Huygens Institute - Royal Netherlands Academy of Arts and Sciences (KNAW)

Citation:

P.H. Schoute, On groups of polyhedra with diagonal planes derived from polytopes, in: KNAW, Proceedings, 11, 1908-1909, Amsterdam, 1909, pp. 277-290

This PDF was made on 24 September 2010, from the 'Digital Library' of the Dutch History of Science Web Center (www.dwc.knaw.nl)
> 'Digital Library > Proceedings of the Royal Netherlands Academy of Arts and Sciences (KNAW), http://www.digitallibrary.nl'

From what is said above we may conclude not only that in the spontancously pulsaling hourt there appear still other actions than those which we find expressed in the contraction, but also that thesc actions are to some extent independent. The actions not visible to the eye and characterized by definite electric phenomena, suggest the results of stimulation-processes as they can be shown also in the nerve without accompanying change of form. Though, however, the electrocardiogram may possess a certain independence of the form-cardiogram, the above communication docs not in the least afford a reason to conversely come to the conclusion of the independence of the latter with respect to the former.

Mathematics. - "On groups of polylecdra with diagonal planes, derived from polytopes". By Prof. P. H. Schoute.

Introcluction.

1. By "diagonal plane" of a polyhedron we understand any plane having only edges in common with the boundary of that body. ${ }^{1}$)
There are two regular polyhedra admitting diagonal planes, the octahedron and the icosahedron. Throngh any edge of the octaliedron passes one diagonal plane, containing the centre and bisecting the dihedral angle of the two faces passing through the edge. Through any edge of the icosahedron pass two diagonal planes; the angle formed by these planes and that formed by the two faces through the edge have the bisecting planos in common, and the cross-ratio between the couple of diagonal planes and the couple of faces has $\frac{1}{2}(3-V 5)$ for one of its six mutnally connected values.

The fact that only the two mentioned regular bodies possess diagonal planes is closely connected with this that through each of the vertices pass more than three faces. If we take away from the triangular faces meeting in a vortex the sides passing through that vertex, so as to retain of each the side opposite to this vertex, we find in the case of the octahedron a square adjacent to this vertex, in the case

[^0]of the icosaliedron a regular pentagon adjacent to this vertex, situated in a diagonal planc. Through any edge $A B$ of the icosahedron pass two diagonal planes, as $A B$ lies in two faces $A B P$ and $A B Q$ and therefore also in the diagonal planes corresponding to P, Q. Through any edge $A B$ of the octahedron passes only one diagonal plane, as the third vertices P, Q of the faces $A B P, A B Q$ through $A B$ are opposite vertices and those points lead here to the same diagonal plane.
The diagonal planes of the icosahedron include a regular dodecahedron.
2. By "diagonal space" of a fourdimensional polytope we understand any space having only faces in common with the boundary of that polytope.
Therc are two regular cells admitting diagonal spaces, the C_{10} and the C_{800}. Through any face of the C_{10} passes one diagonal space, containing the centre and bisecting the dispatial angle of the two limiting bodies passing through the face. Through any face of the C_{000} pass two diagonal spaces; the angle formed by these spaces and that formed by the two limiling spaces through the face have the bisecting spaces in common, and the cross-ratio between the couple of diagonal spaces and the couple of limiling spaces has again - as we will prove afterwards - $\frac{1}{2}(3-V 5)$ for one of its six mutually conncted values.

The fact that only the two mentiond regular cells possess diagonal spaces is again closely connected with this that throngh each of the vertices pass more than four limiting spaces and - we are obliged to add here - that these limiting spaces are tetrahedra ${ }^{1}$). If we take away from the limiting tetrahodra moeting in a vertex the faces passing through that rertex, so as to retain of each the face opposite to this vertex, we find in the case of the C_{10} a regular

[^1]octahedron adjacent to this vertex, in the case of the $C_{\text {bao }}$ a regular icosahedron adjacent to this vertex, situated in a diagonal space. Through any face $A B C$ of the $C_{\text {soo }}$ pass two diagonal spaces, as $A B C$ lies in two spaces $A B C P, A B C D$ and therefore also in the diagonal spaces corresponding to P, Q. Through any face $A B C$ of the C_{10} passes only one diagonal space, as the fourth vertices P, Q of the limiling spaces $A B C P, A B C D$ through $A B C$ are opposite vertices and these points lead here to the same diagemal space.

The diagonal spaces of the C_{000} include a regilar $C_{12 n}$.
3. By "diagonal space Spin" of an n-dimensional polyiope we understand any space Sp, having with the houndary of this polytope only limiting spaces $S p_{n}-2$ in common.

Of the three regular polylopes, the simplex $S_{(n+1)}$ with $n+1$ vertices and $n+1$ limiting spaces $S_{p_{n-1}}$, the measure polytope M_{n} with 2^{n} vertices and $2 n$ limiting spaces $S_{p_{n-1}}$, and the cross polytope C_{n} with reversely $2 n$ vertices and 2^{n} limiling spaces $S_{p_{n-1}}$, only the last one possesses diagonal spaces $S p_{n-1}$. Through any space $S p_{n-2}$ bearing a limiting simplex $S_{(x-1)}$ passes one diagonal space $S p_{n-1}$, containing the centre and bisecting the angle between the two limiting spaces $S \mu_{1-1}$ passing through this $S p_{u-\ldots}$.

The fact that of the three regular polytopes only the cross polytope possesses diagonal spaces $S p_{n-1}$ is once more closely connceted with this that through each of the vertices pass 2^{n-1} - and therefore more than n - limiting spaces $S p_{n-1}$. If we take away from the limiting simplexes $S_{(n)}$ passing through any vertex the spaces $S p_{n-2}$ passing through this vertex, so as to retain the 2^{n-2} spaces $S_{1 / n-2}$ opposite to this vertex, we find the cross polytope $C_{r n-1}$ adjacent to this vertex, situated in a diagonal space $S p_{n-1}$. Here too throngh any space $S p_{n-2}$ containing a limiting simplex $S_{(n-1)}$ pass two limiting spaces $S p_{n-1}$. But, as the new vertices P and Q of the simplexes $S(n)$ situated in these limiting spaces are opposite vertices of C'in leading to the same $C r_{n-1}$, through cach limiting simplex $S_{(n-1)}$ passes only one diagonal space $S p_{n-1}$.
4. By intersecting a fourdimensional polytope, each face of which is situaled in d diagonal spaces, by a space not containing an edge of the polytope, we get as section a polyhedron with the property that each of its edgos is contained in d diagonal planes. For, if the intersecting space meets a face of the polytope, it mects also the d diagonal spaces passing through that face, and this always furnishos an odgo of the section and d diagonal planes passing through it. So
the sections of the cells C_{10} and C_{000} by an arbitrarily chosen space are polyhedra with the property that through each edge passes respectively one diagonal plase or a conple of these. As four spaces passing in $S p$, through the same face are cat by any space of $S p_{1}$, in four planes through a line with the sanie cross-ratio, the sections of $C_{\text {ono }}$ by a space not containing an edge will be characterized by the property that the couples of faces and diagonal planes through an edge possess a constant cross-ratio. For from the regularily of C_{000} can be deduced that this cross-ratio is the same for all the faces, as we have stated already. Now the section of C_{100} by a space normal to an axis $O E_{0}$ ((hrongh a vertex E_{0}) is a rogular icosaliedion, if only the intorsecting space is quite close to E_{0} and this proves that the constant cross-ralio of C_{100} must be equal to that of the icosahedron.
5. Indeed, it is not difficult to show directly that the cross-ratio of C_{000} is really $\frac{1}{2}(3-V 5)$.

Let $A B C$ be any face of C_{600} and O, P, Q (fig. 1) represent successively the centre of C_{600} and the fourth vertices of the two limiting tetrahedra $A B C P, A B C Q$ passing through $A B C$. Then the plane $O P Q$ of the diagram will contain the centre of gravity G of the face $A B C$ and be perfertly normal to this face in this point. From $G P=G Q$ and $O P=O Q$ can be deduced that the quadrangle $O P G Q$ is a delloid with $O G$ as axis of symmetry. As furthermore the normals $G^{\prime} P^{\prime}$ and $G Q^{\prime}$ dropped from G on $O P$ and $O Q$ are the waces of the plane of the diagram with the two diagonal spares, we get for the cross-ratio ($P Q R S$)

$$
\frac{P R}{P S}: \frac{Q R}{Q S}=\left(\frac{P R}{P S}\right)^{2}=\left(\frac{\tan \alpha-\tan \beta}{\tan \alpha+\tan \beta}\right)^{2}=\frac{\sin ^{2}(\alpha-\beta)}{\sin ^{2}(\alpha+\beta)} .
$$

Now if the edge of $C_{\text {boo }}$ is our unit and we reprosent for brevity's sake $V 5$ by e wo have (see my "Mehrrlimensionule G'reonetrie", vol. II, p. 200)

$$
O P=\frac{1}{2}(e+1), O P^{\prime}=\frac{1}{4}(e+3), O G=\frac{1}{6}(e+3) \vee 3, P G=\frac{1}{3} V 0 .
$$

From this ensues

$$
\beta=60^{\circ}, \sin a=\frac{1}{8}(c+1) V 6, \cos \alpha=\frac{1}{4} \sqrt{7-3 c}
$$

and therefore

$$
\left.(P Q R S)=\left(\frac{e-1}{2}\right)^{2}=\frac{1}{2}(3-e)=0,381966 \ldots{ }^{2}\right)
$$

[^2]6. In the thitrd part of my commumications "On fourdimensional nets and their sections by spaces", which is about 10 appear in these "Proceedings" we shall find occasmon to fix attention on the diagonal planes presenting themselves in the sections of the C_{10}. As my vertex - or rather any couple of opposite vertices - of $C_{1 s}$ posssesses an adjacent octahedron, the polygons situated in lhose diagonal planes are always sections of octahedra. Probably the diagonal plancs presenting themselves in the sections of the $C_{\text {nno }}$ were discovered for the first time by Mrs. A. Boors-Stotr, who made models of these sections, and explained as sections with diagonal spaces by Mr. II. W. Corabi. !

The olject of this paper is to sturly more closely the cases in which the intersecting space contains one or more edges of C_{16} and C_{800}; of the results revealed by these considerations these about C_{000} have especially roused our interest.
A. The spatial sections through an alge of C_{10}.
7. We consider the case in which the intersecting space contains the edge $A B$ of $C_{1 s}$ and indicate by A^{\prime} and B^{\prime} the vertices opposite to A and B. Then all the vertices except A and A^{\prime} are adjacent to A and A^{\prime}, all the vertices except B and B^{\prime} are adjacent to B and B^{\prime}, and so the form other vertices $P_{1}, P_{2}, P_{3}, P_{4}$ (fig. 2) are adjacent to A and B at the same time. In other words: the octihedra adjacent to A and B, situated in different spaces, penetrate one another in the square $P_{1} P_{3} P_{3} P_{4}$, the vertices of which they have in common. So througla the edge $A B$ pass two diagonal spaces, one of which corresponds to the opposite verlices P_{1}, P_{3}, the other to the opposite vertices P_{2}, P_{4}; they intersect the plane of the square $P_{1} P_{2} P_{3} P_{4}$, perfectly normal in O to the plane through $A B$ and $A^{\prime} B^{\prime}$, respectively in the diagonals $P_{2} P_{4}, P_{1} P_{3}$. If l is the trace of the intersecting space through $A B$ on the plane $P_{1} P_{2} P_{3} P_{4}$, and this line l, determining with $A B$ that space, meets the diagonals $P_{2} P_{1}, P_{1} P_{3}$ in the points S_{18}, S_{24} situated within the square, then the section will show the particularity that the planes $A B S_{1 s}$ and $A B S_{24}$ are diagonal planes; so in some cases the edge $A B$ will lie in two diagonal planes.

In the third communicalion "On fourdimensional nets, ctc." quoted above will be indicated that the particularity of an edge being situated

[^3]in two diagonal planes does not present itself in the four groups of principal sections of C_{10}.
B. The spatial sections through an edye of $C_{0 a 0}$.
8. Throngh any edge $A B$ (fig. 3) of $C_{\text {noo }}$ pass five limiting tetrahicdra of this cell; the five edges opposite to $A B$ of these tetrabedta are the sides of a regular pentagon $P_{1} F_{2} \ldots P_{5}$, the vertices of which are at the same time adjacent to Λ and B. In other words: the icosahedra adjacent to A and B, situated in different spaces, penctrate one another in the regular pentagon $P_{1} P_{2} \ldots P_{6}$, adjacent to $A B$, the rertices of which are common to both. So through the edge $A B$ pass five diagonal spaces corresponding respectively to the tive vertices $P_{1}, P_{2}, \ldots, P_{5}$; they intersect the plane of the pentagon, perfectly normal in its centre M to the plane $A B .1 /$, in the diagonals $P_{5} P_{2}, P_{1} I_{3}, \ldots P_{4} P_{2}$ of the pentagon, or - if une likes - in the sides of the stappentagon $P_{1} P_{3} P_{5} P_{2} P_{1}$. In the case of C_{10} the centre O of the square $P_{1} P_{2} P_{3} P_{4}$ was at the same time the centre of the cell. IIere the centre M of the pentagon is not even the centre of the two icosahedra penetrating one another, and still less the centre of C_{600}; here the line joining $M /$ to the midpoint M^{\prime} of the edge $A B$ must contain the centre O of C_{600}.
If the trace l of the intersecting space on the plane of the pentagon adjacent to $A B$ cuts $P_{5} P_{2}$ in S_{1} (fig. 3), $A B S_{1}$ is a diagonal plane. For this plane is the intersection of the intersecting space determined by $A B$ and $/$ with the diagonal space determined by $A B$ and $P_{5} P_{9}$ of the icosahedron adjacent to P_{1}, and S_{1} lies on $P_{5} P_{2}$ itself, not on its production. Indeed it is evident that this icosahedron is cut by any plane through $A B$ and a point of $P_{5} L_{2}$, if this point lies on $P_{5} P_{z}$ itself, whilst the plane will contain of this icosahedron the edge $A B$ only, if this point lies on $P_{t} P_{z}$ produced. In order 10 prove this we have only to observe that the lines $A B$ and $P_{6} P_{2}$, the first of which is an edge of C_{600} and the latter a chord, cross one another normally. From this it ensues that these lines, likewvise edge and chord of the icosahedron determined by the points A, B, P_{6}, P_{1}, can be represented (fig. 4), in projection on a plane through two opposite edges $p r, p^{\prime} r^{\prime}$ of the icosahedron, by the edge in q normal to the plane of the diagram and the chord $p p^{\prime}$ sitmated in that plane, the extremities of the edge being joined by edges to the extremities p, p^{\prime} of that chord. This shows inmediately that any plane through the edge projecting itself in q cuts the rosahedron or not, according to whecher the point of intersection of the plane with Pp^{\prime} lies on this lune itself or on its production.

(283)

So for the position of the intersecting space adopted in fig. 3 four diagonal planes $A B S_{1}, A B S_{1}, A B S_{3}, A B S_{4}$ pass through $A B$; the point of intersection S_{5} of l and $P_{4} P_{1}$ falls on the production of this side and does not lead to a diagonal plane.

On each side $P_{s} P_{1}$ of the starpentagon (fig. 3) there are remarkable points besides the extremities P_{5}, P_{3}, which lead to faces and not to diagonal planes, namely the points of intersection Q_{3}, Q_{1} with the other sides and the midpoint M_{1}. If S_{1} coincides with Q_{3}, the sides $P_{5} P_{2}$ and $P_{4} P_{1}$ are cut in the same point and, the two corresponding diagonal planes coinciding with one another in the plane of intersection of the diagonal spaces $A B P_{5} P_{2}$ and $A B P_{4} P_{1}$ adjacent to P_{1} and P_{5}, this plane must contain the pentagon adjacent to the edge $P_{1} P_{5}$ of C_{600}. So in this case the polygon situated in the diagonal plane - compare in fig. 4 the planes normal to the plane of the diagram in the lines $q r^{r}$ and $q r^{\prime}$ - is a regular pentagon. If S_{1} coincides with M_{1} the plane $A B M$ - compare fig. 4 -, being a plane of symmetry of the icosahedron, contains $A B$ and the edge parallel to $A B$.
9. My second memoir with the tille "Regelmassige Schnitte u.s.w." Regular sectious and projections of C_{120} and C_{800}, Verhandelingen Amsterdam, first section, vol. IX, $\mathrm{N}^{0} .4,1907$ contains the data that enable us to determine, for any position of the intersecting space containing a certain number of edges of C_{600} belonging to the four groups of sections studied there, the number and the position of the diagonal planes passing through any one of these edges, and to construct the icosahedral sections situated in these planes. We will try to explain this shortly.

On the righthand side of the plates II, IV, VI, VIII has been indicated how the icosahedra adjacent to the vertices of $C_{\text {coo }}$ project themselves on the axes $O R_{0}, O F_{0}, O K_{0}, O E_{0}$. In order to see at a glance which sections normal to these axes do contain edges of icosahedra - and therefore also of C_{800} - we consult the upper lines of the plates XVIII, XVI, XIV, XII. We find then the following table:

in which the indices $1,2,3,4$, distinguishing the groups, correspond
Proceedings Royal Acad. Amsterdam. Vol. XI.
to those of the groups of icosialedra on (II^{l}), $\mathrm{IV}^{b}, \mathrm{VI}^{b}, \mathrm{VIII}^{b}$, whilst. the numbers placed between brackets indicate how many edges lie in the intersecting spaces. However the cases a_{1}, a_{2}, a_{3} can be left out, as referring to intersecting spaces leaving the $C_{a 00}$ totally on one side and being therefore unable to furnish sections containing diagonal planes; for each of the sixteen remaining cases the trace l of the intersecting space on the plane of the pentagon adjacent to the chosen edge must be constructed. These traces, indicated by the symbols $d_{1}, e_{1}, \ldots, e_{4}$ of the cases to which they bulong, are represented altogether in fig. 5 .
10. The determination of the trace l causcs the least trouble if this line contains two of the remarkable points P_{i}, Q_{i}, M_{i} corrcsponding respectively to a vertex, a point of intersection of two non-adjacent sides and the midpoint of a side of the starpentagon. In order to divide the difficulties we treat these simple cases first.

Case d_{1}. On plate II^{3} we find under d that the groups I and VII, each containing four icosahedra, furnish faces situated in the intersecting space, whilst group III gives six icosahedral beetions through two opposite edges. So the trace d_{1} to be found passes through a vertex P_{i} and a midpoint M_{i}; if P_{1} is taken as P_{i}, then M_{i} must be either M_{3} or M_{4}. So we find that the trace d_{1} coincides with one out of ten homologous lines, if by "homologous" lines we mean lines passing into one another cither by a rotation of the pentagon about its centre M to an amount of any multiple of 72° or by a reflexion with respect to one of the lines $M P_{i}$ as mirror, i.e. in general by any transformation that transforms the pentagon into itself.
The line d_{1} culs two other sides, the sides $P_{5} P_{2}$ and $P_{3} P_{5}$, of the slarpentagon; as P_{1} does not lead to a diagonal plane, any of the 12 edges lying in the intersecting space is contained in three diagonal planes. These new diagonal planes are connected with the groups IV and VI, each of which contains 12 icosahedra. As the section passes rather near the centre M_{i} in the case of IV and rather near one of the extremitics P_{t} in the case of VI, it is probable that IV corresponds to the point on $P_{s} P_{2}$, VI to the point on $P_{3} P_{6}$. Later on we will prove this to be true.

We will add the remark, thal the number 12 of the edges lying in the intersecting space is given back by each of the groups I, III, IV, VI, VII, the corresponding diagonal planes - the faces of I and VII incladed - containing successively 3, 2, 1, 1, 3 edges.

Case c_{2}. On plate $\gamma^{\prime \prime}$ under c the group I_{5} leads to a point Q
and the group II , to a point M_{i}; if Q_{1} is chosen as Q_{i}, M_{i} must coincide either with M_{2} or with M_{6}.

The chosen line c_{3} furnishes one point of intersection more, on $P_{5} P_{2}$; so there must be one group of icosahedra more with an edge situated in the intersecting space. Indeed, we find only one group $\mathrm{VI}_{3}, I \mathrm{IV}_{8}$ belonging again to Q_{1}.

Case e_{4}. On plate VIII ${ }^{b}$ under e we have to deal with a central section of $C_{n 00}$, from which ensues that the line e_{4} passes through the centre M of the pentagon. Moreover the groups $\mathrm{LII}_{4}, \mathrm{VV}_{4}, \mathrm{~V}_{4}$ furnish successively a point P_{l}, a point Q_{1}, a point M_{i}. So e_{4} is a diameter through a vertex of the pentagon, e.g. $P_{1} M_{1} Q_{1}$. Here no other point of intersection appearss.
11. It would be possible to go on in this manner and to treat successively, proceeding from the easier cases to the more difficult ones, the remaining lines through two remarkable points, the lines through only one remarkable point, the lines parallel to one of the sides. We prefer however to explain now, for an arbitray case, how the ratio of division of the side of the starpentagon corresponding to a determined group of icosahedra can be found by means of Fig. 3 of the quoted memoir, which is repeated here with slight modification as fig. 4.

We therefore consider the group IV, of plate II ${ }^{b}$ mentioned above under d_{1}, and remember that the icosahedral sections corresponding to this group are determined, according to the quoted memoir, by planes normal to the plane of fig. 4 in a line parallel to $p p^{I}$. If the edge normal in q to the plane of that diagram is once more the edge $A B$ and the chord $p p^{\prime}$ situated in that plane the side of the starpentagon, then the point S on that side determining the diagonal plane in question is found by drawing through q the line $q S$ parallel to $p p^{?}$. Now $p w$ is the smaller segment of the line $p p^{\prime}$ divided internally in medial section and the same relation holds for $p^{\prime L} r=v q$ with respect to the segments $p^{\prime} r=p^{l_{s}}=s q$. So if the ratio of the side of the regular pentagon to its diagonal is indicated by $\frac{s}{d}$, we deduce from similar triangles

$$
p^{I} w: w q=p w: w S,
$$

which may be transformed into

$$
p^{I_{q}: p^{l} w}=p S: p w .
$$

This leads to

$$
\frac{p S}{p p^{\prime}}=\frac{3 d+2 s}{3 d+s} \cdot \frac{p w}{p p^{\prime}}=\frac{3 d+2 s}{3 d+s} \quad \frac{d-s}{d}=\frac{(2+e)(3-e)}{5+e}=\frac{1+e}{e+5}=\frac{1}{5} e .
$$

By this value the place of S on $p p^{\prime}$ is perfectly determined; however in fig. 5 we may - and, if $d_{:}$has been determined by P_{1} and M_{3}, we mrist - assume for S not the point on the right of M_{1} corresponding to this ratio but the point on the left.

As a second example we consider the gronp IX , of plate VI^{b} to which - according to the second memoir -- corresponds a series of planes normal to the plane of fig. 4 parallel to $u p_{2}^{I I I}$ ($p_{2}{ }^{I I I}$ being the midpoint of $s v$). We draw through s and q the lines $s S^{\prime \prime}$ and $q S^{\prime \prime}$ parallel to $u p_{2}{ }^{I I I}$ and determine now the ratio of $n S^{\prime \prime}$ to $p p^{\prime}$ by means of similar triangles as follows. These triangles give

$$
\frac{S^{\prime} w^{\prime}}{q w^{\prime}}=\frac{w v^{\prime} S^{\prime \prime}}{w^{\prime} w^{\prime \prime}}=\frac{p S^{\prime \prime}}{p s}=\frac{p S^{\prime \prime}}{w w^{\prime} u}=\frac{p w^{\prime}}{w^{\prime \prime} u}=\frac{p w^{\prime}}{\frac{1}{2} q u} .
$$

So we have

$$
\frac{S^{\prime} w^{\prime}}{p p^{\prime}}=\frac{2 q v^{\prime}}{q u} \cdot \frac{p w^{\prime}}{p p^{\prime}}=\frac{2 s}{d+s} \cdot \frac{s}{d}
$$

and finally
$\frac{p S^{\prime}}{p p^{\prime}}=\frac{p w^{\prime}-S^{\prime} w w^{\prime}}{p p^{\prime}}=\frac{s}{d}\left(1-\frac{2 s^{\dot{s}}}{d+s}\right)=\frac{s(d-s)}{d d+s)}=\frac{(e-1)(3-e)}{2(e+1)}=\frac{1}{2}(7-3 e)$.
In this way is obtained the complete system of the twelve different ratios λ given in the following table, where, when λ differs from $\frac{1}{2}$, the value smaller than $\frac{1}{2}$ always appears. For all the groups in any horizontal row A has the ralue indicated in the last column but one. In the last column are given the numbers of centimeters corresponding to these ralios, when the length of the side of the starpentagon (fig. 5) is 20 centimeters. Finally the last column but two indicates the direction of the trace of the intersecting planes normal to the plane of fig. 4 , by means of which the values of 2. have been calculated. (See table p. 287).

For the sake of clearness the values of λ with the side (20 centimeters) of the starpentagon of fig. 5 as unit have been indicated separately in fig. 6. By transferring this scale division in fig. 5 to each of the sides $P_{5} P_{n}$, etc. we are enabled to draw immedialely each of the traces l in question with accuracy.
12. By means of the preceding the polygon of intersection of the polyhedron situated in any assigned diagonal plane can be constructed. To this end we indicate in fig. 7, which is a repetition of fig. 4, for the twelve different cases of the table by the numbers $1,2, \ldots$, 12 the traces of the intersecting planes passing through the edge in q normal to the plane of the diagram, and show how we can obtain all the measures necessary for the construction of these

(287)

Nr .	Groups					;	
1	$\mathrm{I}_{1}, \mathrm{II}_{1}, \mathrm{VII}_{5}$	$\mathrm{II}_{2}, \overline{\mathrm{XI}_{2}}$		$1 \mathrm{IH}_{4}$	$q p$	0	0
2	III_{1}	$\mathrm{I}_{2}, \mathrm{VII}_{2}$	$\mathrm{II}_{3}, \mathrm{~V}_{3}$	V_{4}	$q 0$	$\frac{1}{2}$	10
3			$\mathrm{I}_{31} \mathrm{IV}_{3}, \overline{\mathrm{IX}}$	$\mathrm{II}_{4}, \mathrm{IV}_{4}$	qs	$\frac{1}{2}(3-e)$	7.63932
4	IV ${ }_{1}$		VIII_{3}		$p p^{I}$	$\frac{1}{5} e$	89427
5	v_{1}	IV_{2}			$p p^{I I}$	$2(-2)$	9.44272
6	VI_{1}		IIH_{3}		$p p^{\text {III }}$	e-2	4.72136
7	VIII ${ }_{1}$	V_{2}			$p p^{I V}$	$\frac{1}{4}(e-1)$	6.18034
8		vk_{2}			$p p_{2}{ }^{I I}$	$\frac{1}{6}(3-e)$	914207
9		IX_{2}			$u p_{2}{ }^{\text {III }}$	$\frac{1}{2}(7-3 e)$	2.91736
10		X_{2}	VI_{3}		$q p_{2}{ }^{\text {IV }}$	$\frac{1}{10}(5-e)$	5.52786
11		XI_{2}			$O_{P}{ }^{I V}$	$\frac{1}{4}(3 e-5)$	8.54102
12			IX_{3}		Or	$\frac{1}{4}(3-e)$	3.81966

polygons represented in fig. 8 by laying down in the plane of the diagram of fig. 7 the regular pentagon projecting itself in pprv and the equilateral triangle projecting itself in r. By the remark that all these polygons admil an axis of symmetry, the line k bisecting the edge $q_{1} q_{2}$ normally, and that the measures $q a b$, ata' of the pentagon of Nr .9 and $q c d e$, $d l^{\prime}$, ee' of the octogon of Nr. 4 used in fig. 8 are taken from fig. 7 this construction will become suffi(iently clear. ${ }^{1}$)

We add to this the following simple general remark. The polygon situated in a diagonal plane of which one of the sides is an edge of $C_{\text {son }}$ is always either a pentagon, or a hexagon, or an octagon. If we once more determine the diagonal plane by means of the edge normal in q to the plane of fig. \pm and the point of intersection S with $p p^{\prime}$, then the section is a pentagon if S lies between p and
${ }^{\text {b }}$) The letters a and c, that had in indicate points on k, lave been omitted in fig. S.
w or between w and p^{\prime} and an octagon if S lies between w and w^{\prime}, except when S coincides with the midpoint in which case the section is a hexagon. In other words, with reference to the side $P_{6} P_{2}$ of the starpentagon of fig. $5:$ the section is a hexagon if S coincides with M_{1}, an octagon if S lies elsewhere between Q_{2} and Q_{4}, a pentagon if S falls between P_{5} and Q_{3} or Q_{4} and P_{2}. So in the case h_{2} we find two pentagons, since two points of intersection lie ouside the pentigon with the vertices Q_{1}, a hexagon and an oclogon, etc.
13. The method developed here has a slight drawback, revealing itself to the utmost in the determination of the exact position of the trace h_{2}. The difficulty consists in this that the method leaves us in the dark as to the succession of the different values of λ on the trace l. If we have deduced that the different ratios of $\mathrm{VI}_{2}, \mathrm{VII}_{2}$, $I X_{2}, X_{3}$ present themselves and we have chosen for VII_{3} the centre M_{3} (fig. 5) we are obliged to mestigate by a rotation of the ruler about M_{8} on which side - and in which of the two different joints on this side - we must assume the point of division corresponding to VI_{2} in order to make the other points of intersection to correspond to IX_{2} and X_{2}. We now indicate finally how this difficulty can be overcome.

To any chosen edge of $C_{\text {ano }}$ projecting itself on plate IV in h on the axis $O F_{0}$, there correspond five adjacent points of C_{800}. If now it were possible:

1. to select a determined edge projecting itself in h on $O F_{0}$,
2. to point out the five adjacent vortices and to indicate in what order these points are the vertices of a regular starpentagon,
3. to find where these five points project themselves on the same axis $O F_{0}$,
then it would be possible to make ont, in what ratio the successive sides of the stapentagon were divided in projection on Ofio by h, which would enable us to fix in fis. 5 on each of these sides a quite definite point. Really in these suppositions the difficully would be quite dissolved.

Now these suppositions are quite realisable, by means of the tables published in my first momoir with the title "Regelmeissige Schnitte u. s. w." (Regular sections and projections of C_{120}^{\prime} and C_{000}, Verhandelingen Amsterdam, firsi section, vol. II, No. 7, 1894); we will explain this with the aid of fig. S for the case of the hrare h_{2}.

Proceedings Rogat Acid. Ansterdam. Vol 편.
14. In "Tabelle I" with the inscription "Coordinatenstellung des Z^{000} " we find, if under " C, Zweite Querlinie" the z_{1} corresponds to the chosen axis $O F_{0}$, that the vertices
$-6,7,-11,-12,17,-18,19,20,33,-34,35,36$
have $1+e$ for value of z_{1} and project themselves therefore in h - compare plate IV ${ }^{\phi}$ of the second memoir. From "Tabelle II" with the inscription "Kanten des 2^{000} " we then deduce that $(7,33)$ is an edge of C^{000}, that $14,22,25,29,51$ are the five vertices adjacent to this edge $(7,33)$ and these points form a regular pentagon $P_{1} P_{2} P_{3} P_{4} P_{5}$ in the order of succession 14, 22, 51, 29, 25 and therefore a regular starpentagon $P_{1} P_{3} P_{5} P_{2} P_{4}$ iu the order $14,51,25,22,29$. Turning back to the column z_{1} of "Tabelle I" we find at last that these vertices $14,51,25,22,29$ admit successively for z_{1} the values

$$
1-e, 4,3+e,-2,2(2+e),
$$

from which ensues that they project themselves -- compare again plate IV ${ }^{6}$ of the second memoir - in $k^{\prime}, y, f, i^{\prime}, c$. This result is indicated in fig. 9. While the segments of the horizontal lines appearing there fom right to left are indicated as to their relative length by

$$
d, s, d, d, s, d, s, d, d, s
$$

we find, if we indicale by S the point on any side of the starpentagon projecting itself in h,

$$
\begin{aligned}
\frac{P_{3} S}{P_{3} P_{1}^{\prime}}=\frac{s}{3 d+2 s} & =\frac{1}{2}(7-3 e), & \frac{P_{8} S}{P_{s} P_{2}}=\frac{d+s}{4 d+3 s}=\frac{1}{10}(5-e), \\
\frac{P_{4} S}{P_{4} P_{2}} & =\frac{1}{2} \quad, & \frac{P_{1} S}{P_{1} P_{4}}=\frac{3 d+s}{6 d+3 s}=\frac{1}{6}(5-e) .
\end{aligned}
$$

These results are in accordance with what has been found before; moreover they indicate quite definitely the place of each point of division ${ }^{1}$).
15. If we apply the new method to the case of a trace as e_{2} parallel to one of the sides of the slapentagon, then the point S projecting itself in e on plate l^{b} will have to divide the side $P_{6} P_{2}$ externally into the ratio unity and this requires, as S does not lie at infinity, that the edge $P_{s} P_{3}$ projects itself on $O H_{0}^{\prime}$ as a point.

[^4]This case is represented in fig. 10 for the edge (21, 24), where $3,49,50,57,58$ are the five adjacent points, whilst $50,3,49,57,58$ appears as the pentagon $P_{1} P_{1} P_{1} P_{1} P_{6}, 50,49,58,3,57$ as the starpentagon $P_{1} P_{8} P_{5} P_{2} P_{4}$. Really $P_{5} P_{2}$ projects itself into a point; moreover $P_{3} P_{1}$ and $P_{4} P_{1}$ on one hand and $P_{4} P_{8}$ and $P_{8} P_{6}$ on the other coincide in projection, which is closely connected with this that 2 is the same for the two constituents of each pair.

Mathematics. - "On triple systems, particularly- those of thirteen elements." By Dr. J. A. Barrau. (Communicated by Prof. D. J. Korthweg).
(Communicated in the meeting of Sepiember 26, 1908).
In a paper to this Academy ${ }^{1}$) Prof. J. de Vaies gave a triple system of 13 elements of a different lype than the cyclic system of Prof. Nutro ${ }^{2}$); he added however the observation, that no proof has been furnished of these types being the only ones.

Mr. K. Zudauf shows in his dissertation ${ }^{3}$) that the systems given formerly by Kirkman (1853) and Rersz (1859) are identical to that of de Vries, so that the number of linown systems is two; neither is anything here decided about the number of possible systems.

It seemed desirable to decide upon this point by means of a special investigation ${ }^{4}$). To this end some facility is offered by using those expressions which are used in the theory of the configurations, by regarding the 13 elements as points, the 26 triplets as lines which bear three of the points; the whole of the triple system then becomes the scheme of a diagonalless Cf. $\left(13_{3}, 26_{3}\right)$ where it is irrelevant whether this Cf. can be geometrically realized or not. A classification of these Cff. is now our aim in view.

The rest figure of the second order of a line of such a Cf., i.e. what remains if we leave out that line with its three points and the 3×5 lines passing through these points, is of necessity a Cf. $\left(10_{3}\right)$, the 10 points of which are in three ways perspective and that according to the three points left out.

But then reversely each imaginable Cf. ($13_{6}, 26_{3}$) of the desired type is obtained by.
$1^{\text {st }}$. starting from all possible Cifi. (10_{a}),
$2^{\text {nd }}$. by constructing for cach Cf. $\left(10_{3}\right)$ the Cf. $\left(10_{3}, 15_{2}\right)$ of its diagomals,

[^5]
[^0]: ${ }^{1}$) In the last memoir of Dr. Fr. Sarmir with the title "Over de meetkundige plaats, etc." (On the locus of the points in the plane, the sum of the distances of which to n given straight lines is constant, and analogous problems in space of three and more climensions, Verhandelingen Kon. Akademic Amsterdam, first section volume IX, no. 5,1908) occurs a series of polyhedra with the property that through any edge passes one diagonal plane. By extension to polydimensional spaces polytopes with diagonal spaces also make their appearance.

[^1]:) This addition is necessary here. For the spatial sections of the regular C_{2} do not admit diagonal planes, though any vertex of this cell is situated in six of its limiting octaledra. As Mrs. A. Boour-Sroot pointed out to me these spatial sections admil what we may call "would-be diagoaal planes." If we consider see fig. 64 of vol II of my "Mehrdimensionale Geometrie" - of the six octhidedra meeting in A the squares adjacent to A, we get the six faces of a cube, the vertices and the edges of which are vertices and edges of C_{2}, whilst the faces of it are not faces of C_{25} If C_{21} is cul by a space intersecting this cube, the vertices of the section which are points of intersection with edges of the cube will lie in a plane without all the sides of the polygon of intersection with these points as vertices being edges of the section. In the fourth part of my comrunication "On fourdimensional nets and their sections by spaces" I lope to be able to come back to this point.

[^2]: ${ }^{1}$) In the same way the cross-ratio of the lour planes through an edge of the icosaliedron can be found.

[^3]: ${ }^{1}$) A scries of these models, showing e.g. the decomposition of the 120 vertices of the C_{600} into the vertices of five cells C_{24}, has been inserted lately into the collection of mathematical models of the University of Groningen.

[^4]: ${ }^{1}$) As the second method gives somelhing more in one respect than the first, it might seem superlluous to communicate the first. We are not of this opinion. For the first mellod has this advautage above the sccond that it leads immeclately to a construction of the polygon situated in the diagonal plane as the section of a definite icosalhedron by a definite plane.

[^5]: ${ }^{1}$) Versl. Kon. Alkad. v. Wet. III, p. 64, 1894.
 ${ }^{2}$) Substitutionentheorie, p. 220; Muth. Annuten, Vol. 42.
 3) "Ucber Tripelsysteme von 13 Elementen", Giessen, 1897.
 4) I subsequenlly find this question treated also by de PasQuale (Renelic. In. Ist. Lombardo, 2nd Ser., 32, 1899).

