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a carbon-source, rapidly lead to the accumulation of strong ureum-
splitting bacteria forming spores and the wrobacillus jakschii forming
no spores.

5. The irisating of culture-plates and {he “irisplhenomenon’ on the
yeast-water-gelatineplate are the consequence of the precipitation of
calciumphosphate, whilst calciumecarbonate formed at the same time
plays a subordinate part in it.

At the end of ihis investigation I beg to express my sincere thanks
to Professor M. W. Beuerixck for advising and supporting me in
these experiments wherever and wlenever he conid.

Physics. — “Statistical Theory of Capillarity.” By Dr. L. S. OrNsTEIN.
(Communicated by Prof. H. A. LoReNTz).

(Communicated in the meeting of December 24 1908).

In a paper') published in 1893 van pEr WaaLs has developed a
theory of capillarily, which leads to results agreeing sufficiently with
observation, as has been shown by the experiments of Dr. E. O.pn
Vries.

The methods used in the above mentioned paper have been repro-
duced with only a slight change in the lectures of van pur Waars
recently published by Prof. Pm. KomnsrTam.

Both in the paper and in the {reatise the hypothesis ®) is introduced,
that the entropy of an element of volume is a function only of the
number of molecules it contains and of that of their collisions.

By the statistical method of Gisss we can deduce-the condition of
equilibrium for the capillary layer without using a hypothesis of this
kind and we can easily show that it must be true when certain condi-
tions are fulfilled. This is the object of the present paper in which
I shall also determine some quantities that play a part in the theory
of capillary action.

§ 1. Let us suppose that n spherical molecules of diameter o, per-
fectly rigid and elastic, are enclosed in a vertical cylinder of height
Z, and of unit of horizontal section, closed at the top and the
bottom by horizontal walls. Let the axis of z be drawn upward and
let us further suppose that the molecnles exert attractive forces on

) J. D. v. . Waars, Thermodynamische theorie der capillariteit in de onder-
stelling van continue dichtheidsverandering. Verh. d. K. A. v. W, Deel I, 8, 1893,
%) Compare L ¢, p. 16.
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cach other up to distances which are large in comparison with the
diameter ¢ and with the distance of neighbouring molecules. I shall
denote by — ¢ (f) the potential enexgy of this attraction for a pair
of molecules whose centres afe at a distance fand I shall suppose that
@ (f)=0 for values of / which are large compared with & (and the
distance belween neighbouring molecules) but small compared with
finite lengths, the same being also true of the function 1 (/) determined
by the equation

Fe(Haf=—dv() - . - - . - - (D)

Let us now consider a canonical ensemble with modulus 6 built
up of N systems of the above kind.

We divide the volume of the cylinder by horizontal planes into
a great number % of elements of a height dz, this height being large
compared with ¢ and small compared with the distance at which
the molecules sensibly attract each other. I shall further suppose
that the potential energy of attraction changes but little over a dis-
tance of the order of magnitude dz, ).

We shall determine the number, or, let us say, the “frequency”
¢ of those systems in the ensemble in which there aren, ... n, ... 7
molecules respectively in the elements dz, ... dz, ... dz. I shall
suppose that the numbers n, are very large; their sum being n we

have the relation
3

Zn,:n. ... o @

1

The number of molecules per unit of volume in the element dz,
(the molecular density) will be represented by n..

I shall consider the mutual energy of a pair of molecules as
belonging for one half to the first and for the other half to the
second of the molecules. The energy determined in this way is the
same for all the parlicles of the layer dz. I shall represent this
energy per molecule by e,.

The total potential energy can therefore be represented by

L4
= ng &,
1
The frequency *) in question is given by the formula

1) For the sake of simplicity I shall take the elements dz. of equal magnitude ;
. ) T . .
our result will be that —C—l—z'— - 1, (the molecular deusity) is a function of 2, showing
/
that we do not lose in generality by this simplification.
2) In explanation of the formula (II) the following may be observed, Let us
consider a system constituted of 72 molecules of the kind above described enclosed.

I
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3 W n,8,
— n —_—
G

k —_—
2 1 (]
E=N@am®) ¢ =n /I—[~—} (w, dz,)™ ¢ .o (1D
1 Ml

§ 2. The properties of an observed system are identical with those

in a vessel of the volune V. And let us imagine a canonical ensemble built up
of N systems.

In this ensemble the number of systems — having the coordinates of the
centres of the molecules belween 2, and 2, 4 dw; ... 2n and 2n -+ dzn and the
components of the velocities of these points between %, and 2, and x'l + dxy... .
#n and 2n~+ den — amounts to

Vs

% . .

N m3n e ® da, ...dz,de, . .. dzy, N ()
Here, the emergy of the system is expressed by & and ¥ is a constant for
the ensemble depending on @ and V. The value of ¥ can be found by integrat-
ing (@) with respect to the coordinates and the velocities. The result of this
integration must he N, which ylelds a relation for w. The number of the systems
in which the velocities have any values, but whose coordinates are lying between
the specified limits is obtained by integrating (@) over the velocity components

from — wto + oo,

i)

The energy € is given by the relation 8 =g, - Zz—m(a':'"’r%fy“';-{— #)
1

in which ¢ is the total potential energy and m the mass of a molecule. Therefore
the result of the integration is

3 W—g,
2 0
N (2a0m) e R N 1)

Let us now divide the volume V into % elements dV;.. dV» .. dVi If 2
molecules are situated in an element of volume dVx the 8#, coordinates of their
centres_ may still vary between certain limits; in other terms, a certain extension
is left open to the;point represenling these coordinates in a 3n,-dimensional space.
I shall represent the magnitude of this extension by

¥ (n,, dV,).

The repulsive forces between the molecules are accounied for by excluding
from the 3n,-dimensional space (4V.)*. all those parts in which there exists a
relation of the form

(@ =) + (=g + ez <ot . . . . ()

between the ordinary coordinates of the centres of two molecules. We ean

represent x (%, dVy) by
fd”"r'-dzn,’ D (7))

where the integration has to be extended over the whole space (dV.)%> with the
exception of the parls determined by (¢). By a simple reasoning we can show
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of the system of maximum frequency in an ensemble (whose modulus

that with a fair approximation y (1., dV,) can be represented by

n,
(w,dV) Coe e N ()]
where @, is a function of n,. I have calculated for @ the approximate value.

I —=—n ng® : ¢ 2
—nl= - —
04 © 3 a" b4

(Cf my dissertation and also these Proceedings 1908 p. 1186).
The extension of the 31 dimensional space covered by the systems containing
%y.. % .. nk definite molecules in the elements dVy..dV...dVE can now be

represented by
k
II 5y AV).
!

The extension covered by all possible systems of this kind amounts to

n! ]flz-(n;’—y:i@

In the potentlal energy we may neglect the repulsive forces, these forces having
been already taken into account by the exclusions (¢). Supposing that the energy
is the same for all the molecules of an element dV, we can represent the total

potential energy by the formula
k

E "2E»,

1
For the frequency we find

3 n v L n,8,

eﬁn!]j x(n,.’,d/Vx)e* "(7)”
1 7y !

or, introducing the function ¢ by means of (¢)
3

n r o, aid
—_— —_— v n —— e
2" 6 A7)

= N@nOm) o n-'Hﬁ"i[,’% o
1 n,

The formula (II) is a direct consegquence of the last equation.

As we are treating a case in which there are differences in demsity in the
system of maximum frequency, the question arises as to whether these differences
have any influence on the value of the function ¢p. If it were so, this function
would depend not only on n, but also on the derivatives of this quantity with respect to 2.

The difference in question really has an influence on the energy, but in conse-
quence of the hypothesis of p.p. 526 and 527 the density changes so little along
the length de, and the value of the exclusions at the limits of dz, is so small in com-
parison with the value of those originating from the molecules of dz itself, that we may
consider . as depending only on n,. This, however, will be true no longer if the
sphere of action of lhe attractive forces is not large in comparison with g; for
this case the following theory would have to be modified considerably.

36

2
- §= N (2a0m)

Proceedings Royal Acad, Amsterdam] Vol, XI.
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is proportional to the absolute temperature of the system).?)

In order to find the condition of equilibrium we have only to
determine the values of the numbers 5, that make the quantity §or
loy § a maximum. Before we proceed to this investigation we have
to express the quantity & in the numbers =,.

B A dxn*V
dr 4 0
vdx
S
P
rdz
B |4 0’
dxyy

Let us suppose that [ is a point of the layer dz,, We shall try
to determine the potential energy for a molecule sitnated at that
* point. Consider f(irst the contributions from the molecules situated in
two plane layers at a distance »dz from P. We shall indicate these
layers by dz,—. and dz,4.,. We cut from these layers cylindrical rings
by circular cylinders having OP0O’ as axis and as basis circles with

OA=0'A'=r and OB=0'B'=¢r -+ dr

as radii. )

The number of the molecules in these elements amounts to

‘ 2 odr dz (0,—, + Do)
Considering as equal the distance of all these molecules from P and
representing it by f, we find for their contribution to the potential
energy of P
—@rdrde (M, + 0,09 (f) - - 0 . . (@)
Now we have

4 (vde)* = f?
rdr=faf . . . . . . . . . (8

Taking into account (1) and (3) we can replace (2) by
adz (n,—s + ) () .« o . L L L (4)

1) Cf my dissertation § 4 p. 15.

and therefore
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The total contribution to & from all the molecules of the layers
dz,—, and dz,, is found by integrating (4) with respect to / from
vdz to . Proceeding in this way we find

— ade 0+ Do) Yd2) . . . . o (8)
from which formula the energy per molecule in the layer dz can
be calculated by adding up all the values of this expression which

are such that ¢ (vdz) differs from O.
In this way we find

g = — ;rdz Z (tmsF D)W ede) . . . . (B)

For the potential energy of the system we have the formula
k k

<& = — wd, y Dy - D) dz), . (IL1)
Zns 14 z;n Zs Dy P (v

§ 3. We may now proceed to the determination of the condition
for the maximum. Consider therefore the change of log § when we
give the variation dr, to the numbers n,. These variations are subjected
to the equation

~

k
Zdnz:O R 044
1

In the following investigation we may replace n,/ by n’ e
We find for dlog$§

%
dlog 0,
dlog§ = Z[—-logn,—l—l—logw + n, ng':ld"n,,—l—
1

dun,

ndz

k
_i_—@_ ;d‘n,z }p(vdz) (le——-,' + Ux+u) "[‘

&
+ Znyzvlp (v dz) (dnx-—d + dny+V)$ . e (V)
1

. : ) . d
It is easily seen that the two sums, with which :—r(; is multiplied

are equal, both consisting of the same terms, and further that each
of them is equal to
v . k

—_—— &, dny.
ndz

36*

e
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~Atlending o the condition (IV) in the usual way, we find that
the numbers =z, in the syslem of maximal frequency must fulfil the

condition

w, dlogw, 2¢
log— + n, ——
n dn, 6

whereas the second variation of log §, d* log & given by the formula

k
In,e d . dlog w,
d Zog§_-Z‘ P (— 1—{—(7; A ))—I—
k

Z dn, Z wwds)(dn,—, +dn,p) , . (VII)
| r

=u. . - . . (VD

mds
7

+

must be essentially negalive.

The first conditions are equivalent to those given by vax pEr WaALs.
It is easy to give the equation (VI) the form whicl is assigned to
it by vax per Waars. We have only to introduce the hypothesis
that n changes continually with the height and then to calculate the
energy &,.

We obtain in this way ')

o, dlogw, 2an,

l 2am | 1 g  ithad 1 VI
09;,—+1‘/ dn, + ) +5Z 2sdz,,_)s——lv¢' ) - (V1)
1

1) To calculate e, we proceed as follows. On account of our hypothesis we

can write
(vd2)* d* n, (vdz)?s d%sp,
s o4y = 2n, 4 2 — 2
Doy o ey =30+ 2 @s)! dz,%

Introducing this into the formula for & and puiting

[+

Zarflp(e)dz =a,
0
A ’ 2 d 1
- 2 o —
(23)!fz s 1.!)(2') dz = 2 025 3
0
we find for &
. 1 z d2sn,
8/:——(111/——?2 02.9?723,- T (6)
1
I shall write for &, also
&, = — an, + 50;(- . . . . . . . (6’)

It is only in the capillary layer that the quantily ¢ differs from zero.
%) We may mention as another advantage in the above deduction of (VI') that
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/
§ 4. Before I proceed to the discussion of the stability I shall
consider the equation (VI). Using (6’) we can put for it
dlogw, | 2an, 2¢,

w,
log — , — =f.. . . . (VI
oy o +n a0, + 7 o p (V1"

Subtracting the equation (VI") taken for the height z, 4 dz, from
the corresponding oune relating to the height z, we obtain
( 1 dlog w, dlogw,  2a\dn, 2 ds,
— n

-_— 2 ,— — — — . 7
1, + dn, an,?® + 0 ) dz, O dz, ()

It we introduce the function p, delermined by the equation

2

al
}i:n——nz ;iw—a—;—, B ()]

~— which quantity represents the pressure in every element of a
homogeneous system with the molecular density n — we easily see
that we can replace (7) by
1 dp,dn, 2 de,

o @n,d—n, E;,_E dz,
This equation leads to

dp, de, 9
—_——=2n,-—, . . . . . ..
dz, dz, ©)

The form of this relation recalls the statistical condition of equili-
brium namely that the difference of pressure between {wo planes
be equal to the force acling on the mass between these planes.

By integrating (9) from a point of the homogeneous phase (indi-
cated by the index /) to a point of the capillary layer (index ) we
find

. </ 2,
de, dn
pIL—p/:.“an——dz_—_Zn,gu_2 — & de,
dz dz
2h Zh
. . 28n
we have avoided to prove for each of the integrals ﬁ;ﬂdz separately that
22

. d2sn .
we can put for it fép (m dz, as is done in the {reatise of vaN pcR WaAALS—

Konnsramm p. 238, i

In the paper of va¥ pEr WaaLs this gives somelhing accidental to the appearing
of & in the condition (V1). This advantage is due to the fact that the hypothesis
of continnous transition and the expansion & in a series have been introduced
ufter the deduction of the condition (VI).

T —
prrerreyr——]

SApcniArtEn:
e TeerTa—
=te TS =
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or g, is zero in the homogeneous layer. Inslead of the former
formula we may put

g ~c%n
, vy = pj, — 2r,8,+ %f‘a N £ £1)]
Zh
Introducing now for &, the series that follows from (6) and (6) we
find for the pressure

z

o d?sn, 1 dﬂr ~ dn d2sn
p/—Ph_"n/ZC‘JS —"-“ dz $ fZ{;d"?S dZ.(VIII)l)

Zh

It follows from the above vreductions that we obfain for the

dn, 1 /dn\*
pent (v 5-3(E) )+
s=m® t=g5~—1
d'n, d2s~—/n 1 dsny\?
VoI L (2L
+ 30| Y e () | o
An approximation for p, may be obtained by breaking off the

series at s—=1: we then find a formula, which agrees with one
given by vaN DER WAALS namely

d*n, 1 /dn/\?
}b-—p/,-{-C%(lL dot —“5(d~ ) ) c e (VI[I”)

1y In order to reduce the integrals contained in the sum, we have the formula

pressure p,

P

s§=4

2, 2,
dn d2sn dn, d*—1n, d*n d¥s—ln

Qo 4o T Gy detimt ) dat a1
Zh Zh
Where the remaining integral may again be transformed by the same operation.
In this way we are finally led to a term in which the integration may be per-

formed namely
Zr
1 — E
(—1)s d_sB dt+in g — (—1)s /dsn ‘
. dzs dest+1 2 dz$

Zh
It follows from (VIII) together with the above reductions that by integrating
(rom the one homogeneous phase %; to the other s, we obtain:
p}!l = pllg’
which is the well kwown condition for thermodynamical equilibrium.

-10 -
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The constant u of the equation (VI) can be determined, if we
observe that in the homogeneous phases &,— 0. Representing the
molecular density of these phases by n, and n,, we have

dl 2
;g @2 ——ang—:.{.t, . (1)
o e

w, tn, dlog w, n 2an,

log —
9 n, dn, C]

w0,
= log ; + n,
which yields one equalion between n, and n,. We can find a second
by means of the observation made at the end of the note of p. 534
We have
Phy == Phy -+ + o o . (12)
where the p’s ave known functions of n, and n, (c.f. (8)).

After having determined n, and n, by means of the foregoing
equations we can use the first to determine g.

The thickness of the capillary layer depends on the modulus O,
it can be determined by means of (VI); we can also calculate the
number of the molecules in this layer. This number being known,
the equation (I) enables us to calculate the height of the liqmd and
gaseous phases.

§ 5. We have now 1o examine whether the frequency of the
system determined by (1I)and (VI) 1s really maximum, 1 other terms
whether the condition of the system 1s one of stable equilibrium.
The quantity d*log§ consists of three parts, the two first of which
belong to the elements of the homogeneous phases %, and £, , whereas
the third relates to the capillary layer c.

We may put the first parts in the form

dn? d dlog ©, 2ar,
dp? log § = E — 14+ —1!n?— (¥
i log § 11271,( +dn, " I )+ @>( !

where has to be extended over the elements of the homogeneons
‘ h

layers 4, and %,. For the part belonging to the capillary layer we
have the formula

dn,’ d dlog o,
2. = —1 A Y
¢ log § 0272( -{_(ln,.(n d ))+

4z de Z dn, th(vdz) (n,—, + dnoy,). . . (VII")

0]

In order that ¢* log § be negative, itis necessary that d%, log &, d*: log &
and ¢%log & be negative for all possible values of the numbers dn,.

The parts relating to the homogenevus layers may be written in
the form

-11 -
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d d log w, 2an,, dn?,
Y fr
dng(n “ dn, ) T 0] ) 2 O, '

he

wmwg:<_1+

where « is 1 or 2. These contributions are negative, 1f

Z (24 o
d( d””) 2““<0,.. . (IX)

dny

Now, we can lransform this condition by means of the function p
(c. f. (8)). We then find as a condition for the stability

dp, .

w0 L. (XY
for the homogeneous phases. As for these phases, the function p,
represents the pressure, the condition (IX’) is nothmg else than the
known thermodynamical condition for stability. '

Not only must (IX) be fulfilled, it is also necessary that ¢%.log}
be negative, for there are possible vamations i which dn, is zero
everywhere in the homogeneous layers.

[ shall transform the first sum in ¢% log § by means of (VI). I
shall write for il

dn, 1 1 d dlog w,
d s — - 5 2/ ?
Z 2 5 ( n,+ n,dn, (n dr, ))
which may be replaced by

dn, d w, dlog w,
—dn, log — p .
2 ? dn,(o'q n, T dun, )

By a transformation of the same kind as thal which leads to
(7), we can 1eplace the foregoing expression by
de,
dz

P — E dn, dn, —— .
dn,

de,

Introducing the value of & by means of (5'), and considering ibat
the differentiation of n,—, with respect to z, gives the same result
as that with respect to z,—,, we find for the sum under consideration

axdz dn, dn, do,—,  dn,y,
— d ,
6 i i 2 "@ZQMH+M&)

dz,
therefore (VII") may be reduced to

-12 -
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adz

2 dn, E W v de) (dn,—, 4 do,q,) —

- IRy ven (). - om

‘ dz,
Now e can easily show that this sum is essentially negative.
For this purpose we arrange the terins in the following way. From

ihe first sum we take the lerm dn, W (v d2) dn,—,, and also the term
dn, _,p (v dz) dn,. These are equal, and their sum is

3

2
— dn, dn,—, P (v de).
dz

Next from the second sum we take the term
dn, dn, dn,—,

d], da,._
dz,

P (v de

and also the term

=) 77— l Id
dn,—., dn Eli w (v &)

dn,—,
Az,
Adding those four we find
1 do, dn, ., dn, dn,—,
o I" (TzT dz,—, (

)21]:(vclz).

dun, dn,—,

dz, dz,—,

. . . ; dn .
This result is essentially negative, for—l— has the same sign at all

points. *).

We can arrange all the terms of (VII") in the same way. Accord-
ingly, the whole sum may be written as a sum of essentially
negative quantities, and therefore d*:log& is essentially negative.
From this it follows that'a system consisting of two coexisting phases
with a capillary layer belween them is stable, if the homogeneous
phases iaken by themselves are stable.

§ 6. I shall now determine the entropy and the free energy of
the system considered.
Gps*) showed that %, the constant m the equation (II) has

) A similar transformation does not hold for the elements of the homogeneous

dn
phases for there d——‘O

% J. W. Gmps. Elementary principles in Statistical Mechanics 1902, ’

\

-13 -
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the properties of the thermodynamical free energy. I shall therefore
determine the quantity ¥, which may properly be called the statis-
tical free energy.

Taking the sum of the numbers §, obtained by giving to the num-
bers n all possible values, we get the total number &V of the systems
in the ensemble. I shall represent this sum by X, so that we have
the identity

37 L2 7 ny &
—n —_ A n, — ———
N=VY'5=@a0om? NOn (@, deg) ~, O
Ze cZ 111 nel
This equation enables us to determine ¥. In order to find the
value of =, §, we may by means of (VII) express the frequency

£ of an arbitrary system in that &, of the system of maximum fre-
quency. From (VII) 1t follows that

"« [Tdn?, d , dlogw,
Z[%, (_ ! + dn,(n g ———ZZT)) =+
[
ke
-+ %IZ dn, Z P (vdz) {dn,—, + d'ﬂ,_;_,) d:'j,

Introducing this into the sum =¥, we obtain
k
— [ on®, d dlog w,
—1 2 -
L[Zn, ( +dn,(n du, )) :

I _
+ % Zl dn, X}t’) (vdz) (dn—, 4 dn,4.) dz'J

In my dissertation*) I have shown, that this may be replaced 1n
a fair approximation by

- (X)

zk: dn 2
-
Zegz_—gozee T

The quantity &, is given by the equation
L4 3 NxEx

— —n
L= l\"'e@nn(%r@m)2 Vamn 2 (o ¢ 6 14
T (2@, mp) ' :[1—[ n, e (49

1) p.p. 111 and 126.

-14 -
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where the numbers n, and n, have the values following from (VI).
We now have
3

Y- o=

Z e ! = (2x) 2 (nyeetyeemp)le n—"h
[
and therefore, using (18) and (14), we find for ¥
s 3 A n.E,
ot W[ ()0 @
€ = (2nOm) nl(;)e . . (XI)
Gises showed that the quantity — 4 defined by the equation
- =W §
—n=—p (X11)

has the proporties of the entropy s. Here the quantity #1s the average
energy in the canonical ensemble, 1t 15 equal to the energy of the
system of maximum frequency ).
The kinetic energy of this system amounts to
3
- n 0.

For the potential energy we have written
L

E n, €,

1
and the value of & 1s therefore

k
— 3
5:-5719—}";”,8/.

For s we have the equation

k
8 3
s:2—n+§nlog(2ﬂ@m)+9zlog71+;Zn,log;o-j

~

3 k w,
= Const + g log O 4+ Z n Zog;—
1

z
3
:Const-}-anlog@—l—fnlog(;—)dz. N .0V ¥
o

1) GieBs showed that the average emergy m an ensemble is equal to the
most common energy in that ensemble. Now not every system with this energy
is equivalent to the system of maximum frequency, but the most common energy
is equal to the energy of the latter system therefore the same is true for the
average energy. This result may also be obtamed by determining ¢ directly by
means of (VII).

-15-
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This formula can be used to determine s, if we know the manner
in which n depends on z. We easily see from (XIII), that, just as
vaN DER Waars supposed, the entropy in each element of volume
depends only on the dcnsity n and on the number of collisions in
that element'). We could expect this, having found exactly the same
condition of equilibrium to which his theory leads. v

It must, however, not been forgotien that the whole above develop-
ment and therefore the hypothesis of van per WaaLs are only valid,
if the assumptions about the attractive forces introduced at p. 526
and 527 are true. The changes that will have to be made in the
theory, when these assumptions are relinquished, must be a maiier
of further examination ?).

7. TFinally T shall determine the force exerted in a horizontal
direction by the system. Consider a system identical with the former ;
only let the section be no longer equal to umt of area, but let it be
0. It is easily seen thai this has no influence at all 'on the former
developments. The density n, and the energy & are delermined by
analogous equations; the only difference is that 7, (the number of
molecules in the layer dz,) is now given by n, o dz,. instead of
by n, dz.

For ¥ we have therefore the formula

)/

w 7
— %= Const. + on, (log % —f@—) dz, =
1

4

Const f log > — 214 15

= Const. ———=|de . . . . .

nst. 4+ o0 | n 09 = 6 (L5)
0

The average component, corresponding o the parameter o, of the
force exerled by the systems of the ensemble is given — as GiBBs
showed — by the relation
awr

——— . .. ... .. (xXaVv
do (XIV)

Al

The force K, exerted by the systems of maximum frequency, is
equal to the average force K, Therefore equation (XIV) may be
used 1o determine the force in a real system. Before I use (15) 1o

1) The function « is connected with this number.

%) In this examination the function 3 (#,, dz.) introduced in my dissertation will
have to play a part.
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( 541)
determine K, I shall put this equation in a new form by means
of (VI) namely
V4

L' 4 al !
— 5= Const. -+ of((.m — n? ;‘Z e -—-%—— -+ P(;—C) de =
0

.

= Const. 4+ (u—1)n -+ of( (n—n*

0

with the aid of (10) we can replace this formula by

3
—5= o4 + phd~ + f(—nsc + 2 — eccl.,) dz . (XI')
2h

For K, we get ﬁnally

__29/‘7-{-f(——-nsc + Zf(—lil & dz) e (X

2h

CQ d"’n,
2 dz*,

An approximate value for &, can be found, by putting &, =—

This value for K, amounts to

n 3
I( *‘p(&Z"{“”‘f( %-— de))dz_
do'\?

0

2

d
=mZ40, (0 2d . . .. .. (16)
dz*
0

When the surface of the capillary layer increases by unii of area
ihe free energy (so far as it depends on capillary action) decreases by

Z o

f(__ &, +2f%86d )dz s ey (17)
0

Zh

or, if we use the approximate values by

-17 -
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( 542 )

Z

dn\?
0

zZ

d’n
—}—C’,fn@clz, e e e e (18

0

i. e. the free energy increases proportionally to the surface. Only

the elements of the capillary layer contribute to the integrals, for
d

it is only in these elements that & and ZZE differ from zero. The
2

quantities expressed by (17) and (18), taken with the negative sign,

agree with what is commonly called the capillary energy. In this

form they also represent the so called surface tension.

The quantity
dn
Ph— D&, + gf—— chz,
dz

2

or the corresponding approximate quantity (e. f. (16))

d*n, dn,
G (dz, ) ).

may be called the horizontal pressure in the element dz, at the
height z,. I shall represent it by p, . As we can see from (10), the
connection between p, and p,, is given by the formula

Pix — Pr — Dx Eox ¢ o 4 e o . e (XV.Z)
The term &, being O in the homogeneous layer, we have

Do = Pr = Pht == Phe.

We can determine the sign of s, and therefore that of p, —p,
by means of the equations (VI) and (10). We then come to a discus-
sion exactly analogous to that which vaN pER WaALS has given on
p- 19 of his paper ).

If one goes upward from the liquid phase, & is first O, then
positive, then O again, after that negative and finally O in the gaseous
phase.

By means of the foregoing considerations, we can obtain all the
vesults formerly found by van pir WaaLs and the above method
may also be applied to a spherical mass, whose density is distributed
symmetrically around the centre.

1y CGf. van per Wasrs—Konnstaux p. 239,
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