Huygens Institute - Royal Netherlands Academy of Arts and Sciences (KNAW)

Citation:

J. de Vries, On polar figures with respect to a plane cubic curve, in: KNAW, Proceedings, 12, 1909-1910, Amsterdam, 1910, pp. 776-780

This PDF was made on 24 September 2010, from the 'Digital Library' of the Dutch History of Science Web Center (www.dwc.knaw.nl)
> 'Digital Library > Proceedings of the Royal Netherlands Academy of Arts and Sciences (KNAW), http://www.digitallibrary.nl'

Mathematics. - "On polar figures with respect to a plane cubic curve. By Prof. Jan de Vries.
(Communicated in the meeting of March 26, 1910).

1. If a plane cubie curve γ^{3} is represented symbolically by $a_{2}^{3}=0$ then $a_{2} a_{y} a_{w}=0$ represents the polar line $p_{x y}$ of the points X^{2} and Y, i.e. the polar line of X with respect to the polar conic π_{y} of Y and at the same time the polar line of Y with respect to the polar conic π_{x} of X.

The three polar lines $p_{x y}, p_{x z}$, and $p_{y z}$ will concur in one point W when the three conditions are satisfied

$$
\begin{equation*}
a_{x} a_{y} a_{v v}=0, \quad a_{x} a_{z} a_{w}=0, \quad a_{y} a_{z} a_{w}=0 \tag{1}
\end{equation*}
$$

By elimination of the coordinates w_{k} we find out of it

$$
\begin{equation*}
\text { (abc) } a_{x} a_{y} b_{x} b_{z} c_{y} c_{z}=0 \tag{2}
\end{equation*}
$$

So to two given points X, Y belongs a conic $\gamma_{x y}^{2}$ as locus of the point Z; it passes also through X and Y, for when Z and X coincide, we find

$$
(a b c) a_{x} a_{y} b_{x}^{2} c_{y} b_{x} \equiv(c b a) c_{x} c_{y} b_{x}^{2} a_{y} a_{x} \equiv-(a b c) c_{x} a_{y} b_{x}^{2} c_{y} c_{x} \equiv 0
$$

As we can substitute (abc) $a_{x} a_{y} c_{x} c_{z} b_{y} b_{z}=0$ for (2), thus also (abc) $a_{x} a_{y} b_{z} c_{z}\left(b_{x} c_{y}-b_{y} c_{x}\right)=0$, we can also represent $\gamma_{x y}^{2}$ by (ad̆c) $a_{x} a_{y} b_{*} c_{z}(b c \xi)=0$, where ξ_{k} are the coordinates of the line $X Y$. Consequently (2) can be replaced by

$$
(b ; \xi)(b \subset q) b_{z} a_{z}=0 \text {. (3) }
$$

From this ensues that the conic $\gamma_{\dot{x y}}^{2}$ is the poloconica $\pi_{\xi n}$ of the lines $\boldsymbol{\xi}$ and η.

So the poloconica of two lines is the locus of the points Z which with relation to the points of intersection X, Y of this conic with one of the given lines are in such a position that the polar lines $p_{x z}$ and $p_{y z}$ coucur on the other one of the given lines, which is then at the same time polar line of X and Y.
2. If Z and W are the points of intersection of $\pi_{\xi 0}$ with η, it follows out of the symmetry of (3) in connection with the equations (1), that the four points X, Y, Z, W form a closed group, so that each side of the quadrangle determined by them is the polar line of the vertices not lying on it, therefore a polar quadrangle (Reyz).

Out of our considerations ensues that a polar cuadrangle is determined by two of its vertices, but also by two of its opposite sides. In the last case the vertices are determined by the poloconica of the given lines; in the former case we can use the poloconica belonging to the polar line of the given points and their connecting line.

Out of $a_{x} c_{y} a_{w v}=0$ and $a_{x} a_{y} a_{z}=0$ follows

$$
a_{z} a_{y}\left(\lambda a_{w}+\mu a_{z}\right)=0 .
$$

Here λ and μ can be determined in such a way that $\lambda a_{w}+\mu a_{z}=a_{u}$ relates to the point of intersection U of $X Y$ with $W Z$.

As $\alpha_{u} a_{x}^{2}=0$ indicates the polar conic π_{u} of U we find that X and Y according to the relation $a_{\tau} a_{y} a_{u}=0$ lie harmonically with respect to π_{u}. In an analogous way ensues from $a_{v} a_{z} a_{y}=0$ and $a_{w} a_{z} a_{x}=0$ the relation $a_{w} a_{z} a_{u}=0$, according to which W and Z are also separated harmonically by π_{u}.

But then also the points $T \equiv(X Z, Y W)$ and $V \equiv(X W, Y Z)$ are conjugated with respect to π_{u}, i.e. we have $\alpha_{u} a_{v} a_{t}=0$. Now U, V, T are the diagonal points of the complete quadrangle $X Y Z W$, so that it is proved that the diagonal triangle of a polar quadrangle is always a polar triangle ${ }^{1}$).
3. When the conic $\gamma_{x y}^{2}$ degenerates we can take for Z each point on the line $X Y$. To trace for this the condition, we put $z_{k}=\lambda x_{k}+\mu y_{k}$; from (2) follows

$$
(a b c) a_{x} a_{y} b_{x} c_{y}\left(\lambda b_{x}+\mu b_{y}\right)\left(\lambda c_{x}+\mu c_{y}\right)=0,
$$

so

$$
\begin{aligned}
\lambda^{2}(a b c) a_{x} a_{y} b_{x}^{2} c_{x} c_{y}+2 \mu(a b c) & a_{x} a_{y} b_{x}^{2} c_{y}^{2} \\
& +\lambda \mu(a b c) a_{x} a_{y} b_{x} b_{y} a_{x} c_{y}+\mu^{2}\left(a b b_{c}\right) a_{x} a_{y} b_{x} b_{y} b_{y}^{2}
\end{aligned}=0 .
$$

By exchanging two of the symbolic factors a, b, c, we see that three of these terms are identically zero; so we have

$$
2 \mu(a b c) a_{2} a_{y} b_{x}^{2} a_{y}^{2}=0
$$

For an arbitrary choice of X and Y this equation furnishes only $\lambda=0$ and $\mu=0$, thus the points X and Y. It furnishes each point of $X Y$, as soon as

$$
\begin{equation*}
\text { (abc) } a_{x} \dot{a}_{y} b_{x} a_{y}^{2}=0 \tag{4}
\end{equation*}
$$

When X, Y, and Z are collinear, the polar line p_{x} of X and the polar lines $p_{x y}, p_{z z}$ concur in one point; for these three lines are the polar lines of X, Y, Z with respect to the polar conic $\boldsymbol{\pi}_{x}$. If now (4) is satisfied, then also $p_{y z}$ passes through that point, hence, the six polar lines $p_{x}, p_{y}, p_{z}, p_{x y}, p_{y z}, p_{z x}$ concur in a point W. But when p_{x}, p_{y} and p_{z} are concurrent, the poloconica of $\xi \equiv X Y Z$, degenerates and $\boldsymbol{\xi}$ is tangent of the Cayleyana.
From this ensues that for given Y the equation ($(\mathbf{)}$ will represent

[^0]three right lines, namely the three tangents which we can draw out of Y to the Cayleyana.

This can be confirmed as follows. Let Z be a point of the locus of X, which is determined by 4) and X a second point of that locus lying on $Y Z$, so that we have $a_{x}=2 \cdot a_{y}+\mu a_{z}$. Out of (4) then follows

$$
(a b c) a_{y} c_{y}^{2}\left(2 a_{y}+\mu a_{z}\right)\left(2 b_{y}+\mu b_{z}\right)^{2}=0 .
$$

By exchanging a and c we see at once that

$$
(a b c) a_{y} c_{y}^{2}\left(\lambda b_{y}+\mu b_{z}\right)^{2}
$$

vanishes identically. Analogously we find that ($a b c$) $a_{y} c_{y}^{2} a_{z} b_{y}^{2}$ and (abc) $a_{y} c_{y}^{2} a_{z} b_{y} b_{z}$ vanish identically. As finally the form (abc) $a_{y} c_{y} a_{z} b_{z}^{2}$ is zero because Z lies on the locus indicated by (4) the above relation is satisfied by all points of $Y Z$, so the locus consists of three lines through Y.
4. That the line $\bar{\xi} \equiv X \Gamma$ is tangent to the Cayleyana as soon as (4) is satisfied, can be confirmed by reducing (4) to the tangential equation of that curve. In the first place we find out of

$$
\text { (abc) } a_{x} a_{y} b_{x}^{2} c_{y}^{2}=0 \text { and (acb) } a_{2} a_{y} c_{x}^{2} b_{y}^{2}=0
$$

the relation

$$
\text { (abc) } a_{x} a_{y}\left(b_{x} c_{y}+b_{y} c_{x}\right)\left(b_{x} c_{y}-b_{y} c_{x}\right)=0 .
$$

The last factor can be replaced by ($b c \boldsymbol{\xi}$) where ξ_{k} indicate the coordinates of $X Y$. After that the equation can be broken up into two terms, which pass into each other when b and c are exchanged. So we can replace it by

$$
\begin{equation*}
(a b c) a_{x} a_{y} b_{x} c_{y}(b c \xi)=0 \tag{5}
\end{equation*}
$$

farthermore it is evident from

$$
\text { . (abc) } a_{z} a_{y} b_{x}^{2} c_{y}^{2}=0 \text { and (cba) } c_{x} c_{y} b_{z}^{2} a_{y}^{2}=0,
$$

that at the same time is satisfied

$$
(a b c) b_{x}^{2} a_{y} c_{y}(a c \xi)=0,
$$

so also

$$
\begin{equation*}
(b a c) a_{x}^{2} b_{y} c_{y}(b c \xi)=0 \tag{6}
\end{equation*}
$$

By combining (5) and (6) we find

$$
(a b c) a_{x} c_{y}(b c \boldsymbol{\xi})(a b \boldsymbol{\xi})=0 .
$$

So

$$
(a b c) c_{x} a_{y}(b c \boldsymbol{\xi})(a b \boldsymbol{\xi})=0
$$

\therefore Out of the last two relations follows finally

$$
(a b c)(a c \mathfrak{\xi})(b c \xi)(a b \xi)=0 . \text {. }(7)
$$

This tangential equation really represents the Cayleyana ${ }^{1}$).
So we have found that the six polar lines $p_{x}, p_{y}, p_{z}, p_{x y}, p_{y=}, p_{z x}$ concur in one point when the points X, Y, Z lie on a tangent of the Cayleyana.
5. When $p_{2}, p_{y,}, p_{z}$ are concurrent we have

$$
\text { (abc) } a_{\lambda}^{2} b_{y}^{2} c_{z}^{2}=0 . \quad . \quad . \quad . \quad . \quad . \quad(8)
$$

This equation gives thus the relation between the coordinates of three points lying on one and the same polar conic.

For an arbitrary choice of X and Y this equation is satisfied except by X and Y by no point of the line $X Y$. If it is to be satisfied by $z_{L}=\lambda_{2} x_{k}+\mu y_{k}$ we must have

$$
(a b c) a_{x}^{2} b_{y}^{2}\left(\lambda c_{x}+\mu c_{y}\right)^{2}=0,
$$

therefore

$$
\lambda \mu(a b c) a_{x}^{2} b_{y}^{2} c_{x} c_{y}=0
$$

This is satisfied for each value of $\lambda: \mu$ when the relation (\pm) is . satisfied, so when X, Y, Z lie on a tangent of the Cayleyana.

Now in general the polar lines $p_{x y}, p_{x z}, p_{y z}$ form a triangle inscribed in the triangle $p_{x} p_{y} p_{z}$ (see §3). If (4) is satisfied then $p_{x y}, p_{a z}, p_{y z}$ are concurrent; but then their point of intersection must be at the same time point of intersection of p_{x}, p_{y}, p_{z}.

If X, Y, Z are three collinear points of the cubic, then $p_{y z}, p_{z x}$ and $p_{x y}$ pass successively through X, Y, and Z.

For, from $a_{x}^{3}=0, a_{y}^{3}=0$ and $\left(\lambda a_{a}+\mu a_{y}\right)^{3}=0$ follows that the point Z is indicated by $a_{x} a_{y}\left(\lambda a_{v}+\mu a_{y}\right)=0$. So we have $a_{x} a_{y} a_{z}=0$, so Z lies on the polar line $p_{x u}$.

If moreover X, Y, Z lie on a tangent of the Cayleyana, then $p_{y z}, p_{z u}, p_{x y}$ must coincide with the tangents p_{c}, p_{y}, p_{z} in X, Y, Z.
6. For p_{x}, p_{y}, and $p_{x y}$ to be concurrent, there must be a point W for which we have $a_{x}^{2} a_{w}=0, b_{y}^{2} b_{w}=0$, and $c_{x} c_{y} c_{w}=0$.

But then (abc) $a_{x}^{2} b_{y}^{2} c_{x} c_{y}=0$.
For arbitrarily chosen Y the locus of X becomes a figure of the third order, passing through Y, because we have ($a b c$) $a_{y}^{2} b_{y}^{2} c_{y}^{2} \equiv 0$. But by taking notice of (4) we see that this figure consists of three tangents of the Cayleyana. Out of $; \quad a_{x}^{2} a_{w}=0, a_{y}^{2} a_{w}=0$ and $a_{x} a_{y} a_{w}=0$
${ }^{1}$) See e.g. Cliessari, Leẹons sur la géométrie, II, p. 284. .
follows indeed

$$
\left(\lambda a_{x}+\mu a_{y}\right)^{2} a_{v v}=0 ;
$$

i.e. if Z lies on $X Y$, then p_{z} will pass through the point of intersection W of $p_{x,} p_{y}$ and $p_{x y}$, which bears then at the same time $p_{y z}$ and $p_{x z}$.

So the three lines p_{x}, p_{y}, and $p_{x y}$ concur only then in one point when X and Y are united by a tangent of the Cayleyana. Their point of intersection bears then also all the polar lines and mixed polar lines belonging to the points of those lines.

The lines $p_{a}, p_{x y}$, and $p_{x z}$ will be concurring, when

$$
(a b c) a_{a}^{2} b_{2} b_{y} c_{a} c_{=}=0
$$

is satisfied, thus also

$$
\text { (abc) } a_{z}^{2} c_{2} c_{y} b_{z} b_{z}=0
$$

hence also

$$
(a b c) a_{z}^{2} b_{x} c_{x}\left(b_{y} c_{z}-b_{z} c_{y}\right)=0
$$

If we put

$$
y_{k l} z_{l}-y_{l} z_{k}=\xi_{n k},
$$

'we have the condition.

$$
(\hat{a} b c) a_{x}^{2} b_{x} c_{c}(b c \stackrel{\xi}{)})=0
$$

As this can also be written in the forms

$$
(a b c) a_{x} b_{x}^{2} c_{x}(a c \bar{\xi})=0 \text { and }(a b c) a_{x} b_{x} c_{x}^{2}(a b \overline{\mathbf{\xi}})=0
$$

and as out of

$$
\left|\begin{array}{cccc}
a_{1} & a_{2} & a_{3} & a_{x} \\
b_{1} & b_{2} & b_{z} & b_{x} \\
c_{2} & c_{2} & c_{8} & c_{x} \\
\xi_{1} & \xi_{2} & \xi_{3} & \xi_{x}
\end{array}\right|=0
$$

follows the relation

$$
(a b c) \ddot{\boldsymbol{\xi}}_{x}=a_{x}(b c \boldsymbol{\xi})+b_{x}(c a \xi \mathcal{\xi})+c_{x}(a b \boldsymbol{\xi})
$$

the above condition can be replaced by

$$
(a b c)^{2} a_{4} b_{a} v_{x} \xi_{x}=0 .
$$

With arbitrary position of X this is satisfied by ${\underset{\sim}{2}}^{2}=0$, i.e. when X, Y, and Z are collinear (see $\S 3$).

If however

$$
(a b c)^{2} a_{\alpha} b_{x} c_{x}=0,
$$

so that X lies on the Hessian, then X, Y, and Z are quite arbitrary. This was to be fnreseen, now namely $\boldsymbol{\pi}_{x}$ is a pair of lines, so that the lines $p_{x}, p_{x y}$, and $p_{x z}$ concur in the node of π_{x}.

[^0]: ${ }^{1}$) Mentioned without proof by Caporais (Transunti d. R. A. dei Lincei 1877, p. 236).

