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From what is said above we may conclnde not only that in
the sponiancously pulsaling heart there appear still other actions
than those which we find expressed in (he contraction, but also
that these actions are (o some extent indecpendent. The “actions
not visible to the eye and characierized by definite cleclric pheno-
mena, suggest the resnlts of stimulation-processes as they can
be shown also in the nerve without accompanying change of form.
Though, however, the electrocardiogram may possess a certain inde-
pendence of the form-cardiogram, the above communicalion does
not in the least afford a veason to conversely come {o the conclusion
of the independence of the latler with respect to the former.

Mathematics. — “On groups of polyhedra with dingonal planes,
derived from polytopes”. By Prof. P. H. Scrours.

Introduction.

1. By ‘“diagonal plane” of a polyhedron we understand any plane
having only edges in common with the boundary of that body.?)

There are two regular polyhedra admitling diagonal planes, the
octahedron and the icosahedron. Through any edge of the octahedron
passes one diagonal plane, containing the centre and bisecting the
dihedral angle of the two faces passing through the edge. Through
any edge of the icosahedron pass two diagonal planes; the angle
formed by these planes and that formed by the two faces through
the edge have the bisecting planes in common, and the cross-ratio
between the couple of diagonal planes and the couple of faces has
4 (8 —75) for one of ils six mutunally connected values.

The fact that only the two mentioned regnlar bodies possess diagonal
planes is closely connected with this that through each of the vertices
pass more than three faces. If we take away from the triangular
faces meeting in a vertex the sides passing through that vertex, so
as (o retain of cach the side opposite to this vertex, we find in the
case of the octahedron a square adjacenti to this vertex, in the case

) In the last memoir of Dr. Fr. Scnun with the litle “Over de meetkundige
plaats, ete.” (On the locus of the points in the plane, the sum of the distances
of which to n given straight lines is conslant, and analogous problems in space
of three and more dimensions, Verhandelingen Kon. Akademic Amsterdam, first
section volume IX, no. 5, 1908) occurs a series of polyhedra with the properly
that through any edge passes one diagonal plane. By extension Lo polydimensional
spaces polytopes with diagonal spaces also make their appearance.
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of the icosaliedron a vegular peniagon adjacent to this vertex, situated
in a diagonal plane. Through any edge AL of the icosahedron pass/
two diagonal plancs, as A B lies in two faces ABP and ABQ and
therefore also in the diagonal planes correspondingto , Q. Through
any cdge AB of the octahedron passes only one diagonal plane,
as the third vertices /, @ of the faces ABP, ABQ through AR are
opposite vertices and those points lead here to the same diagonal plane.

The diagonal planes of the icosahedron inclnde a regular dode-
cahedron.

2. By ‘“diagonal space” of a fourdimensional polytope we under-
stand any space having only faces in common with the boundary
of that polytope.

There are two regular cells admitling diagonal spaces, the C|,
and the Cyy,. Through any face of the (), passes one diagonal space,
containing the centre and bisecting the dispatial angle of the {wo
limiting bodies passing through the face. Through any face of the
Cieo pass two dingonal spaces; the angle formed by these spaces
and that formed by the two limiling spaces through the face have
the bisecting spaces in common, and the cross-ratio between the
couple of diagonal spaces wnd the couple of limiting spaces has
again — as we will prove afterwards — L (3 —V/5) for one of its
six mutually connected values.

The fact that only the two mentioned regular cells possess diagonal
spaces is again closely connected with this that through each of the

vertices pass more than four limiting spaces and — we are obliged
to add here — that these limiting spaces are fetrahedra?). If we

take away from the limiting tetrahedra meeling in a vertex the
faces passing through that vertex, so as to retain of each the face
opposile to this vertex, we find in the case of the C,, a regular

Y This addition is necessary here. For the spatial sections of the regular Gy
do not admit diagonal planes, though any vertex of this cell is silualed in six of
its limiting octahedra. As Mrs. A. Boorc-Srorr peinted oul to me these spatial
sections admit what we may call “would-be diagonal planes.” Il we consider —
see [ig. 64 of vol U of my “‘Mehrdimensivnule Geometrie” — of lhe six oclahedra
meeling in A the squares adjacent to A, we get Lhe six faces of a cube, lhe
vertices and the edges of which are verlices and edges of Gy, whilst lhe [aces
of it are not faces of Co If Cy, is cul by a space intersecling this cube, the
vertices of the section which are points of intersection with edges of the cube
will lie in a plane without all the sides of the polygon of intersection with these
points as verlices being edges of the seclion. In the fourth part of my coumru-
nication “On fourdimensional nets and Lheir sections by spaces™ I Lope lo be able

to come back lo this point.
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octabedron adjacent to this vertex, in the case of the (,,, a regular
icosahedron adjacent to this vertex, situaled in a diagonal space.
Through any face ABC of the C,,, pass two diagonal spaces, as ABC
lies in two spaces ABCP, ADCA and therclore also in the diagonal
spaces corresponding to P, Q. Through any face ABC of the (|,
passes only one diagonal space, as the fonrth vertices P, Q of the
limiting spaces ABCP, ABCQ through ABC are opposite vertices
and these poinfs lead here fo the same diagonal space.
The diagonal spaces of the C,, include a regular C,,,.

3. By “diagonal space Sp,— ” of an n-dimensional polyfope we nnder-
stand any space Sp,—; having with the boundary of this polytope
only limiling spaces Sp,—s in common.

Of the threc regular polytopes, the simplex S(,,+x) with » -1
vertices and 2 -+ 1 limiting spaces Sp,-—1, the measure polytope A/,
with 27 vertices and 2n limiting spaces Sp,—:, and the cross polytope
Cr, with reversely 2n verlices and 2" limiling spaces Sp,—, only
the last one possesses diagonal spaces ,Sp.—i. Through any space
Spu—s bearing a limiting simplex S.—y passes one diagonal space
Spu—1, containing the cenfre and bisecting the angle between ihe
two limiting spaces Sp,— passing through this Sp,,_z.

The fact that of the three regular polytopes only the cross polytope
possesses diagonal spaces Sp,—i is once more closely connceled with
this that through each of the vertices pass 2"—! — and therefore
more than n — Jimiting spaces Sp,— . If we take away from the
limiting simplexes S, passing through any vertex the spaces Sp, s
passing through this vertex, so as to retain the 2—2 spaces .Sy ,—o
opposite to this vertex, we find the cross polytope Cr,—, adjacent (o
this vertex, situated in a diagonal space Sp,—;. Here too through
any space Sp,—s confaining a limiling simplex Sp—py pass two limit-
ing spaces Spy—1. Bul, as the new vertices P and @ of the simplexes
Sy situated in these limiting spaces are opposile vertices of Cr,
leading to the same Cr,—;, through cach limiling simplex Sp—1y
passes only one diagonal space Sp,—1.

4. By inferscciing a fourdimensional polytope, each face of which
is situated in d diagonal spaces, by a space not conlaining an edge
of the polytope, we gel as section a polyhedron with the property
that each of ils edges is contained in d diagonal planes. Ifor, il the
intersecting  space meels a face of the polyfope, it meots also the d
diagonal spaces passing through that face, and this always furnishes
an edge of the section and d diagonal planes passing through il. So
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the sections of the colls C), and Cy by an arbitrarily chosen space
are polyhedra with the property (hat through each edge passes
respectively one diagonal plane or a conple of thesc. As four spaces
passing in Sp, throngh the same face are cul by any space of Sp,
in four plancs through a line with the sanie cross-ratio, the sections
of Cy by & space not containing an edge will be charvacterized by
the propetty that the couples of faces and diagonal planes throngh
an edge possess a constant cross-ratio. For from the regularity of
Cyy, can be deduced that this cross-ratio is the same for all the faces,
as we have stated already. Now the section of C,, hy a space
normal {o an axis O, (throngh a vertex /[,) is a regular icosahedron,
il only the intersecting space is quite close {o £, and this proves
ihat the consiant cross-ralio of C,,, must be equal to thal of the
icosahedron.

5. Indeed, it is not difficult {o show directly that the cross-ratio
of C,,, 18 really § (3 —1/5).

Let ABC be any face of C,,, and O, P, Q(fig. 1) represent succes-
sively the centre of C,,, and the fourth vertices of the two limiting
fetrahedra ABCP, ABCQ passing through ABC. Then the plane
OPQ of the diagram will contain the cenire of gravity ( of the
face ABC and be perfectly normal to this face in this point. From
GP=GQ and OP=01 can be deduced that the gquadrangle OLGQ
is a deltoid with OG as axis of symmelry. As furthermore the
normals '/ and G'Q' dropped from G on OP and OQ arc the
traces of the plane of the diagramm with the two diagonal spaces, we
get for the crossratio (PQRS)

PR QR _ /PR\*  (tena—tan B\* st («—p)
PS Z?,—g - (175) - (t:_m a + tanﬁ) T st (a-}—[?f

Now if the edge of (,,, is our unil and we represent for brevity’s
sake V5 Dby ¢ we bave (see my “Melrdonensionale Geometric”,
vol. 1f, p. 200)

1 1 1
OR=3 (e +1), 0P = (o4 3), 06 = (c+3) V5 PG= /6.

From this ensues

1
B =607 sina =

)
-~ 1 0 = - — 3¢
5 (e + 1) V6, cos « 4l/7 3¢

and therefore

e—13* 1
(PQRS) = ( - ) = 5 (3 = 0381966 ... )
1) In the same way lhe cross-ralio of the four planes lhrough an edge of the
icosaliedron can be found. _
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6. 1In the third part of my communications “On fourdimensional
nets and their sections by spaces”, which is about to appear in these
“Proceedings” we shall find occasion to fix altention on the diagonal
plancs presenting themselves in the sections of the (.. As any
verlex — or rather any couple of opposite vertices — of €, pos-
sesses an adjacent octaliedron, the polygons situated in these diagonal
planes arc always seclions of octahedra. Probably the diagonal plancs
presenting themselves in the sections of the C,,, were discovered
for the first time by DMes. A. Boorm-Srorr, who made models of
these sections, and explained as sections with diagonal spaces by
Me. . W. Curiur. b

The object of this paper is to study more closely the cases in
which the intersecling space contains one or morve edges of (), and
Cyop; of the results revealed by these considerations these about C,,
have especially roused our interest.

A, The spatial sectwns through an edye of Cy,.

7. We consider the case in which the intersecting space contains
the edge AB of (), and indicate by A’ and B’ the vertices opposite
fo A4 and . Then all the vertices except 4 and A’ are adjacent
to 4 and 4’, all the vertices except 5 and B’ are adjacent to B
and B, and so the four other vertices P,, P,, P,, P, (fig. 2) are
adjacent to 4 and B at the same time. In other words: the octa-
hedra adjacent to A and B, situated in different spaces, penetrate
onc another in the square P, P P, P,, the verices of which they
have in common. So through the edge 4B pass two diagonal spaces,
one of which corresponds to the opposite verlices [, P,, the other
to the opposite vertices /2,, P,; they intersect the plane of the
square P, P, P, P,, perfectly normal in O to the plane through 45 and
A’ B’, respectively in the diagonals P,P,, P,P,. If [ is the trace
of the intersecting space through 48 on the plane P, P,P°,P,, and
this line /, determining with AB that space, meels the diagonals
P,P,. PP, in the points S,,,S,, situated within the square, then
the scetion will show the particularity that the planes ABS,, and
ABS,, are diagonal planes; so in some cases the edge 47 will lie in
two diagonal planes.

In the third communication “On fourdimensional nets, ete.”” quoted
above will be indicated that the particularity of an edge being situated

1) A scries of lliese models, showing e.g. the decomposition of the 120 ver-
. . . . " » . .
tices of the (g inlo the vertices of five cells (%, has been inserted lately inlo
the collection of mallicmatical models of the University ol Grouingen.
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in {wo diagonal planes does not present itself in the four groups of
principal scctions of C,, .

B.  The spatial sections through an edye of Chyo -

8. Through any edge AB {(fig. 3) of C,, pass five limiling
tefrahedra of this cell; the five edges opposite to AB of these tetra-
hedva are the sides of a regular pentagon P I, ... 7, the vertices
of which are at the same time adjacent to A and B. In other words:
the icosahedra adjacent to 4 and /B, situated in different spaces,
penctrate onc another in the regular pentagon /2 P, ... P, adjacent
to AB, the vertices of which are common to both. So through the
cdge /A /[ pass five diagonal spaces corresponding respectively to the
live vertices P,P,, .., P;; they intersect the planc of the pentagon,
perfectly normal in its centre A/ (o the planc 4B/, in the diagonals
PP, P, ... PP of the pentagon, or — if une likes — in the
sides of the starpentagon P, PP, P, P, In the case of C,, the centre
O of the square P, P, P, was at the same time the cenire of the
cell. Ilere the cenire M of the peniagon is not even the centre of
the two icosahedra penetrating one another, and still less the centre
of Cyo; lere the line joining M to the midpoint 31’ of the edge
AB must contain the centre O of C,,,.

If the trace [/ of the intersecting space on the plane of the penia-
oon adjacent to AB cuts PP, in S, (fig. 3), ABS, is a diagonal
planc. For this plane is the intersection of the intersecting space
determiined by 4B and/with the diagonal space determined by AB
and P, P, of the icosabedron adjacent {o 2, and S, lies on /P,
ilself, not on its production. Indeed il is evident that this icosahe-
dron is cut by any plane through ABand a point of P, [, if this
point lies on P P, itself, whilst the plane will contain of this icosahe-
dron the edge 45 only, if this point lies on P, P, produced. In order
10 prove this we have only fo observe that the lines 48 and 7P,
the first of which is an edge of C,,, and the latter a chord,
cross one another normally. IFrom this il ensues that these lines,
likewise edge and chord of the icosahedron determined by the
points 4, B, P;, P,, can be represented (fig. 4), in projection on a
plane through {wo opposile edges pr, p’r’ of the icosahedron, by
the edge in ¢ normal to the plane of the diagram and the chord
pp’ situated in thal plane, the extremities of the edge being joined
by edges to the extremities p,p' ol that chord. This shows inmediately
that any plane through the edge projecting itself in ¢ culs the
1cosahedron or not, according to whether the point of intersection
of the plane with pp’ lies on this lne itself or on its production.
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So for the position of the intersecting space adopted in fig. 3 four
diagonal planes ABS,, ABS,, ABS,, ABS, pass through AB; the
point of intersection S, of [ and P, P, falls on the production of
this side and does not lead to a diagonal plane.

On each side PP, of the starpentagon (fig. 3) there are remark-
able points besides the extremities P, , P,, which lead to faces and
not to diagonal planes, namely the points of intersection Q,, @,
with the other sides and the midpoint 44,. If S, coincides with
Q,, the sides PP, and P P, are cut in the same point and, the
two corresponding diagonal planes coinciding with one another in
the plane of intersection of the diagonal spaces ABP, P, and ABP,P,
adjacent to P, and P;, this plane must contain the pentagon adjacent
to the edge PP, of Cj,. So in this case the polygon situaled in
the diagonal plane — compare in fig. 4 the planes normal to the plane
of the diagram in the lines ¢r and ¢’ — is a regular pentagon.
If S, coincides with Af, the plane ABM — compare fig. 4 —,
being a plane of symmetry of the icosaliedron, contains 4B and the
edge parallel to 45.

9. My second memoir with the title “Regelmassige Schnitte u.s.w.”
Regular scctions and projections of C,,, and C,,,, Verhandelingen
Amsterdam, first section, vol. IX, N° 4, 1907 contains the data
that enable us to determine, for any position of the intersecting
space confaining a certain number of edges of C,,, belonging to the
four groups of sections sludied there, the number and the position
of the diagonal planes passing through any one of these edges, and
to construct the icosahedral sections situated in these planes. We
will try to explain this shortly.

On the righthand side of the plates II, 1V, VI, VIII has been
indicated how the icosahedra adjacent to the vertices of C,,, project
themselves on the axes OR,, OF,, OK,, O, In order to see at
a glance which seclions normal to these axes do contain edges of
icosahedra — and therefore also of C,,, — we consult the upper
lines of the plates XVIII, XVI, XIV, XII. We find then the

following- table :
1ib, XVIIL a,(6) , d,(12), e, (12), fi(6),

1ve, XV1 a,(3) y ¢(3) , €(B), fi(6), ,(0), i(3),
VIe, XIV ay(1) 5 0,(8) 4 cy(10), fu(5), 7,(10), 4,(10),
VI, XII 0,(80), ¢,(80), ¢,(60),
in which the indices 1, 2, 3, 4, distinguishing the groups, correspond
19

Proceedings Royal Acad. Amslerdam. Vol, XI,

e
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to those of the groups of icosahedra on (II¢), IVé, VI¢, VIII®, whilst.
the numbers placed belween brackets indicaic how many edges lie
in the intersecting spaces. However the cases a,, n,, @, can be left
out, as referring to infersecting spaces leaving the C,,, totally on
one side and being therefore unable {o furnish sections containing
diagonal planes; for each of the sixfeen remaining cases the trace [
of the intersecting space on the plane of the pentagon adjacent to
the chosen edge must be construcied. These traces, indicated by the
symbols d,, ¢,,...,¢, of the cases to which they belong, are vepre-
sented altogether in fig. 5.

10. The defermination of the trace / causes the least trouble if
this line contains two of the remarkable points 2, @, M; corre-
sponding respectively to a vertex, a point of iniersection of two
non-adjacent sides and the midpoint of a side of the starpentagon.
In order to divide the difficulties we treat these simple cases first.

Case d,. On plate 1I* we find wnder d that the groups [ and VII,
each conlaining four icosahedra, furnish faces situated in the inter-
secting space, whilst group III gives six icosahedral sections through
two opposite edges. So the trace @, to be found passes through a
vertex £; and a midpoint M,; if P, is taken as P;, then M; must
be either M, or AM,. So we find that the trace d, coincides with
one out of ten lhomologous lines, if by “homologous™ lines we mean
lines passing into one another cither by a rotation of the pentagon
about ifs cenire M to an amonnt of any mulliple of 72° or by a
reflexion with rvespect {0 one of the lines M/ as mirror, i.e. in
general by any transformation that transforms the pentagon into
itself.

The line d, culs t(wo other sides, the sides P P, and P,P,, of
the slarpentagon; as [°, does not lead to a diagonal plane, any of
the 12 edges lying in the intersecting space is contained in three
diagonal planes. These new diagonal planes are connected with the
groups 1V and VI, each of which conlains 12 icosahedra. As the
section passes rather near the cenire M;in the case of IV and
rather near one of the extvemitics /% in the case of VI, it is prob-
able ihal IV corresponds to the point on PP, VI fo the point on
P, P,. Tater on we will prove this fo be true.

We will add the remark, thai the number 12 of the cdges lying
in the intersecting space is given back by each of the groups I, 11T,
IV, VI, VII, the corresponding diagonal planes — the fices of Iand
VII inclunded — conlaining successively 3, 2, 1, 1, 3 cdges.

Case ¢, On platc VI» under ¢ the group I, leads to a point Q
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and the group II, to a point M;; if Q, is chosen as ;, M; must
coincide either with A, or with M.

The chosen line ¢, furnishes one point of intersection more, on
P.P,; so there must be one group of icosahedra more with an edge
situated in the intersecting space. Indeed, we find only one group
VI,, IV, belonging again to Q,. :

Case ¢, On plate VIII! under ¢ we have to deal with a central
section of C,,, from which ensues that the line e, passes through
the centre A/ of the pentagon. Moreover the groups lI[,,IV,, V,
furnish successively a point P, a point @, a point M;. So e, is a
diameter through a vertex of the pentagon, e.g. P, M, Q,. Here no
other point of interseclion appears.

11. It would be possible to go on in this manner and fo treat
successively, proceeding from the easier cases to the more difficult
ones, the remaining lines through two remarkable points, the lines
through only one remarkable point, the lines parallel to one of the
sides. We prefer however fo explain now, for an arbitrary case,
how the ratio of division of the side of the starpentagon corre-
sponding to a determined group of icosahedra can be found by means
of Fig. 3 of the quoted memoir, which is repeated here with slight
modification as fig. 4.

We therefore consider the group IV, of plate II® mentioned above
under &,, and remember that the icosahedral sections corresponding
to this group ave determined, according {o the quoted mewmoir, by
planes normal to the plane of fig. 4 in a line parallel io ppl. If
the edge normal in ¢ to the plane of that diagram is once more the
edge 4B and the chord pp’ situated in that plane the side of the
starpentagon, then the point S on that side determining the diagonal
plane in question is found by drawing through ¢ the line ¢S paral-
lel 1o pp’. Now pw is the smaller segment of the line pp’ divided
inlernally in medial section and the same relation holds for p//r ==1wg
with respect to the segments p/r = plls = sq. So if the ratio of the

. . . . . . B
side of the regular pentagon {o its diagonal is indicated by o we

deduce from similar triangles
pho : wg = pw: wS,
which may be transformed into
plg:plw = pS:pw.
This leads to
pS_3d+2s pw 3d42 d—s (246 (B—e) 14e 1

R — &,

P Bd+s ppT 8d + s d ~ 54+e eL5 5
19%
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By this value the place of .S on pp’ is perfectly determined;
however in fig. 5 we may — and, if d, has been defermined by
P, and M, we must — assume for S not the point on the right
of M, corresponding 1o this ratio bat the point on the left.

As a second example we consider the group IX, of plale VI¢ to
which according {o the second memoir — corresponds a series
of planes normal (o the plane of fig. 4 pavallel {o up,?! (p,/1 being
the midpoint of sv). We draw through ~ and ¢ the lines s’ and
¢S parallel to up,?/ and determine now the ratio of pS’ to pp’
by means of similar triangles as follows. These triangles give

S 'S pS" pS' put  p

' ww' ps wu w'u Rqu

So we have
Sw 20 pu' 25 s

oy qu “pp d4s T d
and finally
}_)f;':pw’-——ﬁ:i(l B 423' ): s (d—s) =(e—— 1) (3—¢) (734
»p Pp d d+s d d+53) 2(e+1)

In this way is obtained the complete system of the twelve different
ratios 2 given in the following table, where, when 2 differs from
4, the value smaller than § always appears. For all the groups in
any horizontal row A has the value indicated in the last column
but one. In the last column are given the numbers of centimeters
corresponding to thesc ratios, when the length of the side of the
starpentagon (fig. 5) is 20 centimeters. Finally the last column but
two indicates the divection of the trace of the intersecting planes
normal to the plane of fig. 4, by means of which the values of 2
have been caleulated. (See table p. 287).

For the sake of clearness the values of 2 with the side (20
centimeters) of the starpentagon of fig. 5 as unit have been indicated
separately in fig. 6. By transferring this scale division in fig. 5 lo
each of the sides £, P,, elc. we are enabled to draw immedialely
each of the traces [ in question with accuracy.

12. By means of the preceding the polygon of intersection of the
polyhedron situated in any assigned diagonal plane can be constructed.
To this end we indicate in fig. 7, which is a repelition of fig. 4,
for the twelve dilferent cases of the table by the numbersd, 2,...,
12 the traces of the intersecting planes passing through the edge in
g normal to the plane of the diagram, and show how we can
obtain all the measures nccessary for the construction of these

-11 -
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Nr. Groups }
111, 1L, VI | 1I,, XT, 111, qp 0 0
2 N I, VIl | 1l Vg v, g0 ;" 10
3 Iy V3, 3 |11y, IVy | g5 | 5(3—e) | 7.03032
4 v, VIl ! Le 8 94497
5 7 IV, o | 20— | 9.4497
6l vy A ol 02 4.79136
71 VI Ve "V | Le—n | 6.1803%
8 VI, pp | L(—e) | 9 1207
9 X upT | L(—3¢) | 2.9179
10 X Vi, g’ | Li-e) | 55186
11 Xl o’ | 13e—s) | 8.54102
12 IXs or —l(3—e) 3.81966

polygons represented in fig. 8 by laying down in the plane of the
diagram of fig. 7 the regular pentagon projecting itself in psv and
the equilateral triangle projecting itself in rv. By the remark that
all these polygons admil an axis of symmetry, the line L bisecting
the edge ¢, ¢, normally, and that the measures gab, aa’ of the
pentagon of Nr. 9 and gede, dd', ee’ of the octogon of Nr. 4 used
in fig. 8 are taken from fig. 7 this construction will become suffi-
ciently clear.?)

We add to this the following simple general remark. The polygon
situated in a diagonal plane of which one of the sides is an edge
of C,,, is always either a pentagon, or a hexagon, or an octagon.
1If we once more determine the diagonal plane by means of the
edge normal in ¢ to the plane of fig. 4 and the point of inlersection
S with pp’, then the section is a pentagon if S lies between p and

1) The lellets @ and ¢, that had Lo indicate points on %, have heen omilled in
fig. 8.

-12 -
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w or belween w and p’ and an octagon if S lies belween w and
w’, excepl when S coincides with the midpoint in which case the
section is a hexagon. In other words, with reference to the side
P, P, of the starpentagon of fig. 5: the section is a hexagon if S
coincides with M, an octagon if S lies elsewhere between (, and
Q,, a pentagon 1f S falls between £, and (¢, or @, and P,. So
i the case 4, we find two pentagons, since (wo points of intersec-
tion lic outside the pentagon with the vertices @,, a hexagon and
an oclogon, cte.

13. The method developed here has a slight drawback, revealing
itself to the uimost in the determination of the exaet position of the
trace A,. The difficulty consists in this that the method leaves us
in the dark as to the snccession of the different values of 2 on the
irace . If we have deduced that the diuferent ratios of VI,, VII,,
1X,, X, present themselves and we have chosen for VII, the centre
M, (fig. 5) we are obliged to mvestigate by a rotation of the rnler
about A/, on which side — and in which of the two different points
on this side — we must assume the point of division corresponding
to VI, in order to make the other points of intersection to corre-
spond to IX, and X,. We now indicate finally how this difficulty
can be overcome. .

To any chosen edge of C,,, projecting itself on plate IV¢ in / on
the axis OF,, there correspond five adjacent points of C,,,. If now
it were possible :

1. to select a determined edge projecting itself in & on OF,

2. to point out the f(ive adjacent vertices and to indicate in what
order these points are the vertices of a regular starpentagon,

3. to find where these five pomts project themselves on the
same axis OF,

then it would be possible to make out, in what ratio the
successive sides of the starpentagon were divided in projection on
OF, by h, which would enable us to fix in fig. 3 on each of these
sides a quite definite point. Really in these suppositions the difficully
would be quite dissolved.

Now these suppositions are quite realisable, by mieans of the
tables published in my first memoir with the title “Regelmaissige
Schnitte u.s. w.” (Regular sections and projections of C,,, and C,,,,
Verbandelingen Amsterdam, first section, vol. 1I, No. 7, 1894);
we will explain this with the aid of fig. 9 for the casc of the

trace h,.

-13 -
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14. In “Tabelle I” with the inscription “Coordinalenstellung des
2% we find, it under “C, Zweile Querlinie” the z, corresponds
to the chosen axis (OJF,, thal the vertices

—6, 7, —11, —12, 17, — 18, 19, 20, 33, — 34, 35, 36

have 14 ¢ for valne of z, and project themselves therefore in %
— compare plate 1V¢ of the second memoir. From “Tabelle II”” with
the inscription " “Kanten des Z*°*” we then deduce that (7,33) is
an edge of C**', that 14, 22, 25, 29, 51 are the five vertices adjacent
to this edge (7,33) and these points form a regular pentagon P, P, P, P, P,
in the order of succession 14, 22, 51, 29, 25 and therefore a regular
starpenlagon 2, L, P 2, L, iu the orvder 14,51, 25,22,29. Turning
back to the column z, of “Tabelle I” we find at last that these
vertices 14, 51, 25, 22, 29 admit successively for z, the values
1—e4,34¢—2,22F0¢),
from which cnsues that they project themselves — compare again
plate IV¢ of the second memoir — in £, ¢,fi’, c. This result is
indicated in fig. 9. While the scgments of the horizontal lines ap-
pearing there fiom right “to left are indicated as to their relative
length by
d, s, d, d, s, d, s, d, d, s,

we find, if we indicale by S the point on any side of the star-
pentagon projecting itself in 4, '

PSS -8 1 PSS d—+s 1

= —-(1—3), 5= == (-9,
P, 38d+2s 2 PP, 4d+3s 10
PSS 1 28 3d + s 1 5 — o
- = = == = — — é) .
PP, 2 ’ PP 6d-+3s 6

These resnlts are in accordance with what has been found before ;
morcover they indicale qyuite definitely the place of cach point of
division').

15. If we apply the new method fo the casc of a trace as e,
parallel to one of the sides of the siarpentagon, then the point S
projecting itself in ¢ on plate 1V® will have to divide the side
PP, externally into the ratio unily and this requires, as S does not
lie at infinity, that the edge £, projects itself on QI as a point.

1) As the sccond method gives somelhing more in one respect than the first,
il might seem superfluous lo commuuicale the first. We arc not of this opinion.
For the first method has Lhis advantage above Lhe second that it leads imme-
diately to a conslruction of the polygon situated in the diagonal plane as the
seclion of a definile icosahedron by a definite plane.

-15-
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This case is vepresenied in fig. 10 for the edge (21, 24), where
3,49, 50,57, 58 are the five adjacent points, whilst 50, 3, 49, 57, 58
appears as the pentagon P,P,PPP,, 50, 49, 58, 3, 57 as the
starpentagon P, P, P, P, P,. Really 1’ P, projects itself inlo a point;
morcover [’ P, and P,P, on one hand and P, P, and P, P, on the
other coincide in projection, which is closely connected with this
that 2 is the same for the two constituents of each pair.

Mathematics. — “On triple systems, particularly those of thirteen
elements.” By Dr. J. A, Barrav. (Communicated by Prof.
D. J. Kormrwea).
(Communicated in the meeling of September 26, 1908).

In a paper to this Academy') Prof. J. pr Veiss gave a triple
system of 13 elements of a different type than the cyclic system of
Prof. Nzrro?®); he added however the observation, that no proof has
been furnished of these types being the only ones.

Mr. K. Zuravs shows in his dissertation®) that the systems given
formerly by Kmgman (1853) and Rrrsz (1859) ave identical to that
of pr Vrims, so that the number of Inown sysiems is fwo; neither
is anything here decided about the number of possible systems.

It seemed desirable to decide wpon this point by means of a spacial
investigation ). To this end some facility is offered by using those
expressions which are unsed in the theory of the configurations, by
regarding the 13 elements as points, the 26 triplets as lines which
bear threc of the points; the whole of the triple system then becomes
the scheme of a diagonalless Cf. (13,, 26,) where it is irrelevant
whether this Cf. can be geometrically realized or not. A classification
of these CI. is now our aim in view.

The vrest figure of the second order of a line of such a Cf, ie.
what remains if we leave out that iine with its three points and
the 35 lines passing through these points, is of necessity a
Cf. (10,), the 10 points of which are in three ways perspective and
that aceording to the three points left out.

But then reversely each imaginable Cf. (13,, 26,) of the desired
type is oblained by .

1st. starting from all possible CfI. (10,),

214, by constraeting for cach Cf. (10,) lflO Cf. (10,, 15,) of its diagonals,

1) Versl. Kon. Akad. v. Wet. 1II, p. 64, 1894,

) Subsiitutionentheorie, p. 220y Malh, Annulen, Vol, 42.

%y “Ueher Tripelsysteme von 18 Elemeniewn”, Giessen, 1897,

t) [ subsequently find this question Lreated also by pr PasquaLe (Lendic. K. Ist.
Lombardo, 2nd Ser., 82, 1899).
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