Huygens Institute - Royal Netherlands Academy of Arts and Sciences (KNAW)

Citation:

Geerts, J.M., Contribution to the knowledge of the cytological development of Oenothera Lamarckiana, in:
KNAW, Proceedings, 11, 1908-1909, Amsterdam, 1909, pp. 267-272

This PDF was made on 24 September 2010, from the 'Digital Library' of the Dutch History of Science Web Center (www.dwc.knaw.nl)
> 'Digital Library > Proceedings of the Royal Netherlands Academy of Arts and Sciences (KNAW), http://www.digitallibrary.nl'

Botany. - "Contribution to the linowledge of the cytological development of Oenotlera Lemarchiuna", by Mr. J. M. Geerrs. (Communicaled by Prof. F. A. F. C. Went).
(Communicated in the mecting of Seplember 26, 1908).
Among the numerous plants, of which the cytological development has not yet been investigated, Oemother'a Lamarckiana was the one selected, becanse a cytological examination of this plant would probably be of importance for the solution of other and more general questions.

Thus it may afterwards perhaps be possible, through a knowledge of the cytology of Oenothera Lemnarckicaua and its mutants, to find an explanation of mutation.

Althongh the mutation-theory has gained acceptance in most countries, this has not hitherto been the case in England to any considerable extent. There, Batrsor and his pupils regard Oen. Lann. as a hybrid and attribute the origin of new specios to hybrid segregation. The choef argument in favour of this view is that Oen. Lam., like many hybrids, shows at large degree of sterility in the ovules and pollen grains.

In this investigation I therefore sel ont in trace when and how this sterility arises, in order to be able to judge of the value of Batison's argument.

It is quite conceivable that some day we may obtain a full insight into the conditions, through which muations arise, and also that we may be able to bring about these conditions at will. For this purpose experiments with (Jen. Lum. are especially desirable, in which attempts should be made to influence the origin of the mutants by subjecting the flowers to varions conditions, for instance of temperature, or to various conditions of humidity, to injections ete.
In order to obtain reliable results in such experiments, it is necessary to know exactly, not only which llowers have been subjected to the influence, but also, in which developmental stage the flowers were at the time of treatment, whether before the symapsis, before or after the reducing division etc.; for then only can we determine whether a clange in the number of mutans is really the result of the treatment, or is produced by other, unknown causes.

In order to make this investigation available for such experimental investigations, I have therefore also followed out the development of the flower, so as to be able to refer the primeipal eytological con. ditions to externally visible slages.

With reference to the mutants and hybrids of Oen. Lam. many 18
Proceedings Royal Acad. Amsterdam. Vol. XI.
questions arise of which the answers may be of importance to cylology itself. Especially hybrids with O. giyas, whirh mutant probably possesses twice as many chromosomes as $O_{\text {en }}$. Lam. itself, might provide material for interesting cytological investigations. For this purpose a knowledge of cytological development of the mutating plant itself is, however, a first desideratum.

The principal results obtained in this investigation, will now be briefly stated.

The floral development of Oenothera Lamarchiana was investigated in 1895 by PoHL ${ }^{1}$); this author arrived at conclusions, differing widely from those obtained for other Onagracete, for instance by Barcianu ${ }^{2}$) and by Payer ${ }^{3}$), for according to Pohe the development is not acropetal, as found by the other investigators. It has now been found, however, that Oen. Lam. like other Onagrucere has an acropetal development of the flower. In addition the chief points observed in this development, are:

1. The corollar stamen arises from the protaberance, which the corolla forms on its inside.
2. The ovary is the floral axis, which has become hollow. Only the stigmas develop as 4 separate protuberances, alternating with the calyx stamens.
3. The ovary becomes quadrilocular by the growing inwards of 4 parietal septa, which stand before the calyx stanens and fuse in the centre.
4. The axis does not grow further; there is no columella.
5. The placentae are differentiated from the edges of the septa.
6. A corollar stamen and its petal have no common vascular bundle.
7. The ovule arises from periblem and dermatogen, except for the vascular bundle in the raphe.

The cytological development was studied both in the ovules and in the stamens. A summary of the principal phenomena observed, is here appended.
When the mother-cells go into synapsis, the nuclear network contracts, and a thin thread arises, in which chromatin particles can be seen. This thread rontracts to a tangle and continually becomes shorter and therefore thicker; this is clearly visible when the tangle unrolls itself

[^0]again. The thick thread now divides transversely into 14 chromosomes, the nuclear wall disappears, and the chromosomes place themselves perpendicularly 10 the long axis of the spindle of the heterotypic division. In the symapsis of Oen. Lann. no double thread can therefore be seen; from that therend the veyfative number of chromosomes is formed, and just before the division these chromosomes show paininy.

Both in the ovules and in the stamens the synapsis takes place in this manner. In the first division of the mother-cells entire chromosomes separate, which already during this division show a longitudinal splitting for the second division. After this heterotypic division the two nuclei scarcely enter upon a slage of rest, the chromosomes, split longitudinally, always remain visible, especially in the mother-cells of the embryosac. The wall between the two nuclei is often not formed completely. At the second division the halves of the two chromosomes separate, so that 4 nuclei are formed; in general but little staining substance is visible ${ }^{1}$).
Whereas in most plants the lowest-cell of the tetrad grows out to form the definitive embryosac, this is not so in Oen. Lam. Here the uppermost cell becomes the embryosic, while the other three degenerate; the chromatin of these three colls quits the nuclens, of which the wall disappears, and the chromatm now colours the whole protoplasin dark, so that these three cells of the tetrad remain visible for a long time as a long dark band under the embryosac. In that cell of the tetrad, which grows oul, three successive divisions take place in almost all plants, so that 8 nuclei are formed. In Oenotheret I always found but 4 nuclei, which come to lie in the upper part of the embryosac. A limited number of nuclei is also known in Helosis guyanensis, in conseguence of the rescarches of Chodat and Bernard ${ }^{2}$) and in Jfourira, throngh an investigation of $\mathrm{W}_{\text {list }}{ }^{3}$). In these plants the lower of the two nuclei, which are formed in the first division, probably degenerates, from the upper nuclens the

[^1]three suclei of the egg-apparatus and the polar nucleas are formed so that division nevertheless takes place three times.

In Oen. Lam. I never found a nucleus or remains of a mucleas in the lower part of the embryosac, whilst the four naclei always lie in the upper portion. A few times it was possible to observe the divisions themselves. Thus I found an embryosac, in which the nucleus was dividing into two, with its spindle in the long axis of the embryosac. Further I found embryosacs with two nuclei, which were sometimes superposed, sometimes side by side. Therefore the lower nucleus probably changes its place, coming to lie higher up in the embryosac. The divisions of these two cells were also found, mamely two spindles, in the upper part of the embryosac, and at right angles to each other. In the same mamer the spindles are found in most plants above and below in the ombryosac, at the third division in couples perpendicalar to each other. The division of these two nuclei in Den. Lem. is therefore pretty certainly the last division of the embryosac, in which the two synergids are formed from one nuclens, and the egg-nucleus and the upper polar nucleus from the other. In this particular embryosac, with the two spindles at right angles to each other, there was moreover no trace of nuclei at the chatazal end. Wo may therefore assume, that in Oen. Lam. the first division in the embryosac is suppressed, so that antipodal cells and lower polar nucleus are not formed at all, and that there is not even an antipocal initial cell, which occasionally. degenerates again atter being formed, as in Helosis and Mourer'f.

In the embryo-sac of Cypripectium the number of the divisions is still further reduced; here, according to Miss L. Pace ${ }^{1}$) there occurs in the embryosac only one lomoiolypic division in the lower cell; the upper cell degenerales. The homoiotypic division is not followed by a cell-division. The two naclei in the lower cell now arrange themselves at the poles; this cell grows out longitudinally and the nuclei divide again, so that they are four in number. Further. divisions do not take place in the embryosac; the forr nuclei become egg cell, synergids and upper polar nucleus.
When in Oen. Lam. the four nuclei have been formed the synergids, which lie nearest to the micropyle, surround themselves, like the egg-nuclens, with their own phasma; the upper polar nuclens remains free in the plasma of the embryosac.
The four cells, which have arisen in the pollon mother-cells through the reduction division, grow ont regularly to pollen-grains; the method of origin and the structure of the walls probably agrees in
${ }^{1}$) Luld Page. Fertilization in Cypripedium. Botanical Gazelle. XLIV, 1907 p. 353.

Oen. Lrm. with what R. Berer ${ }^{1}$) has described for Oenothera longiflora.
When the pollen-grains are almost mature, the generative and the vegetative nucleus are formed by division; the generative nucleus, which is the smaller, and is surrounded by a quantity of plasma, then applies itself to the wall; the vegelative nucleus remains in the middle of the grain. The division of the generative nucleus into two probably takes place in the pollen-tube.

The pollen-tube penetrates through the micropyle and throngh the nucellar tissue. It seems as if in this place the nucellar tissue already becomes in advance disorganized. Since, when the pollen-tubes penetrate, the synergids are already completely disorganized and slain very deeply, and since in the nucellus, at the spot where the pollen-tube has penetraled, dark coloured remnants are everywheree visible, I have not succeeded in obscrving the division of the generative nucleus. Fertilisation itself was however clearly observed. A double fertilisation takes place; one mucleus penetrates into the eggcell and applies itself against the mucleus; the generative nucleus is at that time round, but smaller than the egg-nucleus, althougl it probably becomes somewhat larger before fusion. The other gencrative nucleus, which presents the same shape, applies itself to the polar nuclens. The fusion between the polar nucleus and its generative mucleus takes place more rapidly than that of the other generative nuclens with the egg-nuclens. The fertilized polar nuclens now soon divides, so that frequently there are already a number of endosperm nuclei before the egg-nucleus has completely coalesced with the generative mucleus, and before the egg-cell has a wall of its own. The fertilized ege-cell grows out to a short suspensor, and an embryo with distinct octants. Endosperm nuclei then already lie along the whole of the wall of the embryosac. Afterwards this endosperm however again disappears.

In Oenother" Lamarchiima the endosperm is therefore formed from one fertilized polar nucleus.

In mature stamens very many stcrile grains are found in the pollen; in young fruits there occur between the developing seeds a fairly large number of ovules, which are not mudergoing development. In both cases the sterility arises after the reluction division. Whilst in all cmbryo-sac mother-cells the reduction division takes place normally, there are still many ovules in which the upper tetrad.cell also degenerates, this degeneration being accompanied by much the same phenomena as oceur regularly in the three lower cells of the

[^2]tetrad. In the pollen mother-cells also that visions take place regularly, but after 4 tetrad cells have been formenl, only two cells, in general, develop properly, the other two only partially, so that from them grains are formed, from which the contents gradually disappear, although the wall is fairly normal in structure.
Since the divisions are normal, the appearance of this sterilty need not at all be tho result of a hybrid nature. It follows from the literature on sterility, that, besides in hybrids, sterility occurs in many other plants, and that in most hybrids, which have been examined cytologically, sterility was already present in one or both parents. And since an examimation of one hundred species showed sterility to be pretty common among Onargraceae, we are not, in my opinion, justified in deducing from the sterility of a plant that it is a hybrid. If the above-mentioned objection of Bateson against the mutation-theory is to have valuc, it will be incumbent upon him to name the prosumptive parents of Oen Lam.
In mature ovaries those ovules, which are not destined to develop, may be recognized by their more transparent nucellus, not containing an embryosac. 'In such ovulus the penetration of a pollen-tube was never observed, whereas this was repeatedly found in the normal ovules of the same section. It wonld appear, therefore, that the normal embryosac exerts an attraction on the pollen-tabes.

By combining the results of the investigation of the ontogenetir, with those of the cytological development, it appears, that Oen. Lam. is very suitable for the experiments, referred to in the introduction, because the cytological development of the pollen and of the ovales are sharply separated in point of time. In flowers of 30 mm . the development of the polten is almost complete, while in the same flowers the development of the inother-cells in the ovale is only begmang. It would therefore be possible to influence the pollen and the ovoles separately, and the flowers which should be selected for this purpose, can be easily recognized after a little practice. Should one wish to influence the pollen before the synapsis, then llowers $10-11 \mathrm{~m} . \mathrm{m}$. long shouid be selected, in which the stamens have a length of 3 mm ., since the synapsis of the pollen takes place in flowers of $12-13 \mathrm{~mm}$, in which the anther and also the filament have a length of 4 mm . The synapsis of the embryosac mother-cell takes place in flowers of about $3 \% \mathrm{~cm}$. In order in influence this, flowers of $3-3 / 2 \mathrm{~cm}$. should therefore be selected, in which the ovary and the calyx tube have about the same lengh i.e. $4^{1 / 2} \mathrm{~mm}$.

I hope soon to be able to publish a more detailed description, with platen, of the results of this iurestigation in the Recucil des Travaux Botaniques Néerlandais.

[^0]: 1) Ueber Variationsweite der Oenothera Lamarcitiana von J. Pour Oosterr. botan. Zeitscluift Jahrgang 1895 Nr. 5 u 6.
 ${ }^{2}$) Untersuchungen ueber die Bluchenentwicklung der Onugruceae, Inaug. diss. von D. P. Bargianu, Naumburg 1874.
 ${ }^{2}$) J. B. Payer, Organogénie de la Fleur.
[^1]: 1) In the May meeting of the Dutch Bolanical Soctety, in which I dealt with the greater potion of this subject, I already stated that the synapsis in Oen. Lam. takes place in this manner, thereby differing from what has been stated to occur in other plants. As I found in the beyiming of September there appeared in the July number of the Botanical Gazette a paper hy Gates on the synapsis and reducing divisions in the pollen mother-cells of Oenothera rubrunervis. This observer gives much the same succession of stages for the synapsis of this plaut.
 ${ }^{2}$) R. Cinodat et C. Bernard. Sur le sac embrymmaine de l'Helosis guyanensis. Journal de Botanique 'I. XIV, 1800 p. 72.
) F. A. F. G. Weat. "The development of the ovale embryo-sac and egg in Podostemucpre." Recueil des 'Travaun Botanithes Néerlandais, Volume V, Liveaison L, 1908.
[^2]: 1) On the devclopment of the pollen grain and anther of some Onagraceae, Rudolf Beer. Beil. zum Bot. Centr. blalt 1905, 19 I.
