Huygens Institute - Royal Netherlands Academy of Arts and Sciences (KNAW)

Citation:

W. van der Woude, The cubic involution of the first rank in the plane, in:

KNAW, Proceedings, 12, 1909-1910, Amsterdam, 1910, pp. 751-759

This PDF was made on 24 September 2010, from the 'Digital Library' of the Dutch History of Science Web Center (www.dwc.knaw.nl)
> 'Digital Library > Proceedings of the Royal Netherlands Academy of Arts and Sciences (KNAW), http://www.digitallibrary.nl'

Mathematics.: - "The cubic involution of the first rank in the plane." By Dr. W. van dir Woude. (Communicated by Prof. P. H. Scmoute.)

1. If V is a plane it is in different ways possible to arrange the points of V in groups of three in such a way, that an arbitrary point forms a part of only one group. If P_{1} is a point of V there must exist between the coordinates of P_{1} and those of the other points of the group, to which P_{1} belongs, some relations by which those other points are entirely determined. It is however possible that P_{1} can be chosen is such a way that one of these relations is identically satisfied; in that case P_{1} forms part of an infinite number of groups.

We now start from the following definition:
The points of a plane V form a cubic involution of the first rank, wolen they are conjugate to each other in groups of three in such a voay that (with the exception of some definite points) each point forms a part of only one group.

A triangle of which the vertices belong to a selfsame group we call an involution triangle; eash point which is a verlex of more than one, therefore of an intinite number of involution triangles, we call a singular point of the involution; each point coinciding with one of its conjugate points is called a double point. If one of the sides of ai involution triangle rotates around a fixed point, then the third vertex of this triangle will describe a right line or a curve; we shall restrict ourselves in this investigation to the case, that one vertex of an involution triangle describes a right line, when the opposite side rotates around a fiwed point.
2. When the points of a plane V form a cubic involution of the first rank which satisfies, the just mentioned condition and which we shall furtheron indicate by (i_{3}), we can conjugate projectively to each point of V the connecting line of its conjugate points. Each vertex of an involution triangle and its opposite side are pole and polar line with respect to a same conic, which in future we shall always call γ_{2}; each involution triangle is a polar triangle of γ_{2}. It is clear that reversely not every polar triangle of γ_{2} is an involution triangle of $\left(i_{3}\right)$; for each point of V is a vertex of an infinite number of polar triangles of γ_{2}, but of only one involution triangle. If however S is a singular point of the involution, then S must be a vertex of an infinite number of involution triangles, thus each polar triangle of γ_{2} having S as vertex is at the same time an
involution triangle. If we assume a point G of the conic γ_{2} as a vertex of an involution triangle, then one of the other vertices must coincide with G, so G is a double point of the involution; γ_{2}, the locus of these double points, is the clouble curve of the involution.

Each line l whose pole with respect to γ_{3} is no singular point of the involution is a side of only one involution triangle, namely of that triangle having the pole of l as vertex. On the other hand each line whose pole is a singular point is a side of an infinite number of involution triangles all having that point as vertex. From this ensues that also the lines of V form a cubic involution $\left(i_{3}^{\prime}\right)$ of the first rank; the polar lines of the singular points of $\left(i_{3}\right)$ are the singular lines of ($i_{3}{ }_{3}$), the tangents of γ_{2} are its double lines and γ_{2} is its double curve. Both involutions are with respect to γ_{2} polarly related.

The involution triangles of γ_{2} are all polar triangles of a selfsame conic γ_{3}, which is at the same time the double curve of $\left(i_{3}\right)$. The lines of V form an involution ($i_{3}{ }_{3}$) which is with respect to γ_{3} the polar figure of $\left(i_{3}\right)$. Each polar triangle of γ_{2} having a singular point of the involution as vertex is at the same time an involution triangle.
3. We make a point describe a line a_{1} and we ask after the locus of its conjugate points. If we draw through A_{1}, the pole of a_{1} with respect to γ_{2}, an arbitrary line p_{1}, then P_{1}, the pole of p_{1}, lies on a_{1}, whilst the two points conjugate to P_{1} he on p_{1}; these two points - lie also on the locus under discussion. Moreover A_{1} itself is conjugated to two points of a_{1}, so that A_{1} is a double point of this curve and each line through A_{1} cuts this curve in a double point and two points more. Hence we find:

Lf one of the vertices of an incolution triangle describes a line a_{1}, then the two others clescribe a curve a of order four with a node in A_{1}, the pole of a_{1} with respect to γ_{2}. As a_{1} cuts all singular lines, all singular points lie on a^{4}.

A few properties of this curve- a^{4} may still be given lere:

1. Iet A_{2} and A_{3} be the points conjugated to A_{1}, then the polar line of A_{3} with respect to γ_{2} - that is the line $A_{1} A_{2}$ - must cut α^{4} in A_{1} and in the points forming with A_{9} an involution triangle. These two points are A_{1} and A_{2}. So will a^{4} be touched in A_{1} by the lines $A_{2} A_{2}$ and $A_{1} A_{3} ; A_{2}$ and A_{3} are points of intersection of a_{1} and α^{4}.
2. Besides in A_{2} and A_{3} the curve a^{4} will be intersected in two points more by a_{1}; these points are at the same time the points of intersection of a_{1} and γ_{2}.
3. Besides in these last points α^{4} will still be cut by γ_{2} in 6 points more, the tangents in these 6 points to a^{4} must pass throngh A_{1}. From this ensues that a^{4} is of the tenth class, by which the Pluckir numbers of a^{4} are entirely determined ($n=4, m=10$, $d=1$). This holds, for it is easy to investigate that α^{4} cannot possess a double point differing from A_{1}.
4. If a vertex of an involution triangle describes a line, on which lies a singular point, the curve described by the two other vertices degenerates into the polar line of that singular point and a curve which must be of order three. If a vertex of an involution triangle describes a singular line \dot{s}, then one of the other two vertices will be a fixed point, namely the pole of s and the other point will describe s itself and as many other lines as there are singular points on s. As both points together must describe a curve of order four, three singular points will lie on s. In like manner each singular point is point of intersection of three singular lines.
If now again a_{1} is an arbitrary line and if a^{4} has the same signification as above, then the curve a^{4} will cut a line b_{1} four times; from this ensues that four tumes a point of a_{1} and a point of b_{1} are vertices of a selfsame involution triangle. Thess vertices we call $P_{1}, Q_{1}, R_{-}, S_{1}$ and $P_{2}, Q_{2}, R_{2}, S_{2}$, whilst the third vertices of these triangles may be represented by $P_{3}, Q_{3}, R_{3}, S_{3}$; fathermore T_{1} is the point of intersection of a_{1} and b_{1} and T_{2} and T_{3} are the two points forming with T_{1} an involution triangle.

If now a point describes the line b_{1}, then its conjugate points describe a curve β^{4} of order four; a^{4} and β^{4} have 16 points of intersection. These are:

1. the two points T_{2} and T_{3};
2. the four points $P_{3}, Q_{3}, R_{3}, S_{3}$;
3. ten points more having the property that to each of them two, so an infinite number of pairs of points, are conjugated and which are thus the singular points. Therefore:

The involution $\left(i_{3}\right)$ has 10 singular points; their polar lines are the 10 singular lines of $\left(i^{\prime}\right)$.

These singular elements have such a position that on each of these lines three of these points lie and that in each of the points three of the lines intersect each other; so they form a configuration $\left(10_{3}, 10_{3}\right)$.

If s_{12} is a singular line and S_{12} its pole with respect to γ_{2}, then there are besides S_{12} still 6 singular points not lying on s_{12}. If S_{18} is one of these points and s_{13} the polar line of S_{13}, then the point of intersection of s_{12} and s_{13} is at the same time the pole of $S_{12} S_{13}$.

This point forms an involution triangle with S_{19} and 'with' another point of s_{12} and an other one with S_{15} and with a point of s_{13} (an "other one", as S_{12} and S_{13} which do not lie on each other's polar line cannot be vertices of a selfsame involution triangle); so the point of intersection of s_{13} and s_{13} is also a singular point and $S_{18} S_{15}$ a singular line.

Each line connecting two sungular points not lying on each other's polar line is a singular line; each point which is the point of intersection of two singular lines not passing through each other's pole is a singular point.

On s_{12}, the polar line of S_{12}, lie 3 singular points; the remaining 6 are connected with S_{12} by 3 singular lines. So each line connecting S_{12} with one of the singular points on $s_{: 2}$ is not a singular line, as only 3 of these lines pass through S_{12}.

We can indicate the position of the singular points by the following diagram, where the indices have been chosen in such a way that always the points $S_{l k}, S_{k l}$ and $S_{l l}$ lie on a selfsame line, that the lines $s_{l k}, s_{k l}$ and $s_{i l}$ intersect each other in a selfsame point, and that the point $S_{c k}$ and the line silc are each other's pole and polar line with respect to γ_{2}.

- 5. We make a point describe a conic α_{2} and an other point a line b_{1} the two points which are conjugated to the former describe a, curve \boldsymbol{a}^{n}, those which are conjugated to the latter a curve β^{4}. As β^{4} and α_{2} intersect each other in 8 points, b_{1} and α^{n} must have 8 points in common, so α^{n} is a curve of order eight; we shall call it in future a^{8}. As α_{2} intersects all singular lines twice, a^{8} will have in each of the 10 singular points a node.
. If α_{2} is described around an involution triangle, then \boldsymbol{a}^{8} has also double points in the rertices of this triangle. As all involution
riangles are at the same time polar triangles of a selfsame conic γ_{3}, we can describe a conic around each pair of involution triangles; if a conic β_{2} is described around two of these triangles, then the curve β^{8} conjugate to it will have 6 nodes. in its circumference. Also the remaining points of intersection of β_{2} and β^{8} are easily indicated; they are the four points of intersection of β_{2} and γ_{2}.

We know moreover that a conic described around an involution triangle and through two of the vertices of an other involution triangle must also contain the third vertex of the latter.
6. It is also clear, that we can easily construct conics described around three involution triangles; to that end we make a conic, pass through the vertices of an arbitrary involution triangle and through two singular points not lying on each other's polar line; for this we choose S_{13} and S_{18}. As α_{2} is described around a polar triangle of γ_{2}, it is described around an infinite number of these triangles; further each polar triangle of γ_{2} having one of the singular points as vertex is at the same time an involution triangle, so that α_{2} is described around three involution triangles.
Now the curve a^{8} will have in the circumference of α_{2} nine nodes; so it must degenerate and α_{2} must be one of the parts into which it breaks up. If P_{1} is an arbitrary point of α_{3} then always one of the two points P_{2} and P_{3} forming with P_{1} an involution triangle will also lie on α_{2}, so also the third vertex lies on $\alpha_{2}(5)$. If now we let P_{1} desicribe the conic α_{2}, then P_{2} and P_{3} will describe the same curve; every time however that P_{1} coincides with one of the singular points on α_{2}, P_{2} and P_{3} will be bound to no other condition, than that they must lie on the polar line of that point and must form with P_{1} a polar triangle of γ_{2}. So the parts into which \boldsymbol{a}^{8} degenerates are:

1. the conic α_{3} to be counted double;
2. as many lines as there are singular points lying on α_{2}.

From this ensues that besides S_{12} and $S_{13} 2$ more singular points lie on α_{3}.
This last we can prove still in another way; we construct a second conic β_{2}, described around an involution triangle $Q_{1} Q_{2} Q_{2}$ and through $S_{1,}$ and S_{12}; it will cut a_{2} in two points more, which being both the vertices of two, i.e. of an infinite number of involution triangles, are therefore singular points. If we construct another conic δ_{2} described around a triangle of involution $R_{1} R_{3} R_{5}$ and through S_{1}, and S_{18}, then this must still cut α_{2} in two singular points; these
must be the same as the points of intersection of α_{2} and β_{2}, because on α_{2} no more than four singular points can lie.

So all conics passing through S_{13} and S_{13} and farthermore described around one, hence around an infinite number of involution triangles will form a pencil; the two other base points of this pencil are also singulur points. We determine these first: if we choose as β_{2} the pair of lines S_{24} and S_{35} and as δ_{2} the pair S_{84} and S_{25}, it is evident that S_{14} and S_{15} are the discussed base points. Therefore: If the 10 singular points, hence also the double curve γ_{2}, of the involution are known, we can generate the involution triangles in this way:

We can construct five different pencils of conics of which each conic is described around an infinite number of polartriangles of γ_{2}, which are then at the same time the involution triangles in view; the base points of these pencils consist of the sets of points (S_{13}, S_{13}, $\left.S_{14}, S_{15}\right),\left(S_{12}, S_{29}, S_{24}, S_{25}\right),\left(S_{13}, S_{29}, S_{34}, S_{35}\right),\left(S_{14}, S_{24}, S_{34}, S_{45}\right)$ and $\left(S_{15}, S_{96}, S_{85}, S_{45}\right)$.

These pencils we shall call in future respectively $\left(B_{1}\right),\left(B_{2}\right),\left(B_{3}\right)$; $\left(B_{4}\right)$ and (B_{5}).

If α_{1} and a_{2} are two conics, the first taken arbitrarily out of $\left(B_{1}\right)$, the second arbitrarily out of $\left(B_{2}\right)$, these two will have four points of intersection, viz. S_{12} and the vertices of an involution triangle. Now it can happen in two different ways that 2 of these points of intersection coincide: 1. S_{12} can be at the same time a vertex of the involution triangle 2 . one of these vertices can lie on the double curve γ_{2}. In each of these two cases α_{2} and α_{3} will have only three different points in common, but they will touch each other moreover in one of these points.
7. Out of these 5 pencils we choose one - e.g. $\left(B_{1}\right)$ - arbitrarily; an arbitrary conic d_{2} out of $\left(B_{1}\right)$ is described around an infinite number of involution triangles whose vertices form in its circumference an involution of order three. The latter has four double points in the points of intersection of δ_{3} with γ_{2}, the double curve of the involution $\left(i_{8}\right)$. Inversely the conics of the pencil $\left(B_{1}\right)$ determine an involution of order four on γ_{2}; the latter has 6 double points in the points in which γ_{2} is touched by a conic out of $\left(B_{1}\right)$. In each of these points three points have thus coincided, forming together a group of $\left(i_{5}\right)$.

The involution $\left(i_{3}\right)$ has 6 triple points; in each of the points γ_{2} is touched by a conic out of each of the pencils $\left(B_{1}\right),\left(B_{2}\right),\left(B_{8}\right),\left(B_{4}\right)$, and (B_{b}).
8. A point whose conjngate points coincide wecall a branch point, the locus of these points the branch curve. If we let a point G describe the conic γ_{2}, then the curve of order eight, generated by the points conjugate to G, must degenerate into 2 parts, of which one is γ_{2} itself and the other the branch curve. From this ensues that the latter is of order six and possesses nodes in the 10 singular points; so it is rational as it should be, as it corresponds point for point to a conic.

Also in an other way we can easily deduce the order of the branch curve; if a point describes a line a_{1}, then the conjugate points describe a curve a^{4} having with γ_{2} eight points of intersection, of which two coincide with the points of intersection of a_{1} and γ_{2}, whilst the others point to 6 points of intersection of a_{1} with the branch curve.
If G_{12} is a point of the double curve γ_{2} and g the tangent in that point to γ_{2}, then g will intersect the branch curre in 6 points of which one G_{3} forms with the double point G_{13} a group of conjugate points; so in the triple points of the involution γ_{2} and the branch curve will have to touch each other.

The branch curve is a rational curve of order six, having double points in the singular points and touching the double curve in the triple points of the involution.

Observation. A rational curve of order six has 10 double points; of which however only S can be taken arbitrarily ${ }^{1}$); from the preceding follows however that 10 points determining a $C f_{-}\left(10_{3}, 10_{3}\right)$ can alvays be double points of a rational curve of order sin.
In an other form C. F. Grisir (see his paper quoted in the following number) makes the same observation.
9. We shall now apply the preceding to some problems out of Threedimensional Geometry. To that end we regard the pencil (B) of twisted cubics which can be brought through 5 fixed points $P_{1}, P_{2}, P_{8}, P_{4}$, and P_{5}. These determine on an arbitrary plane V a cubic involution of rank one; the lines $P_{i} P_{j}$ cut V in the singular points $S_{i j}$, the planes $P_{k} P_{l} P_{m}$ cut V in the singular lines $s_{i j}$ of the involution. Through an arbitrary point of V passes only one curve out of this pencil, through a singular point $S_{i j}$ however pass an infinite number of curves, which have all degenerated into the fixed line $P_{i} P_{j}$ and a variable conic; these conics form a pencil with P_{k}, P, P_{n} and the point of intersection of $P_{i} P_{j}$ with the plane $P_{k} P_{l} P_{n}$ as base points. Each double point of the involution in V is now a point, in wbich a twisted curve out of the pencil (B)

[^0]touches the plane V; the thrd point of intersection of this curve with V is a point of the branch curve forming with the point of contact a group of mutually conjugate points of the involation. A triple point of the involution is a point, in which a twisted curve out of (B) is osculated by V. From this ensues:

1. All twisted cubics passing through 5 given points and touching a given plane V form a surface F^{10} of order ten, which touches V in a conic and cuts V moreover according to a rational curve of order six.
2. There are 6 twisted cubics passing through five yiven points and having a given plane as osculating plane.
As a special case of this last theorem we have still. through five given points pass siz twisted parabolae.

Through the pencil (B) of twisted cubics witb $P_{1}, P_{2}, P_{3}, P_{4}$ and P_{5} as base pounts a plane V is cut according to a cubic involution of the first rank. If α is a curve out of this pencil cutting V in A_{1}, A_{2} and A_{2}, then a is projected out of A_{1} by a cone cutting V according to the lines $A_{1} A_{2}$ and $A_{1} A_{3}$. If however a curve γ, out of (B) touches a plane V in a point G_{13} and if moreover it cuts V in a point G_{3}, then γ is projected out of G_{12} by a cone cutting V according to $G_{12} G_{3}$ and the tangent in G_{12} to $\gamma ; \gamma$ is projected out of G_{3} by a cone touching V according to $G_{3} G_{12}$. We have seen that G_{12} must lie on the double curve and G_{3} on the branch curve of the involution, whilst $G_{3} G_{12}$ touches the former; if therefore a quadratic cone is to pass through the base points of the pencil (B) and to touch V moreorer, then its vertex must lie on the branch curve and the tangent with V must touch the double curve.

The number of quadratic cones passing through five given points and touching a given plane is singly infinite; the tangents envelope a conic. The vertuces of the cones form a rational curve of order sia. ${ }^{1}$)

The tangential planes of all these cones whose number is ∞^{2} envelope a surface of which we wish to determine the class and which for the present we will call $\boldsymbol{\Phi}_{n}$. If K_{z} is one of these cones and G_{3} its vertex, then through a line l drawn in V through G_{3} one more tangential plane to R_{2} will pass; as l has with the branch curve 6 points of intersection, it lies still in 6 tangential planes of Φ_{n} except in V. Farthermore V is a trope of Φ_{n} (that is a tangential plane touching $\left(\gamma_{2}\right)$ in the points of a conic) to be counted double; the surface Φ_{n} is therefore of class eight.

The tangential planes of these cones envelope a surface of class eight ${ }^{1}$)
…-.

[^1]We finally put the question how many twisted circles can be 'brought through five points where we understand by a twisted circle a twisted cubic cutting the isotropic circle in two points. All twisted cubics through these five points describe on the plane at infinity an involution, of now a point describes the isotropic circle, its conjugate points will describe a curve of order eight having with this circle sixteen points in common; four of these points are at the same time double points of the involution, whilst the other lie two by two on a same twisted circle.

So through five Ifiven points pass ten twisted circles, of which four touch the plane at infinity.

Mathematics. - "On the surfuces the asymptotic lines of which can be determined by quadratures'. By J. Bruin. (Communicated by Prof. Hk. de Vries).

In a paper entitled as above A. Buri (Nouv. Ann. de Math., 4^{e} série, vol. 8, page 433, vol. 9, page 337, Rev. sem. XVII 2, page 62, XVIII 1, page 58) discusses the surfaces given by the parameter representation

$$
\begin{gathered}
x=r \cos \theta \\
y=r \sin \theta \\
\phi(z)=a \theta+F(r)
\end{gathered}
$$

in which a, y, z refer to a rectangular system of coordinates, so that z, θ, and r are the so-called cylindric coordinates; these are the only ones which are used in the course of the investigation.

Buhl now gives the differential equation of the asymptotic lines of $\phi(z)=a \theta+F(r)$ with θ and r as independent variables as well as with z and θ. It is then evident that this equation embraces many special cases, where the determination of the asymptotic lines comes to quadratures.

We can put the question more in general: which are the surfaces of one of the forms $z=r_{f}(r, \theta)$, or $\theta=f(r, z)$, or $r=f(z, \theta)$, whose asymptotic lines can be determined by quadratures?

Starting from the differential equation of the asymptotic lines

$$
D d u^{3}+2 D^{\prime} d u d v+D^{\prime \prime} d v^{2}=0
$$

(Biancmi-Lukat, "Vorlesungen uber Differentialgeometrie", page 109), where D, D^{\prime} and $D^{\prime \prime}$ have the values, to be found on page 87 of the quoted work, we find for the differential equation in r and θ of the asymptotic lines of $z=\rho(r, \theta)$:

Proceedings Royal Acad. Amsterdam. Vol. XII.

[^0]: ${ }^{1}$) Saimon-Fiedler: Höhere ebene Kurven, Zweite Auflage, p. 42.

[^1]: ${ }^{1}$) C. F. Geisar: "Uber Systeme von Kegeln zweiten Grades".

