~ms 

of order h3 to be in&erteel in the eql1ations ma)' be put in this torm : 

Pl~2ql -+- eql2q2 -+- cql a in the first equation. 

Qh2qz -+- fq\ 3 -+- dqz 3" 'I second H 
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. Here P ana Q are homögeneous quadratic functions of Val and 
Va~; and 

1 
e = 4 (3n l ' - n2

2
) a2 + bl n, ~ - 3Z, 

1 
f= - n nl

2az + 3b l n l
2 -Z. 

loJ 

(The terms - 3l in e and - l in f originate from tIle term 
, lql 8q, appearing in U.). 

In the terms of higher order we may substitute 3n l for ns in the 
coefficients. We then find: 

e = 3 f (~ ~ a, ~ 3b l ) n l 2 - l t ' 

" 
f= ( - ~ a + 3b ) n ' -. l. 2 2 1 1 

80 we find that 
e = 3f. 

We may now writtl the equations of motion : 

where 

.. àR 
ql + 'I1Jl

2
ql = S-, 

uql 

.. aR 
q, + n,2q, = -a ; 

q2 

1 1 1 1 
R = 2 Pl~2ql' + 2, Ql~2q,2 + fql 'q, + 4 cgl

4 + 4 dq,4. 

80 they get the same form as fot: thé simple mechanism so that 
in case S = 4 also the horizontal projectioll of the point moving 
over the surface may be regarded' as representative point for all 
arbitrary mechanism with 2 degrees of freedom. 

S '2. 

§ 20. 80 we suppose that the relation exists: 

n l = nz + (b 

ó" (h)' where ~ is of order R . Howe\'er, as we have ah'eady seen in 
nl' 1 

the cases S = 3 and S = 4 in which way such a residue ofrelatioll 
may be taken into account "by \ inserting in the {unction R a term 
with Qaz, we restrict oLll'selves here to the case that the l'esidue of 
relation is zero, therefore: ., 

, ~ -- - \. 

50 
Proceedings Royal Acad. Amsterdam. Vol. XII. 
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For the surface the lowest point is an umbilical point. To this 
belongs as special case the surface of revolution with the Z-axis as 
axis of l'evolution, which case is treated by Prof. KORTEWEG at tbe 
close of his treatise quoted before. 

Omitting tllf' terms of higher order than h\ berause in the equations 
of motion we admit no terms of higher order than h3

, and omÜting 
the terms of order h3

, because in the I equations of motion no terms 
of order ft2 can be disturhing, we may write the equation of the 
surface : 

1 
z = - (cl'v' + c3Y' + el.v

4 + e,.v3y + eam2y' + e2 te!l + e.y4), 
g 

whel'e we ayail ourselves of the fact, that by means of a rotation 
of the system of cool'dinates round the Zaxis tbe coefficients of 
[ey3 and fJJ3 y may be rendered equa!. 

The solntion at fh'st appl'oximation is: 

Val 
.v = -- cos (nt + 2n~1)' 

n 

Va2 y = -- cos (nt + 2n{j,); , 
n 

where n = V2c l = V2ca• 

§ 21. Let us now pass to the sirnplification of the equations of 
motion. Oorresponrling to what was said in § 15 fol' the case S = 4 
we may here replace in the terms of order h3 of the equations of 
motion : 

'\ 

The equations become: 
\ 

.vS by al - n'.v2
, 

y" " a, - n2y', 

" 
-n'.v, 

y" -- n:y. 

.. rn 4 2nG 

a;+n2,v+ 4el iv 3 + 3e"v'y+2ea,vy'+e2y3 + - (al +a2).v- -.- (X 2+y2) .v=O. 
g' g. 

.. n4 2n
6 

\ y-l- n2y+e"v3+2e8.v~y+3e2.vy2 +4e5y8+ - (al +a,)y--. (te2+y') y=O. . ~ r 
Here we may omit no terms, for all the terms of order h3 are 

distnl'bing', The eql1ations may be written as follows: 

.. aR I 
lIJ + n 2

,'lJ _. O.v = 0, { 

.. aR \ y + n'y -a-=O; , y 
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where we must take 
R == e l //)4 + e 2,'I)3y -1- e 3,'I)2y2 + e 2,'I)y3 + esy4 + 

~ n 4 n6 

+ 2g2 (al + a~) (tv2 + y~) - 292 (tv' + y2)2. 

§ 22. If we substitute in the fUllction R for tIJ and y the expres~ions 
assumed at first approximation and if we retain only those tel'ms 
not containing t explicitly, we al'rive at 

1 : 
- R == 2" aa/ + ba1a2 + T CU 2

2 + lal a2 sin
2

lp + 11 (al + a z) Val a2 COS Ij) , 

where 

a= 

C= 

3e n~ _1+_ 
4n4 89J 

3e n2 

8:4 + 892
' 

3e n2 

4n
54 + 8g2 ' 

e n~ 

1=-4 34 +-42 ' n 9 

3e2 

8n4 
' 

Ij) = 2n (~1 - ~2)' 

The system of differential equations indicating the time-variability 
of the a's and Ws becomes: . 

dal. V-- . - = - 4nfala, stn rp cos Ij) + 2nll (al + a,) a1a2 • stn Ij) 
dt 

da~.. V-- . - = + 4nlala, sm lp cos lp - '2nll (al + a2 ) u1 a2 • stn lp, 
dt 

d~, = bal + ca, + jal'sinZ 
Ij) + 2.11 (al val + 3 Vap, )COSIj)' at 2 a, 

It appears at on ce from the system that: 

dal das 
at+dt~O, 

60 

al + a z = constant. 
50*' 

(21) 
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§ 25. The results become very intricate for the general case. This 
is evidently a consequence of the circumstance, th at in the function R 
appeal' cos lP and .~in2 lP or in other words cos lP and cos 2lP. The 
problem is considerably simplified if we sappose fl = 0, titus e2 = 0, 
which means, that we suppose the planes XZ and YZ to be planes 
of symmetry for the surface. 

Let us again introdure ç, so that 

al = R027~2'Ç, a2 = R/7L' (1- 'Ç), 

then the last integral may be written in the form: 

V'Ç (1 - Ç) cos lP = P 'Ç2 + q'Ç + r, 
50 that we ('au perform again all integrations in finite form, and x 
and y may then be found as functions of the time. 

Osculatin,q curves. 

§ 24. We return to the general case and shall proceed to investigate 
what beromes of the osculatillg curves. They are ellipses whose 
equations are found by eliminating t between 

and 

Val 
3J = - cos (nt + 2n{jl) 

n 

Vaz 
y = - cos (nt + 2n{j,). 

n 

By changing tbe Ol'igin of time we see th at for a definite osculating 
curve we can also find the equation by elimination of t between 

and 

Val 
lIJ =-= -- cos nt 

n 

Va% 
y = -- cos (nt - (p), 

n 

so (p represents the diffel'ence in phase. 
When lP has an arbitrary value, the ellipse has an arbitrary shape 

and position. 
If lP = ° or :re a straight line is described passing through O. 

3t: 
If lP = - the axes of the ellipse He along the axes of coordinates. 2 • 

_1 _____ _ 
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The ellipses are described in rectangles having their sides parallel 
to the axes and whose vertices, as is evident ti'om 

al + a, = constant, 

lie on the circumference of a circle. 
To investigate the change in shape and position we may write 

down the well-known relations which may &erve for the calculation 
of the axes of the ellipse and the angle of inclination of the long 
axis with the X-axis. If Ah and Bh are half the larger and half 
the smaller axis and if 8 is the angle" In view, then these relations 
become: 

2 Val a, 
tg 28 = ---. cos ({. 

as - al 

(1) 

(2) 

From (1) and (2) we now dedure at once: The sum of the 
squares of the axes of the ellipse is constant. 

§ 25. From what we have just found we can easily prove that 
in case the surf'ace is a surf ace of revoilltion the osculating ellipse 
has an inval'iable shape. 

Then namely ~e find: 

- R = t a (al +a2)' + tal ((2 8in~ cp, 
where: 

As 

and also 

we find 
al as sin2 (jJ = con~tallt. 

From (2) it then follows that 

ABlt2 = constan'j 

from which in connection with the close ot' § 24 we may COll

elude that 
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Ah = const. , Bl~, = const. , 

iLnd so om propoAition is proved. 
lf in fmther consideration of the case of the surface of revolution 

we wish to see in what way f) varies, we have to write down the 
differential equations giving the variability of the a's and [3's. They 
now beCOlne: -

dal . iii = -- 4, nf al a2 szn lj) cos <f! , 

da~ 

dt 

d[3 -
_I = a (a) +(2) + f a 2 sin~ ljJ , 
dt -

d - - -
J!.:.. = a (a) +fts) + fa) sin2 

ljJ • 
dt 

dijt d{l. 
\Ve see ibM in - l1nd-- an equl11 constant term a {a) +(2 ) = a R02 lL2 

dt dt 

appel1rs. This meaJ1S that the frequency n is modified by an amonnt 
of 2rul R02/t2. 

\Vhen we now differentüttc l1ccol'ding to t tile rebtion 

2Va l ä: 
tg 2f) = cos (P 

Ct 2 -u, 

we may al'rive alter some l'eduction l1t: 
df) 
-= - 2fn3 ABh2 

dt ' 

from which it is evident, th at the ellip3e revoh-es with l1 constl1nt 
angulal' velocity . 

These l'esults agree quantitatively with those fOlllld by Prof. 
KORTEWEG. 

~ :dB. The ('hange in shl1pe and position of tile oscuJating curve 
doeR not seem to become simpJe fol' the general case, n2 = nl' 

Let us therefore restriet ourselves to Ithe ('l1se e2 = 0; then the 
XZ-plane and the YZ-plane are planes of symmetl'y for the snrfure. 

The first equation of (21) now becomes 

dal f . - = - 4 n al a2 szn lj) cos <p. 
dt 

Ol' by intl'oduction of b: 

dÇ = _. 4, nf .Ro21~2 ç (1-~) sin <p. cOSljJ. 
dt 

• 
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The relation between ç and ljJ becomes: 
2 p;2+ q;+r 

COS <p = ç (l-Ç) . (22) 

Here ;; again varies periodically bet ween a greater and a smaller 
d~ 

value. Now howevel' ~ may become equal to 0 1'01' sin lp = 0 
dt 

and for cos <p = O. Thus barring special cases thel'e art=' 3 general 
cases: 

1 st. For the extreme \'al nes of S cos lp = O. Then in the extreme 
l:ectangles ellips es are described with the a,xes aiong tbe X-axls 
nnd Y-axis (fig. 13). 

2nd . For the extreme values of ç sin lp = O. In the extreme 
rectangles straight lines are desct"ibed (fig. 14). 

Sld. For one of the extreme values of ç sin If' = 0, t'or the oihcl' 
CON {I' = O. (fig. 15). 

Special cases. 
~ 27. These we have again fol' the e'rt!'eme values of the modulus 

x (~ has the same form as in ~ 16) of the elliptic functions ; which 
occnrs whcn 2 roots of the eqnation i 

f (;) _ (p;2 + q; + 1') IÇ (1 - Ç) - (p;2 + q; + 1'») = 0 
have coineirled. 

The special case' cOl'l'esponding to B of ~ 9 and the secOlld of 
~ 18 oeCl1rs here in two ways. We l'efer to the cases iJl whieh 
the same ótraight line is continually described (continnally sin lp = 0 ; 
whcn the surfnce is sUl'ftLce of "evoilltion, this form of motion 
is possible in every mcridian) and that continllally the óame ellipse 
is described (cos rp = 0; this becomes for the snrface of revolntion 
the unif'orm motion in a parallel circle). 

The specül.l case corresponding to A of ~ 9 anel to the first of 
~ 18 exists here too. The form of motion appl'oaehes asymptotically 
the motioll in a definite ellipse. 

Envelope of the oswlatin,CJ curves. 
§ 28. Two cases may be indicated, in which the envelope a'Jsumes 

a simple shape. 
1.. Por p = -1, q = 1 in (22) (the case of a sUl'face of l'evolution), 

the en velope has degenel'ated into two concentl'ic cil'cles. 
2. Fot' lJ = 0 and q = 0 in (22) the envelope has degenerated into 

two pairs of parallel Iines, enclosing a l'ectangle . 

. A1·bitm1·y meclwnism with 2 degl'ees of f7'eeclom f01' which S= 2. 
~ 29. The eql1ations of LAGRANGE get quite the same form here. 

I 

L 
11 

I 

t 

1 
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as for S = 4. In the terms of order h3 we, mày in the same 

way substitute other terms for the terms i~, i:, q12, and qz 2. 
OPI • • ap3 • • " 

Then we haye to reduee the ter111S - a ql q2 and - - ql ql . 
q2 oql 

To thi8 end we intl'oduee q'l and q'2 in sneh a way, that 
1 1 

q'l = ql -I- 4:" az ql2 q" + -t as ql q2 2 
• 

,_ 1 ,,1 2 

q 2 - q" + 4:" Cl ql q2 -1-""2 C2 ql qz· 

Aftel' these reduetions it is evident that the terms of order h3 in' 
t11e first eqnation assume t11e form: 

I al a2 / ( 1 ) a2 

- al n2 + (as-bz-l-c l ) n2 \ ql + ""2 c2 -2ba n2 q2 + 
+ 2al q1

3 + (~ a2-1- b1) q12 qz - (a3-~b2+Cl) ql q2
2 

- (~ C2-3bs)q23. 

4 
We now Sub8titl1te :3 q23 for B2h2q2' This is al10wed, because 

4 I 

substituting q2 = Bit cos (nt + J.) in 3" qz 3, we obtain l)esides a term 

B2lt2q~ tel'ms which are non-disturbing. 
We wish to in vestigate w het hel' the distUl'bing terms in the twn 

equations are again derivatives of the same funetion. For this we 
need not eonsidel' the terms vdth ql and q13, in the first equation 
and th08e with qz and q28 in the second. The l'emaining terms beeome' 
in the first equation: 

(~ a2+b1) q12 q" - (aa 2bz +cl )qd/ + ~ (ba -I- ~ (2)Q2
3
• 

In the seeond: 

~ (~ a~+bl) ql3 - ~a3-2b2+Cl) q1
2 qz + (bs -1- ~ (2) ql qz2 

80 tinally we find that the disturbing terms are derivatives of the j 
same function R; so the eC}ua.tion5 become: 

.. aR 
ql + n2 ql -;;- = 0 , 

uql 
.. aR 
q2 + n2 

q2 - :;- = 0 , 
uqz 

where R = PIL" q/ + Q/~" q22 + U4 , 

when P aud Q are homogeneou8 quadratic functiolls of Val aud 
V f't

2 
and wh en U4 is a homogeneous function of order four of ql and 

q2' The resl1lts found for the simple mechanism hold thel'efore fol' 
an arbitrary mechanism with two degrees of freedom. 
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