Huygens Institute - Royal Netherlands Academy of Arts and Sciences (KNAW)

Citation:

J. de Vries, Congruences of twisted curves in connection with a cubic transformation, in: KNAW, Proceedings, 11, 1908-1909, Amsterdam, 1909, pp. 84-88

This PDF was made on 24 September 2010, from the 'Digital Library' of the Dutch History of Science Web Center (www.dwc.knaw.nl)
> 'Digital Library > Proceedings of the Royal Netherlands Academy of Arts and Sciences (KNAW), http://www.digitallibrary.nl'
polarimetric and copper tests both before and after inversion. Next 100 grammes of this glycerin were mixed with a 3% starch solution, warmed to $40^{\prime} \mathrm{C}$. and kept at that temperature for a couple of hours. After that the dissolved starch and dextrin was precipitated with alcohol, filtered, a pinch of calcium carbonate was added to the filtrate to prevent inversion by the slightly acid reaction of the filtrate, and the alcohol was evaporated off. The syrupy residue was dissolved in water, diluted to the volume of 100 cM .' ${ }^{\text {a }}$ and used for the determination of the sugars by the polarimeter and Fehlings solution before and after inversion.
The original glycerin solution had contained 0.17% of glucose both before and after inversion, while after the treatment with starch 100 grammes of the solution contained 0.60 grammes of reducing sugars before inversion and 0.67 after that operation, which shows that 0.43 grammes of glucose and 0.07 grammes of sucrose (?) have been formed from the starch by the ferment. The polarisation of the solution was +0.9 before and +0.4 after inversion, giving evidence, that notwithstanding the precipitation with alcohol, a small amount of stareh or dexirin has still remained dissolved.
At any rate from the fact that the exclusion of oxygen prevents the saccharification of the starch in the fruit and from the negative results of the experiments on formation of sucrose by means of fresh juice and of the precipitated and re-dissolved ferments, it follows that the rapid transformation of starch into sucrose during the after-ripening of some fruits is a vital process and not a consequence of the action of some ferment contained in the fruit which, just as diastase forms maltose from starch, could be isolated to form large quantities of sucrose from any kind of starch in the laboratory.

Mathematics. - "Congruences of twisted curves in connection with a cubic transformation." By Prof. Jan de Vries.
(Gommunicated in the meeting of May 30, 1908).
$\$ 1$. If $x_{1}, x_{2}, x_{3}, x_{4}$ are the coordinates of a point X with respect to a tetraledron baving $O_{1}, O_{2}, O_{3}, O_{4}$ as vertices, then $x_{1} x_{1}^{\prime}=v_{2} x_{\mathrm{a}}^{\prime}=x_{\mathrm{a}} x_{3}^{\prime}=x_{4} x_{4}^{\prime}$
determines a cubic transformation which transforms the right line

$$
x_{k}=\lambda a_{k}+\mu b_{h}
$$

into a twisted curve ω^{3}, represented by

$$
\rho a^{\prime} k=\frac{1}{2 a_{k}+\mu b_{k}} .
$$

The congruence Γ of the curves ω^{3} through the five. points
$O_{k}(k=1,2,3,4,5)$ is now transformed into a sheaf of rays having as vertex the point O_{6}^{\prime} conjugate to O_{5}.

To the bisecant b^{\prime} throngh O_{0}^{\prime} of the curve $\sigma^{\prime 5}$ brought arbitrarily through $O_{1}, O_{3}, O_{3}, O_{4}$ corresponds a β^{2} through $O_{2}, O_{2}, O_{3}, O_{4}, O_{5}$, having the right line s as chord.

The following will show that the indicated transformation enables us to deduce by a simple method a number of well-known properties of systems of curves ω^{3}.
§ 2. Let us consider the curves ω^{3} of the congruence Γ cutting the right lines l and m. They are transformed into the right lines through O_{5}^{\prime}, resting on two curves ${2^{\prime 3}}^{\prime 3}$ and $\mu^{\prime \prime 3}$. Now the cubic cones, projectung these curves out of O^{\prime}, have besides the right lines $O^{\prime}{ }_{5} O_{k}(k=1,2,3,4)$ five edges more in common, which are the images of as many twisted curves belonging to Γ.

From this is evident that the curves of Γ cutting a given right line l form a surface A^{5} of order five.

The image of A^{6} is a cubic cone, projecting $\lambda^{\prime 3}$ out of O_{5}^{\prime} and having the bisecant b^{\prime} out of O^{\prime}, as nodal edge. Therefore the curve β^{3} of Γ having l as bisecant is a nodal carve of A^{6}.

If we bring the right line m through O_{1} its image is a right line m^{\prime} passing likewise through O_{1} and having therefore with the above mentioned projecting cone of $\lambda^{\prime 3}$ besides O_{1} two points in common. From this we conclude that A^{5} has five threefold points O_{k}.

So the section of A^{5} with $O_{k} O_{l} O_{m}$ consists of the right lines $O_{k} O_{l}, O_{l} O_{m}, O_{m} O_{k}$ ant a conic through O_{k}, O_{l}, O_{m} cutting $O_{p} O_{q}$ and forming with this right line a cubic curve of Γ. Consequently eleven right lines and ten conics lie on \boldsymbol{A}^{6}.
§3. The curves ϱ^{3} of Γ touching a given plane φ, are transformed by the correspondence into tangents t^{\prime} through O_{5}^{\prime} of a cubic surface $\Phi^{\prime 3}$ having conic points in $O_{k}(k=1,2,3,4)$. The polar surface of $O^{\prime 5}$ passes through the four double points O, so it has as image a quadratic surface through those points. The section of the latter with φ is the image of the locus of the points, in which $\Phi^{\prime 3}$ is touched by the right lines t^{\prime}. This conic contains therefore the points in which φ is touched by the curves φ^{3}.

- Through O_{5}^{\prime} pass six principal tangents of Φ^{3}, the congruence Γ contains therefore siz curves, osculatang φ.

The enveloping cone φ^{18} out of O^{\prime} to \mathscr{X}^{2} has four nodal edges $O_{s}^{\prime} O_{k}$; for a plane through $O_{5}^{\prime} O_{k}$ cuts $\Phi^{\prime 3}$ according to a cubic curve
with node O_{k}, sending but four tangents through O_{6}^{\prime}, so that in that plane $O_{s}^{\prime} O_{k}$ replaces two edges of the cone.
So $\varphi^{t 0}$ has with an arbitrary cubic curve through the four points O_{k} ten points in common lying outside O_{k}. By applying our transformation we find from this that the curves of Γ touching φ form a surface Φ^{10} of order ten.

A right line through O_{1} cuts φ^{6} in four more points; on its image therefore rest four curves ϱ^{3} touching φ. From this ensues that $\boldsymbol{\Phi}^{10}$ has five siafold points O_{h}.

The right lines $O_{h} O_{l}$ lie therefore on Φ^{10}; it can as follows become evident that they are nodal rightitines. A right line resting on $\mathrm{O}_{1} \mathrm{O}_{z}$ and $\mathrm{O}_{3} \mathrm{O}_{4}$ has six points in common with $\varphi^{\prime 6}$. So its image must have on $O_{1} O_{3}$ and $O_{3} O_{4}$ four points in common with $\boldsymbol{\Phi}^{10}$.
The section of Φ with $O_{1} O_{2} O_{2}$ consists of the right lines $O_{1} O_{2}, O_{2} O_{3}$, $\mathrm{O}_{3} \mathrm{O}_{2}$ to be counted double and a curve of order four, having nodes in O_{1}, O_{2}, O_{3} and in the point of intersection of the nodal line $O_{4} O_{6}$; thus it consists of two conics. These conics form evidently with $\mathrm{O}_{4} \mathrm{O}_{6}$ two cubic curves of r, touching φ.

Consequently there lie on \boldsymbol{p}^{10} ten nodal lines and twenty conics.
When we regard the tangential cones out of O_{5}^{\prime} to two quadrinodal cubic surfaces $\Phi^{\prime 3}$ it follows readily that Γ contains twenty curves touching two given planes.
\$4. To determine how many curves ρ^{9} can be brought through four points O_{l} having the right line b as bisecant and resting on the right lines c and l, we have but to find the number of right lines r^{\prime} which cut $\beta^{\prime 3}$ two times and $\gamma^{\prime 3}$ and α^{3} one time, when these three curves have four points O_{k} in common.

Now the chords of $\beta^{\prime 3}$ resting on a right line l^{\prime} form a biquadratic scroll on which β^{33} is nodal curve, having thus with $\gamma^{\prime 3}$ besides the four points O four more points in common. From this follows immediately that the right lines cutting β^{13} twice and γ^{13} once also form a biquadratic scroll $\Sigma^{\prime \prime 4}$. The cones which project these curves out of a point of β^{3} laving two edges in common, not containing one of the points O, the curve β^{33} is also nodal curve on $\Sigma^{\prime 4}$. With $d^{\gamma_{3}}$ this scroll has besides O_{k} forr points in common; so on γ^{13} and δ^{13} rest four chords of $\beta^{\prime 3}$, and by applying the transformation we find that the curves ϱ^{3} which cut b twice and c once form a surface Σ^{4} of order four.

If we bring d through O_{1}, then its image d bas with $\Sigma^{\prime \prime}$ two more points in common; consequently d cuts the surface Σ^{4} in two points lying outside O_{1}, so that O_{1} is a node. Therefore the surface Σ^{4} has four double points O_{k}.

Evidently b is nodal right line of Σ^{1}; for, b is the image of the nodal curve β^{33} lying on $\Sigma^{1 / 4}$.
Through a point S of b pass two curves ρ^{3}; their two points of intersection $S^{\prime \prime}$ and $S^{\prime \prime}$ with b are the points which b has still in common with the surface A^{6} determined by c, S and the points O.

As the pairs of points S and $S^{\prime \prime}$ form a $(2,2)$ correspondence, four curves ϱ^{3} can be brought through four points, which touch a right line and intersect an other right line.

The section of Σ^{4} with the plane $O_{1} O_{3} O_{3}$ has nodes in O_{1}, O_{2}, O_{3} and in the intersection with b; so it consists of two conics. One of these conics contains also the intersection of c; it is completed to a degenerated ϱ^{3} by the right line out of O, resting upon it and upon b. The second conic contains the intersection of the transversal drawn out of O_{4} to b and c and forms wilh this right line a ϱ^{3}.

On the surface Σ^{+4} lie therefore eight conics, nine simple right lines anal a nodal line.
$\$ 5$. The number of curves ϱ^{3} through $O_{k}(k=1,2,3,4)$ resting on the right lines a, b, c, d is evidently as large as the number of transversals of four cubic curves $a^{3}, \beta^{3}, \gamma^{3}, d^{3}$ brought through O_{k}. The scroll (α, β, l), having a^{3}, β^{3} and a right line l as directrices, is of order $14, l$ being fivetold and each plane through l containing nine right lines. If l_{0} passes through O_{1} a plane through l_{0} contains but four right lines, so that the order of the scroll (α, β, l_{0}) amounts but to 9 . From this ensues that (α, β, η) possesses four twofold points O_{k}.

With γ^{2} the scroll (α, β, l) has 22 points in common outside O_{k}; so (α, β, γ) is of order 22 .

On the scroll (α, β, l_{0}) we find that O_{1} is fivefold, because a right line through O_{1} cuts four generatrices; on the other hand O_{2}, O_{3} and O_{4} are threefold points, for a right line through O_{2} cutting the fivefold right line l_{0}, meets but one generatrix more. With γ^{3} the scroll $\left(\alpha, \beta, l_{0}\right)$ has still $9 \times 3-5-3 \times 3=13$ points in common besides the multiple points. In connection with the above follows from this that O_{1} is a ninefold point on (a, β, γ).

Of the points of intersection of (α, β, γ) with $d^{3} 36$ lie in O_{k}; consequently $a^{3}, \beta^{3}, \gamma^{3}, d^{3}$ have thirty common transversals.

Therefore we can bring throngh four points thirty cubic curves resting on four given riglt lines.
\$6. Let us now consider the surface ψ^{30} formed by the curves \mathfrak{Q}^{8} resting on a, b and c. Through a point A of a and the points O
pass five ϱ^{3} cutting b and c. From this is evident that a, b and c are fivefold right lines.

With a right line m though O_{k} the scroll (α, β, γ) has thirteen points lying in $O_{k} \mathrm{in}$ common, so its-image m^{\prime} (right line through O_{k}) cuts $\boldsymbol{\psi}^{30}$ likewise in 13 points lying outside O_{k}. We conclude from this that the four points O are seventeenfold on $\boldsymbol{\psi}^{30}$.
So the right lines $O_{k} O_{l}$ lie on this surface; that they are fourfold right lines can be shown in this manner.

As O_{k} and O_{l} are ninefold on (α, β, γ) the right line $O_{k} O_{l}$ is cut outside those points by $22-18=4$ transversals of the curves α, β, γ; the images of these right lines are conies through O_{k} and O_{l} resting on $O_{m} O_{n}, b, c$ and d and forming with $O_{m} O_{n}$ a ϱ^{3} of the system.
The section of ψ^{30} with $O_{1} O_{2} O_{3}$ can consist outside the three fourfold right lines only of conics; these are easy to indicate. In the first place we can bring through O_{1}, O_{2}, O_{2} a conic cutting b and c; it is completed to a ϱ^{3} by each of the two right lines out of O_{4} resting on the conic and on d. Then the sections of d and of the transversal with O_{4} to b and c with O_{1}, O_{2}, O_{3} determine a conic forming with the indicated transversal a ϱ^{3}. So we have in O_{1}, O_{2}, O_{8} three double and three simple conics; with the three fourfold right lines they form a section of order 30.

On ψ^{30} lie therefore t seventeenfold points, 3 fivefold, 6 fourfold and 36 simple right lines, 12 double conics and 36 simple conics.

Astronomy. - "Contributions to the determination of geographical positions on the West coast of Africa. III." By C. Sanders. (Communicated by E. F. van de Sande Bakhuyzen).
(Communicated in the meeting of May 30, 1908).

I. Introduction.

- After a stay in Europe during the winter 1902-1903 I returned to Portuguese West Africa and remained there until the autumn 1906 when I again went to Europe for some time.

During this period 1903-1906 I have once more tried to contribute to the determination of geographical positions in these parts as much as time and circumstances allowed. Circumstances, however, were often unfarnurable to my observations, and hence the results obtained are less than I had desired and expected at first.

The results obtained may be ranged under three heads.

1. New determinations at Chiloango. In November and December
