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a carbon-soUl'ce, l'apidly lead to the accumulation of strong ureum­
splitting bacteda forming spores and the tt7'obacillus jakschii forming 
no spores, 

5. The il"isating· ~ of cultul"e-plates and ihe "irisphenomenon" OH the 
yeast-water-gelatilleplate ttre the consequence of the precipitation of 
ealciumphosphate, ",hUst calciumcarbonate formed at the same time 
plays a subordinate part in it. 

At the end of this investigation I beg to express my sincere thanks 
to Prófessor lVI. W. BEIJERINOl, for advising and bllpporting me in 
these'" experiments whereyel' and whenever he conld. 

Physics. - ",Statistical Tlleory of ()'(,pilla1·ity." Ey Dr. L. S. ORNi:lTEIN. 
(Communicated by Prof, H. A. IJORENT?I). 

(Communicaled in the meeting of December 24 1908). 

In a paper 1) published 111 1~93 VAN DER WAAL!:> has developed a 
theory of capillarity, w hich leads to results agl'eeing snfficiently with 
observatiol1, as has been shown by the experiments of Dl'. E. O. DE 

VRIES. 

The methods usecl in t11e above mentioned paper have been repro­
duced with only a slight change in the lectures of VAN DER WAALS 
l'ecently publishecl by Prof. PH. KOHNSTA~fM. 

Both in the paper and in the treatise the hypothesis 2) is intl'oduced, 
that the entropy of an element of volume is a fllnction only of the 
l1umber of molecules it contains and of th at of their eollisions. 

BJ' the i:ltatitlLical method of GIBBS we can dednee· the condition of 
equilibrium for the eapillary byer without using a hypothesis of this 
kind and we can easily show that it must be true when certain condi­
tions al'e flllfilled. This is the object of the present papel' in whieh 
I sha11 ttJso de ter mine some qnantities that play a part in the theory 
or capillary action. 

§ 1. Let us suppose that n sphel'ical molecu~es of clütmeter (J, per­
fectly rigid and elastic, are enclosed in a vertieal eylind€'r of height 
Z, anel of uuit of horizontal section, closed at the top and the 
bottom by horizontal walls. Let the axis of z be drawn upwal'd anel 
leL us fUl'ther sllppose that the molecules exert attraetive forces on 

I) J, D. v. D. WAALS, Thermodynamische theorie der capillariteit in de onder· 
st~l1ing van continue dichtheidsverandering. Verh. d. K. A, v. W. Deel 1. 8,1893. 

2) Compare 1. c, p. ] 6. 
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each othel' up to elisiances which are large in compal'Îson with the 
diameter (J anel with the di5tance of neighbouring molecules. I sha11 
denote by - cp (I) the potential enel'gy of th is attraction fol' a pair 
of molecules whose centres are at a distance 1 and I shall suppose that 
cp Cf) = 0 for "alnes of I which are large eompared with (J (and the 
distance beiween neighbolll'ing molecules) bnt smal! compared with 
finite lengths, the same being also true of the fUl1ctiolll/' (j) determined 

by the equation 

f cp (f) d f = - d 11' (f) . (1) 

Let us 110W cOl1sidel' 'a canonical ensemble with modtllus () built 
up of N systems of the above kind. 

Vve divide the volmne of the cylinder by horizontal planes into 
a great number k of eiernents of a height dZI this height being large 
compared with (J and small compared with the distance at which 
the molecules sellsibly attmct each othel'. 1 shall further suppose 
that the potelltial enel'gy of attraction changes but little over a dis­
tance of the order of magnituele dZI 1). 

We sha11 determine the l1Umbel', or, lei us say, the :'fl'equency" 
; of those systems in the ensemble in wbieh there are n1 ••• nl ••• nlc 

ll10lecule~ respectively in the element~ dz 1 ••• dZI •• , dZlc. I sha11 
snppose that the numbers nl are very lal'ge; their snm being n we 

have the relation 

I. nl = n. . (I) 
I 

The number of molecules pel' unit of volume in the element rlzl 

(the 1110lêculal' densityî 'Yill be represented by 11/ , 

1 6hall considel' the mutual energy of a pair of molecules as 
uelonging fol' one half to the fil'st and fol' the other half to the 
second of tbe molecules. The energy deteL'milled in this way is the 
same fol' all the pal'iieles of the layer dzl • I shall represent this 
energy pel' molecule by EI' 

The total potential enel'gy eau therefore be represented by . 
ie 

:E n~ EI' 
1 

Tbe frequency') in ql1estion is given by the formula 

1) Fo1' the sake of sil11plicity I shall take the elements dZI of equal magnitude; 

OUl' result will be that inl 
- 111 (the molecuhll' density) is a function of z, showing 

G :tI 

thaI we do nol lose in gene1'afity by this sil11plification. 
2) In explanation of the fOl'nJula (LIJ the following may he observed. Let us 

consider a sy&tel11 constiluted of n molecules of the kind above described enclosed. 

I I 
I I 

II~ 
, 

Hl 

I I 

I I 
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_ i I l~ 
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3 1]1" 
-n k 

; = N (23t'm@)
2 

e@ n! Il ~ (w~ dz~)nl e 
1 1/1 C 

The propel'ties of an obsel'ved system are 

(Il) 

identical with those 

in a vessel of the volume V. And let us imagine a canonical ensemble built up 
of N systems. 

In this ensemble the number of systems - having the coordinates of the 
centres of the molecules beiween Xl and Xl + dXI ... Zn alld Zn + dZ Il and the 

components of the velocitie5 of these points between x~ and Xl anel Xl + dXl' ... 

Zn and Z'I + dZn - amounts to 

1]1"-1: 

@ 
N m31l e d'~l ... d;" dml ..• dZ'I' (a) 

Here, the eneL'gy of the system is expres!:ecT by E, and 'i' is a constant for 
the ensemble depending on e and V. The value of "0/ ean be found by integrat­
ing (a) with respect to the coordinates and the velocities. The result of this 
integration must be N, which yie1ds arelation for '0/. The number of the systems 
in which the velocities have any values, but whose coordinates are lying between 
the specified limits is obtained by integrating (a) over the velocity components 
from - 00 to + 00. 

~I , .• 
The energy E is given by the relation E = Eg + 1- '2 'In (m 2 

J -1-- y2 J + Z~v) 
1 

in which Eg is the total potential energy and m the mass of a molecule. Therefore 
the result of the integration is 

3 1]1"-8q 
-n ----
2 @ 

N (23t'em) e d''U l ••• dZII • (b) 
Let us now divide the volume V into k elements dVl •• dV~ .. dVk. If nx 

molecules are situated in an element of volume dV" the 3'111 coordinates of their 
centres:may still vary between certain limits; in other term,>, a certain extension 
is left open to the~point representing these coordinates in a 3nl'dimensional space. 
I sha11 represent the magnitude of this extension by 

X (n" dVy ). 

The repulsive forces between the molecules are accounted fol' by excluding 
fl'om the 3ny·dimensional space (dVI)3111 all those parts in which there exists a 
relation of the form 

(''Uv -mp.)2 + (YJ -yf')~ + (zv-Z,,)2 < (J2 (c) 
between the ordinary coordinates of the centres of two molecules. We can 
represent % (nI, dVy) by 

(d) 

wherc tbe intcgration has to be extended over the whole space (dVI )311y with the 
exceptiol1 of the pal'ls detcl'lnined by (c). By a simple reasonil1g we can show 



- 5 -

'I 

( 529 ) 

of the system of maximum fl'equency jn an ensemble (whose modulus 

that with a fair upproximation X (n" dV,) ean be represented by 
n, «(I), dV,) (e) 

where w, is a funetion of n,. I have calculated for (I) the approximate value. 

log (I) = - n (~3r(J3) - t6 n' (~3((J3} 
(Cf my disseI·tation and also these Proceedings 1908 p. 116). 
The extension of the Sn dimeusioual space covered by the systems coutaining 

nl .. n, .. nk tlefiuite molecules in t11e elements avl •• dV, .. dVk can now be 
represented by 

7c 

II '1.(71", dVy )'. 

1 

'1'he extension covered by all possible systems of this kind amounts to 
Tc 

n! II X (ny
, dVy

). 

1 ny ! 
In the potential energy we may neglect the repulsive forces, these forces having 

been already taken into account by the exclusions (c). Supposing that the energy 
is the same for all the molecule!> of an element dV, we can represent the total 
potential energy by the formula 

For the frequency we find 
3 'IJ! 71,,8, 
-71 k --

~ = N(23(@m)2 e @ 711 II x(n~,dVx) e €) 
1 r/y/ 

or, introducing the function w by meaus of (e) 

3 'IJ! 
-n - 7. 71 

; = N (23r@m)2 e @ nlII (wxd Vy
) ; 

1 n,! 
The formula (II) is a direct consequence of the last equation. 
As we are treating a case iu which there are differences in density in the 

system of maximum freqllency, lhe queslion ari&es as to whether these differences 
have auy iufluence on the value of tlle function (1). Ir it were so, this function 
would depend not only On n, but also ou the uerivatives ofthis quantity with respect to z. 

The difference in ql1estion really has an influence on the energy, but in conse­
quence of the hypothesis of p.p. 526 and 527 the density changes so little along 
the lenglh dz" and the value of the exclusiolll'; ut the limits of dz" is so smal! in com­
parison with the value of those origiuating from the molecules of dzy itseIf, that we may 
consider (1), us dependiug on1y on u,. This, howevel', will be true no longer ifthe 
sphere of action of the attrac,tive forces is not large in comparison with (J; for 
this case tbe following theory would have to be modified cOllsiderably. 

36 
Proceedings Royal Acad. Amstel"dam:; Vol. XI. 

I I 
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is pl')pOl'tional to the absolute temperaLure of the system).l) 
In order to finü the condition of equilibrium we have only to 

eletel'mjne the values of the nllmbers n" that make tbe qllantity; or 
ZOf!; a maximum. Before we proceed 10 this investigation we have 
10 expl'ess the quantity Ey in {he numbel's n/. 

B A dzx.+v 

dr 

I~ 
(J 

v dx 

p 

v cl'%. 

B' A' 0' 

cl;: K-JI 

Let us suppose that P is a point of the layer dz,. We shaH try 
to determine the potential enel'gy for a molecule situated at that 
point. Oonsieler first the contl'ibutions from the molecules situated in 
LWO planfl layel's at a elistance vdz from P. We shall indicate these 
Jayers by cZz,,-J anel d$/+ . vVe cut from these layel's cylindricall'ings 
by cil'cular eylinelers having opa' as axis anel as basis circles with 

OA = A' A' = T anel OB = O'B' = l' + cl?, 
fLS radii. / 

The munber of the molecules in these elements amounts to 

2 :re 1,d1' dz (n /_; + 11,,+1)' 

Oonsielel'ing as eql1al the elistance of all these molecules from Pand 
l'epresenting it by j', we find for t11ei1' contl'ibution to the potential 

, enel'gy of P 
. (2) 

Now we have 

r~ + (vdz)' =p 
anel therefol'e 

?'dr =fdf . (3) 

Taking into account (1) anel (3) we can l'eplace (2) by 

:redz (11"_J + llx+J) dtp (f) . . (4) 

1) Cf my dissertation § 4, p. 15. 
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The total contribution to E~ from all the molecules of the layers 
dzx- o and dz+o is found by integrating (4) with respect to f from 
vdz to 00. Pl'oceeding in this way we find 

- "dz (D"_J + D.+v) '" (vdz) . . . . . (5), 

from which formula the energy per molecule in the layer dZr can 
be caleulated by adding up all the values of this expression whieb 
are sueh that tf' (vdz) differs frolll O. 

In th is way we find 

( 5') 

For the potential energy of the system we have the formula 
k k 

L. nxE" = - 1"( dz L. n" 1: (n/._o + nr+o) '" (vdz). (111) 
1 1 0 

~ 3. We may now proeeed to the determination of the eondition 
for the maximum. Oonsidel' therefore the change of log ; when we 
give the variation ón" to tbe numbers nx. These variations are subjeeted 
to the eq uation 

k 

L. ónx = 0 . " . . .. (1 V) 
1 

In the following investigation we may l'eplaee n/ by n~r e -ny. 

We find _ for ó lo,r; ; 

ó log; = t [- log D" - 1 + log w + Dx d log wxJ ó nx + 
1 d Dx 

k 

+ 3t~Z ! L. ón y I: ~ (v d z) (nx-v + Dx+v) + 
1 

lc 

+ ~I ny .Lo1J' (v d z)(ó D X- J + ó Dr+o) , • • (V) 

1"(dz 
It is easily seen that the two sums, with whieh @ is multiplied 

are equal, hoth consisting of the same tel'ms, and further that each 
of them is equal to 

" . 

36* 

l • 

d 
dl 

!L 

1 i· 
, 

I I" 
I 
I 

1- " 

, I~,I 



- 8 -

( 532 ) 

--Attending to the eondition '(IV) in the usual way, wc fiiicl that 
the numbel's n/ in ihe system of maximal freqnency must fuifil the 
condition 

(1)/ d log (1)/ 2/; 
log - -+ /1/ - = v, . (VI) 

11 do/ @ 

whel'eas the seconcl val'iation of log;, ó2 log; given by the formula 

(Plog; = ~ (fn/2 (_ 1 + ~ (11/ d log (1)/)) + 
1- 2n/ dD/ dn/ 

1 

3'Cd~ k 
+ -~-~ ón/ " /}J (v d z) (ó D/_J + ón/+J ) (VII) 

@ k i""J 
1 

must be essentially negati \'e. 
The fil'st conditions are equivalent to those given by VAN DElt WAAI.E:.. 

It is easy io give the equation (VI) the form which is assigned to 
it by VAN DER WAAI,S. We have only to intl'oduce the hypothesis 
that 11 changes continually with the height anel then to calculate the 
energy /;/. 

'"''fe obtain in this way 1) 

(VI') 

1) To calculate f/ we proceed as follows. On accouut of our llypothesis We 
cau write 

(Vdz)2 d2 D/ (vdz)2s d2s n/ 
n/-J + D/+J = 2n/ -I- 2 ----+ ... 2 ----- ... 

21 d Z/2 (28)/ dz/ 2s 

Introducing this into the formula for /;/ aud putting 

we find for Ey 

00 

23l' Jtr' (2) dz = a, 

o 

2rr f<Xl 1 
-- Z28 tp (z) dz = - C2s , 
(28)1 2 

ij 

I shall write ror /;/ also 

(6) 

/;/ = - a ny + /;cx. (6') 
It is only in the capillary layer that th: quantity E~y differs from zero. 

2) We may mention as another advantage in the above deductioll of (VI') that 

~----------------------------------



- 9 -

( 533 ) 
I 

§ 4. Bef'ore I proceed to the diseussion of' the stability I shall 
consider the equation (VI). Using (6') we can put f'Ol' iL 

w" cl log w" 2au l 2Ec" 
log-+ 11" +--- =(.t .. 

11" dD" @ @ 
(VI") 

Subtracting the eqnation (VI") taken fol' the height z, + dz, from 
the corresponding one relating to the height z" we obtain 

( 
1 d log w" d2 log w" 2á) dn" 2 dE," 

--+2--+D/-' -+- -=--. 
11" dn, aD" 2 0 dz" f) clz" 

(7) 

\ 

If' we introduce the function 2), determined by the equation 

p dlogw an2 - = 11- n2 - ____ , 

f) dn 0 
(8) 

- wbieh quantity represents the pressl1J'e in every element of' a 
homogelleollb system with the molecular density n - we easily see 
tllat we Call replace (7) by 

1 dp" dn, 

This equation leads to 

d'O" dEcl __ .I._=2n,,_, 
dz" clz" 

(9) 

The form of this relation recalls the statistical condition of' equili­
brium namely that the difference of' preSSlll'e between iwo planes 
be equal to the force aeting on the mass behveen these planes. 

By integrating (9) from a point of the homogeneous phase (indi­
cated by the index h) to a point of' the capillary layel' (index r.) we 
find 

~/ z/ 

Ph - p" = 2 11 - d:: = 211 1 Eu - 2 - Ec dz, J dEc fcll1 
cl:: cl:: 

f cl2sn 
we have avoided to prove for eaeh of the integmls n~ -cl ') dz separalely that 

z .. s 

we ean put for it }~l ( ~2;~:) dz, as is clone in the treatise of VAN Dm W AALS-

KOHNSTAMM p. 238. . 
In the paper of VAN DER W MtS this gives somelhing aeeic1enlal to the appearing 

of El' in the eonclition (Vi). This advantage is due to the faet that the hypothesis 
of eontinuous transition and the expansion EI in a series have been introclueed 
uttm' Lhc deduellOn of lhe condition (Vl). 

i I 

III 
I lill 

I I 
\ I· 

I 

! I 
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or !iCl is zero in the homogeneollc; layel'. Insiead of thfl former 
formula we may put 

(10) 

Intl'oducing now for /iCI the series that follows from (6) and (6') we 
find for the pressure 

It follows from the above redllctions that we obtain for the 
pressure PI 

P~=Ph+ C2 n/-o -- - + ( d~n, 1 (dn/)~) 
dz-, 2 dz, 

S=oo ['=S-I d)n~ d2S-)n, 1 (dSUx)2] + ~ C2s '" (-1)) - - - (-1)s -
-"- ~ dz) dz 2s-) 2 dzxs 
s=2 )=() 

(VIIl ') 

.An approximation for 1); may be obtained by breaking oif the 
series at s = 1; we then find a fOl'Inula, which agrees with one 
given by VAN DER WAALS namely 

(VI lI") 

1) In order to reduce the integrals contained in the sum, we have the formuJa 

~ ~ 

j (in d2sIl dz = dn, d2S-1~ _ (d2 n d2s- 1n dz . 

dz dz~s dz~ dZ/2s- 1 J dz 2 dz 2s- 1 

Zh Zh 

Where the remaining iutegral may again be transformed by the same operation. 
In this way we are finally led to a term in which the integration may be per­
formed namely 

Zr 

-1 sJdsn d
s+1

11 dz = (-I)s (dsn )' . 
. ( ) dzs dzs+1 ;:! dz,s 

Zh 

1t follows from (VllI) together with the above reductions that by integl'ating 
rrom the one homogeneous phase hl to the other /12 we obtain: 

Phl =PIi2 , 

which is the weIl kwown condition for thermodynamical equilibrium. 
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The constant (.t of the equation (VI) can be determined, if we 
observe that in the homogeneous phases l!C/ = O. Repl'esenting the 
molecular density of these phases by 11 1 a11d n 2 , we have 

. (I)) 

which yields one equation between 11] and 112' We can find a second 
by means of the observation made at the end of tbe note of p. 534 
We have 

phl =Pli2 • • (12) 

where the lis are known functio11s of n l [1,]1(1 n~ (c.f. (8)). 
Aftel' l1avJllg determined n l aml n,2 by means of the foregoing 

eCj llations we C[l,]} use the first to determll1e (.t. 

The thickness of the capillary layer depends on tbe modulus 0, 
it can be e1etem1Îneel by means of (VI); we can also calculate tbe 
number of the molecules in this layer. This number being lmown, 
tbe equation (I) enables us to calculate the height of the Iiq Llld anel 
gaseous phases. 

§ 5. vVe have now 10 examine whether the freqnency of the 
system detel'mined by (H) anel (VI) IS l'eally maximum, 111 othel' terms 
whether the condition of the system IS one of stabIe equilibrium. 
The qnantity ó'log; consists of three paris, the two first of vdlich 
belong to the elements of the homogeneons phases hl anel h2 , whereas 
the tluJ'd l'elates to the capillary layer c. 

Vve may put the first parts in the form 

6,/ log; = "" 6n/ (_ 1 + ~ (n/2 d log (~) + 2ar,,),(V 1 
.t...th 2n/ do" d 11 0 

where "'"" has to be extended over tbe elements of tbe homogeneolls 
~h 

layers hl anel h2 • For the part belong'ing ta the capillary layer we 
have the farm uia 

ó' clog; = "'"' ón/'(_ 1 + ~ (n,,2 d log w" ) ) + 
"'-- 2n do" d n" 

c 

. (VII") 

In order that ó' log; be negative, i t is necessal'y t hat 62 hl log ;, 6~"~ log; 
and ó2c log; be negative far all passible values af tbe numbel's ón/. 

The parts relating ta the hamagelleuus layers may be written in 
I 

the farm 

~i 
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2 ( d ( 2 dlog WI») 2aDe<) E ón~" ó fte< lot; ~ = - 1 + - u ,,---- + -- -, -, 
dn" d u" (3 2n/ 

lw 

-
where a is 1 Ol' 2. These contl'ibutions are negative, lf 

1 
d ( d log (0",) 2an" - +- n2

(,( +-<0. 
dn" dn" @ 

(IX) 

Now, we eUIl transfol'm this condition by means ot' the fl1llCtioll p 
(c. f. (8)). We tl1en find as a C'ondition fol' the stabihty 

elp", ->0 
dn" 

(IX') 

fol' the homogeneous phases. As fol' these phases, the fnnction p" 
l'epl'esents tbe pressure, tbe condition (IX') is notlnng else ihan the 
lmov\'J1 thermodynamicaI condition fol' stability. 

Not on1y must (IX) be fnlfilled, it is a1so necessal'y thai ó2 clog; 
be negative, fol' thel'e are posslbIe yal'lations 111 which óu/ is zero 
everJ'where in the hornogeneous Iayers. 

I shall tl'ansforrn the fil'st sum in ó~ clog; by means of (VI). I 
shall wl'ite fol' it 

whirh may be l'eplaced by 

L 
ón/ cl ((0/ d log W/) 
- Óll/ - log - + 11/ • 
2 du,,' D/ dIl" 

c 

Ey a tl'ansformation of the same lnnd as thai which leads to 
(7), we can leplace the foregoing expression by 

dE" 

/ 

1 L dz/ - on" Oll/-. 
f) dn" 

c 

Introduring the vaIue of E/ by means of (5'), and considering that 
the differentiatlOn of n,,_, with respect to z/ gives the same l'esult 
as that "ith respect to z/_" we find fol' the SUlU under consideratioll 

:r dz ~ ón/ ón" ,,~ (dD/_' dn/+,) 
---~ -- 7 ti) (vdz) --+-- , 

(3 -'- do/ ...... dz/_, dz/+, 
C _ 

dz/ 

therefol'e (VII") may be rcduced to 
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_ ,~ on/ (fn/ ~ 'll' (v (lz) (dO/_) + cll1/+)) l. (VII''') 
~ (lo/ ~ dz/_) dz/+) \ 

~ - ) 

clz/ 

Now we can easily show thai UllS sum is essentially negativc. 
For this purpose we arrange the terms in the following wa)'. From 
the firbt sum we take the 1erm on/ t/' (v dz) on/ _;, and also the term 
ón/ _) 'll' (v dz) on/. These are equal, anel theil' sum is 

2 
- ón/ (fn/_) 11' (v clz). 
dz 

Next from the secolld sum we take the term 
ón/ on/ cln/_) 

- ----- 'll' (1' clz), 
du/ dZ/- J 

d::, 

and also the term 
on/- J Óll/_) do/ 

- -----11' (v cl::). 
clo'_J clz/ 

clz/_J 

Adcling those four we find 

_ - ___ __ - __ 'll'(VGZ). 1 dOr do/ _ J ( on/ (fn/_) )2 l 
cl:: clz/ clz/_J dil / do/_) 

dn 
This result is essentially negative, for - has the same sign at all 

eh; 

points. 1). 

- - ----~_=J!!I!= 

We can arrange all the terms of (VII"') in the same way. ACCOId­
ingly, the whole snm may be written as a sum of essentially 
negative quantities, and thel'efore d~ c log ~ is essentia11y negative. 
Fl'om this it fo11ows that' a system consisting of two coexisting phases 
with a capillary layer between them is stabie, if the homogeneous 
phases taken by themselves are stabIc. 

§ 6. I shall now detel'mine ihe entropy alld the fi-ee energy of 
tl1e system considered. 

GIBBS~) showecl that IJr, the constant 111 the equation (II) has 

1) A simiJar transformation does not hold fol' thc elements of the homogeneous 
dD 

phases fol' there -d = O. z 
2) J. W. GWBS. Elementary prmciples in StatisticJ.l M(lchanics 1902. 

llllllli 
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the properties of the thermodynamical free energy. I shall therefore 
determine the quantity P, which may properly be called the statis­
tical free energy. 

Taking the sum of the numbers ;, obtained by giving to the num­
bers n all possible values, we get the total numbel' N of the systems 
in the ensemble. I sha11 represent this sum by ~e, so that we have 
the identity 

This equation enables us to detel'mine 'IJl. In order to find the 
value of :2e ;, we may by means of (VII) express the frequency 
; of an al'bitl'ary system in that ;0 of tbe system of maximum fre­
quency. From (VII) It follows that 

~ [ón
2

,,(_ 1 + ~(n2" d log W,,)) + 
~ 2n" dD" d TI" ; =;0 el' 

1c 

+ :~ ó n" L lP (vclz) (rJD"_J + ÓI1/-l-J ) cl':] 

Introducing tbis into the sum :2e, we obtain 

In my dissertation 1) I have shown, that this may be l'eplaced m 
a fair appl'oximation by 

k ó: ~ 
"" n/ 
'- 2n~ 1: ; = ;0 L, el. • • • • (13) 

e e 

I' • (14) 

1) p.p. 111 and 126. 
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whe1'e the numbers n/ and Y1/ have the values following from (VI). 
We now have 

lc ö: ~ 
~ n

y 
lc-l 

'- 2n/ 1:. ee 1 = (23l') 2 (n1o .. n/ ... nlc)I/2 n-1/2 

and the1'efore, using (13) and (14), we find for 'IJl" 
1J! 3 k n/E/ 

e - @ = (2:n:@m/t~ nn II (w/)n/ e - @ (Xl) 
1 n/ 

GIBUS showec1 that the quantlty - 1) definecl by the equation 

E: - 1J! 
- 1ï = ---e- (Xl I) 

has the proporties of the entropy 5. Here the quantity EIS tIle average 
energy in the canonical ensemble, It IS equal to the energy of the 
system of maXUllum frequency I). 

The kmetic ene1'gy of thls system amounts to 
3 
2 n0 . 

Fo!' the potential energy we have Wl'ltten 
l. 

In/E/, 
1 

l1ncl the value of e IS the1'efo1'e 
3 I~ 

-; = 2" n 0 + r n E/ • 

1 

Fo1' s we have the equatlOn 

3 3 k w s = - n +- n log (2:n: @m) + n loog n + ~ n/ log-
2 2 ..,.., n/ 

k .... 

3 1: w/ = Gonst + - nlog e + n/ log-
2 11/ 

1 
Z 

= Gonst + ~ n log @ +Jn log w dz. 
2 n 

o 

(XIII) 

1) GIBBS showed that the average energy III au ensemble is equal to the 
most common enE'rgy in thaL ensemble. Now not every system with this energy 
is equivalent to the system of maXllllum freque~cy, but the most common energy 
is equal to the energy of the latter system therefore the same is true for the 
average energy. This result mayalso be obLamed by determinillg -; directly by 
means of (VII). 

I I 

11; 
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This formula can he used to dete1'mine 8, if we lmow the mannel' 
in which n depends on z. We easily see from (XIII), that, just as 
VAN: DER WAALS supposed, the entl'opy in each element of volume 
depends ollly on 1he cknsity n arid on the number of collisions in 
that element 1 ). We could expect this, having found exactly the fi11me 
condition of equilibrium to which his 1heo1'Y leads. <' 

It must, however, not been forgot1en that the whole above develop­
ment and thereforo the hypothesis of YAN DER WAALS are only valid, 
if the assumptions about the attracii\'e forces introduced at p. 526 
and 527 111'e true. The changes that w·iJl have to be made in the 
theol'Y, when theE>e 11ssumptions 11re relinquished, must be a matter 
of further examination ~). 

7. Finally I shall determine 1he force exerted in a horizontal 
direcLion by the system. Consider a system identical with the fi)l'mer ; 
only let the secilOll be no longer equal to umt of 11rea, but let it be 
o. It is easily seen that th is haE> no influence at all 'on the farmer 
developments. The density ll/ and the energy 13/ are determined by 
analogous equations; the only diffel'ence is that n/ (the number of 
molecules in the layer clzy,) is now given by n/ 0 clz/. instead of 
by n/ clz/. 

For 1]r we have thel'efore the formuia 

Ic 

- - = GOllst. + '011/ lOll - - - dz/ = 1])" ( w/ 13/) 
e J.. 11/ e 

1 

z 
= GOI/st. + oJn (log: -~) dz . (15) 

o 

The average component, corl'esponding 10 the pannneter 0, of the 
force exerted by the systems of the ensemble is given - as GmBs 
showed - by the relalioll 

- d1])" 
](0=-- . 

do 
(XIV) 

The force Ko, exerted by the systems of maximum frequency, iE> 

equal to the average force R:. Therefore eqnation (XIV) may be 
usod 10 detel'mine the force in a re111 system. BefOl'e I use (15) io 

1) The fU11ction lIJ is connecled with thls number. 
2) In this examination t11e function .:r (11/, clz/) introduced in my dissel'tation will 

have to play a part. 
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detel'mine JC, I f;hall put this eql1ation in a new fOl'm by Jl1eans 
of (VI) namely 

Z 

- - = Gonst. + 0 (J-n- n 2 ----+- dz = 1J! ~(d log w an 
2 

nEe) 
e dn 0 e 

o 

z 
= Gonst. + ((J--1) n + 0 (n-n2 

-- - - + - dz. .fl( d log w an2 nEe) 
do 0 0 

o 

wUh tbe aid of (10) we ean replace this formllla by 

z z z 

- 1J! = C' + .!!....JphdZ + .!..-J(-llEC + 2f do Ecdz )dZ (XI') 
GJ @ 0 clz 

o 0 Z1! 

Fot' ](0 we get finally 

Z z 

](0 =PTtZ + J( -nE~ + 2J~: E~ clz) cl::. . . (XV) 

o Zh 

. .. G2 d2n/ 
An appl'OXlmate va)lle forf(ocan be found, by puttmg Ec/ =-""2 dz

2
/' 

This value 1'01' ](0 amounis to 

. (16) 

When the surface of the caplllary layer increases by unit of area 
ihe free energy (so fat' as it depend~ on capillary action) decreases by 

. . , . (17) 

Ol', if 'vve nse the appl'oximate val nes by 

.,1111 

llltil 
I I 

I 
I I 

1-
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z 
+ C

2
fn d2

n dz! • 
dz 2 

o 

(18) 

i. e. the fi'ee energy incl'eases proportionally to the sm'face. Only 
the elements of the capillary layer contribute to the integJ'als, for 

dn 
it is on]y in these el ements that Ec and - differ from zero. The 

dz 
quantities expressed by (17) and (18), taken with the negat.ive sip;n, 
agree with what is commonly called the capillal'y energy. In this 
farm they also represent the so ca,lled surf ace tension. 

The quantity 

f dn 
Pil - D,Ecl + ~ - Ecdz , 

dz 

or the cOl'l'esponding approximate quantity (c. f. (16)) 

C2( d~n" (dny)!l) pZ+- DX-n - - , 
2 dz"" dZ,,2 

may be called the hOl'izontal pressUl'e in the element dz" at the 
height ZI' I sha11 represent it by Ptl' As we can see from (10), the 
eannection between pr and Ptl is given by the formnla 

Ptl< - pI'. = Dl'. Eex' • • • • • • (XV1) 

The term ECI being 0 in the homogeneous layel', we have 

Ptx = p" = Pill = Pil2. 
We ean determine the sign of fel' and therefore that of Ptl - IJ , 

by means of the equations (VI) and (10). We then eome to a discus­
sion exactly ana]ogous to that which VAN DER WAALS has given on 
p. 19 of his paper 1). 

If one goes upward from the liquid ph ase, Ee is first 0, then 
positive, then 0 again, aftel' that negative and finally 0 in the gaseous 
phase. 

By means of the foregoing eonsiderations, we can obtain all the 
results formedy fonnd by VAN DER WAALS anel the above method 
may a]so be applied to a spherical mass, whose density is distributed 
symmetrieally around the centre. 

J) C.f. VAN DER WAAts-KOHNSTAMI\( p. 239, 


