Huygens Institute - Royal Netherlands Academy of Arts and Sciences (KNAW)

Citation:

Koorders, S.H., Some systematic and phytogeorgaphical notes on the Javanese Casuarinaceae, especially of the State Herbaria at Leiden and at Utrecht. (Contribution to the knowledge of the Flora of Java III, in:
KNAW, Proceedings, 11, 1908-1909, Amsterdam, 1909, pp. 415-426

This PDF was made on 24 September 2010, from the 'Digital Library' of the Dutch History of Science Web Center (www.dwc.knaw.nl)
> 'Digital Library > Proceedings of the Royal Netherlands Academy of Arts and Sciences (KNAW), http://www.digitallibrary.nl'
principally confined to the holes, taking as appears from the low MgO -quantity, no important place in the analyzed rocksample.

The molecular proportions yield, $\mathrm{Fe}_{2} \mathrm{O}_{3}$ being reduced to FeO and the whole being calculated on a sum of 100 :

SiO_{3}	$\mathrm{Al}_{2} \mathrm{O}_{3}$	FeO	MgO	CaO	$\mathrm{Na}_{2} \mathrm{O}$	$\mathrm{K}_{2} \mathrm{O}$
79.46	10.66	0.66	0.07	2.90	4.81	1.45

the formula according to Osann.

Here we have the rare case that

$$
\mathrm{Al}_{2} \mathrm{O}_{2}>\mathrm{K}_{2} \mathrm{O}+\mathrm{Na}_{2} \mathrm{O}+\mathrm{CaO}+(\mathrm{Mg}, \mathrm{Fe}) \mathrm{O}
$$

If, like Osann, we add MgO and FeO in the molecule (MgFe) $\mathrm{Al}_{2} \mathrm{O}_{4}$ to C , there remains a rest of $0.77 \mathrm{Al}_{2} \mathrm{O}_{3}$; if however like Broke we neglect the $\mathrm{Al}_{2} \mathrm{O}_{3}$ remainder above $(\mathrm{K}, \mathrm{Na})_{2} \mathrm{O}+\mathrm{CaO}$, equal to 1.50 , then $\mathrm{C}=2.90$ and $\mathrm{F}=0.73$. The calculation of $a+\mathrm{c}+\mathrm{f}=30$ yields:

	a	c	f
$($ Osann)	18.99	11.01	-
(Brachia)	18.99	8.79	2.22

In the graphic notation IV denotes the place of the rock; the filled circle the values after Osann, the not-filied curcle the one after Becke.

Botany. - "Some systematic and phytogeogruphical notes on the Javanese Casuarinaceae, especially of the State Herbaria at Leiden and at Utrecht." (Contribution to the knowledge of the Flora of Java. N^{0}. III). ${ }^{1}$) By Dr. S. H. Koorders.

§ 1. Casuarina equisetifolia, Forst.

- (Geographical distribution outside Java: according to Hook, Flora Br. Ind. V. 598 : in British India on the East side of the Gulf of Bengal, South of Chittagong, in the Malay Archipelago, in Polynesia and in Australia. In the State Herbarium at Lerden I saw, however, also specimens from Madagascar, Mauritius, Bourbon and Senegambia, although it did not appear with certainty from the herbariumlabels, that they referred to uncultivated plants. In Herb. Leiden the species is also represented by specimens from

[^0]
(416)

Hawai and from Anstralia; in this rase one of two specimens (finm Sieber) which appear to me to he anuice similar, has been determined by Mroust as C: equiselifolía Fossers. and the other as (I. Ieptoclade Mıg. In Diws.s [Die Planzenweli von-West-Anstralien suidlich des Wendekreises (1906)] the occurrence of some other species of Casuarines is mentioned, but not of C. equasetifolia. Prof. Dr. I. Diturs was so kind as to supply me with the following information on this point: "Casnarina equisififolia kommt in West-Australiën sicher nicht vor. Ob er in Ost-Australiën wachst habe ich persönlich nicht fesigestellt, da ich mich dort nur kirrzere Zeii, aufhieli. Das von Ithen crwahnte Exemplar, leg. Sieber, stammt aus der Gegend von Syonmy, denn dort hat Sieber gesammelt." (Diels mse. 21.1V. 1908). From the Malay Archipelago outside Java I saw C. equisetifolia represented in the Herbaria at Leiden and at Utrecht from the following places: Sumatra (leg. Kortiatis; Tuissmann is de Vriese). Timor (Forbes n. 3746), Moluccas (Reinw.), the Nouth of Dutch NervGuinea (Expedition of Wichmann, determ. Valeton). The examples from Sumatra, collected by Kormials, generally have 8 tceth, as Miquis. already noted for these specimens. In N. E. Celebes the species is not found wild: there I only fonnd C. Rumphiana Miq. ${ }^{\text { }}$. .
\$2. Geographical distribution and oecological conditions in Java: I have never found C.equisetifolia growing wild except in Western-Java in the S.W. of the residency Banten in the division Tjaringin near the village of Tjemara, and there onty on a sandy sea-shore, on a small peninsula (= oedjoeng, malay) al sea-level, growing socially.

This may serve as a correction of the statement in Koord. and
 "Tjemara (Banten) altit. 200 M. supra mare."

Junghurn says in his Java. I. 2nd edil. (1853) 272: "Were we concerned in dealing with Sumatra, we should have to mention among the trees which grow in groups in the shore forests the Tjemara laoet : Ciasurrina equssetifulia Forst (murricuta Roxb); nowhere, however, have I found this beach-Casuarina, althongh natives have assured me, that it is found in some places on the North coast of Krawang" (Jungruin l. c.). It appears, however, that probably Junghuns afterwards succeeded in finding this species wild in Java, namely on the Irwoe, althongh I have not been able to find anything

[^1]in any publication about this geographirally interesting discovery. My surmise is founded on a specimen tabelled by Juncmulis himself
 This specimen musl indeed be regarded as C. equisetifolia Forst. according to an antograph determination-label of Mrovis.. I found this specimon in the Leiden Herbarium, registered as II. L. B. n. 10 (899-173) and can confirm the accuracy of the determination of Jongiouns and of Miquir, for I found on the young bremeches of Jungrums's specimen, which already bore fruit, that of 14 leafiwhorls which 1 examined, 13 had 7 vaginal teeth and 1 only 6 teeth; the fruit had 12 longitudinal rows. There can therefore be no doubt that this spocimen of Jonghums from the Lawoe mountains is completely conspecific with the beach-Casuarina (C. equisetifolin Forsm.), the more so, since also all other characteristics, e.g. the deeply grooved internodes, $1 / 2-4 / 4 \mathrm{~cm}$. long and $1 / 2 \mathrm{~mm}$. thick, agree completely with this species. This is the first observed case, so interesting phytogeographically, of the beach Casuarina (C. equisetifolic) growing wild in the mountains of Java. The height of this station above sea level is not indicated by Junghoin on the label quoted above. The other Javanese specimens of the State Herb at Leiden and at Utrecht, found by me, are: "Java, on the beach near Batavia and Anjol (leg. Jungh.); Java (Korta.; Ranit.; Teissin.). In the Herbarium at Buitenzorg there are according to Koord. and Valeton [Bijdr. Booms. Java X (1904) 271] some specimens from the Rahoen-Idjen mountains in Eastern Java, which mostly have 8 vaginal teeth. It appears to me, that we are quite as justified in placing these specimens from the Idjen-plateau under C. equisetifolia, as Miquel (see above) in the case of the generally 8-toothed beachCasuarina of the West coast of Sumatra, and Koorders and Vateron (l. c. 271) in the case of the beach-Casuarina of S.W. Banten in Western Java, which generally has 7--8 teeth. If the specific limits between C. montana and C. equisetifolia be drawn as indicaled, the distribution of C. equisetifolia in Java is as follows: Western Java: in the S.W. of the residency Banien, at sea-level, on a sandy sea-shore on a narrow peninsula ($=$ oedjoeng), at the edge of the surf, growing socially (Herb. Kds in Mus. Bot. Hort. Bogor.). Central Java on the Lawoe growing wild, logether with C. montanu (Herb. Junghuhn in Leiden). Eastern Java: in the Rahoen-Idjen mountains, also growing wild wilh C. montena (Herb. Kds in Mas. Hort. Bogor.). Oecological conditions: Limited to soils, which always hare little water or which are physiologically dry (containing much sall). Completely wanting on fertule soils, probably because it is
crowded out by other species. Although preferably growing wild on sandy sea-shores, and nearly always forming homogeneous woods, it is always wanting in the Javanese Mangrove forests. The tree resists direct sunlight very well, but-deep shade very badly. On calcareous soils and in the Javanese Teal-forests it has not yet been observed wild. The species is also completely absent from the mixed, shady, evergreen forests of Java. Evidently it can only maintain itself in the struggle with other species in the above-named unfavourable localities.
§ 2. Casuarina equisetifolia Forst. var. longiflora, Miq.! Flora Regensburg. (1865) p. 17; Miq.! in DC. Prodr. XVI. 2 (1868) 339 ; Boerdagr! Handleid. Flora N. I. III. 1. (1900) 404; Koord. and Valeton Bijdr. Booms. Java X. (1904, 272.

For this variety Mrouel 1.c. gave i. a. the diagnosis: "amentis masculis elongatis glabris; ... vaginis 7 -dentatis" and as locality "Java" (Buame!) without further detail. From the authentic material found by me in the State Herbaria at Leiden and at Utrecht, the following results. The number of vaginal teeth is sometimes 7 , as indicated by Mrquel l.c. but is often also 6, and sometimes also 8 . The male catkins are characterized by the complete absence of hairs, and by their sometimes attaining the exeptionally great length of $40-50$ millimetres. On the authentic label the locality is only indicated in Budne's handwriting as: "in Javae oriental. montibus".

A specimen found by me without further indications in the Herbarium at Leiden, which had been sent in 1867 by Tersmans to Hasskarl, and, according to a note added by Hassharli, was derived from a specimen standing in the Horlus Bogor. [in Herb. Lugd. Bat. sub n. 48 (899/173)], differs so little from the above named authentic specimen, that I suspect the authentic of C. equisetifolia Forst. var. longiflora Miq. to be also derived from a cultivated specimen in the Buitenzorg Gardens. Both specimens greatly resemble C. equisetifolia Fonst., but on account of the completely glabrous male catkins they are distinctly different from the type. The number of vaginal teeth in Teysinann's specimen is 7-8, and as in the authentic specimen 6-8.

I further found that not a single of the numerous other Javanese specimens of Casuarina in the herbaria at Leiden and at Utrecht, refer to this variety. I have never found the variety wild in Java.

To sum up, I consider it probable, that in this case of Castutrina equisetifolice var. lonyiffora Mas. an error of Blune's is the cause of the reputed indigenous occurrence of this plant in Java, an error similar in kind to that which was formerly demonstrated ${ }^{1}$) in the case of another tree cultivated in Hortus of Buitenzorg; it appears, that this variety must be deleted from the flora of Java.
§ 3. Casuarina montana, Juncri.! ex Miq. Fl. Ind. Bat. I. 1. (1855) 875 (cum descript.); Jungh.! Java I. ed. 2. (1853) 551-554, 631639, 663; C. montuna, Llesciex. ex Miq.! in Zoll. Verzeichn. (1854) 86 (nomen tantum); C. montina, Miq.! in A. DC. Prodr. XVI. 2. (1868) 335; Mrq. Illustr. Arch. Ind. (1871) 9. tab. 7. f. 1 et 2; Koord. et Val. Bijdr. Booms. Java X. (1904). 273!; C. Junghuhniana, Miq! Plantae Junghuhnianae I. (1854) 7; Miq! Fl. Ind, Bai. I. 1: (1855) 874; Juvgr.! l.c. (1853) 551.
It is evident from the above bibliography, that according to the latest rules of nomenclature this species should not be named C. montana Miq., as in Koord. and Val. l.c., nor C. montana Leschin., as in the Index Kewensis, but C. montana Jungh.
\$5 1. Geographical distribution outside Java: Bangka (Teissinann n. 7650); Timor (Zipp.; Teissin.; Forbies n. 3512; ; Moluce. (Rerww. n. 1ヶ04). - On the authentic specimen of Zippel (in H. L. B.) I found on young branches of flowering shoots $10-11$ vaginal teeth and generally 11 teeth; internodes $1-1 / 3 \mathrm{~mm}$. thick and about 1 cm . long.

Two fruiting specimens from Timor, named by Miques himself as C. montana have 11-12 teeth, like the var. valiction Mie., but with thin internodes, corresponding to the var. tenuior Miq. - The fruiting specimen of Reinwardt from the Moluceas (without fiuther indication of locality) had ten vaginal teeth thronghout and corresponds, also as regards the diameter of the internodes, to the var. tenuior. The fruiting specimen from Bangka bears in Schrerer's handwriting the mannscript name C. equisetifolia Forst. var. bancana; it has. consistently 9 vaginal teeth, fruit cones with about 18 longitudinal rows, cylindrical internodes, $1 / 2-3 / 1 \mathrm{~mm}$. thick about 1 cm . long, and not deeply grooved. This specimen from Bangka cannot in my opinion be separated from some specimens of the Javanese C. montant

[^2]var. tenuior Miq. - C. montana var. validior Miq. I did not find represented in the Herbaria at Leiden and at Utrecht from regions outside Java.
2. Distribution in Java. The var. validior Miq. I found represented in the Herb. at Leiden and Utrecht by the following specimens: 1) collected by Jungnuhn according to his antograph note on the top of mount Kawi [the second label "Oengaran" which evidently was attached to the specimen at a later date, independently of Junghunn, cannot, in my opinion, refer to this authentic specimen, for on mount Oengaran not a single Casuarina occurs wild]; 2) specinens from Java (without further indications (from Trysn. \& De Vriess and 3) a fruiting specimen from Java with the remark "Alpes orientales" (leg. Warz). In Herb. Kds the var. validior Miq. is only represented by specimens from Mi. Wilis at 2000 m . allitude and from Mi. Ardjoono at 2100-2400 metres; only the specimens from mounl Ardjoeno are characteristic, for the determination of the variety of the specimens from the Wilis is not quite certain. The authentic specimen of Juygiuns from the iop of Mt. Kawi (in Herb. Leiden) I found to lave internodes of about 1 cm . long with a diameter of $1-1 \frac{1}{2} \mathrm{~mm}$., and with $10-11$ vaginal teetl. The specimen of Wanz generally bad 11 vaginal teeth. The Javanese examples of lar. tenuior Miq. are only represented in the Herbaria at Leiden and Utrecht by a few specimens of Kortials and of Tersm. \& De Vrifse from "Java" (without further indications) and by a fruiting specimen (Kds. 37348β Cumm. ex museo bot. Hort. Bogor.), collected fruiting in October 1899 in Eastern Java on Mt. Tengger near Ngadisari at 2000 metres altitude. In the extensive alpine Casuarina-foresis of Mt. Rahoen-Illjen in Eastern Java 1 found only var. tenuior Miq. whereas var. validior appeared to be wholly wanting there. On Mt. Wilis in Central Java I found in the Casuarina-forests almost exclusively var. tenuior Mre., but, there nevertheless a small number of individuals belonging to var. validior Mıe. were also found ; he form with internodes $1^{1 / 2} \mathrm{~mm}$. thick, which is characteristic for the top of Mt. Kawi, could not be found on Mı. Wilis. The youngest twigs of var. valiclior Mie., occurring on the latior mountain, where at most 1 mm . in diameicr. Jungnurn mentions (Java. I (1853) p. 551), that C. monlemi first occurs on the Lawoe and thence eastwards covers the tops of all the monntains, which rise above 1500 netres, but is wholly absent frum Western Java. As a result of my orn observations 1 can confirm this statement. Concerning the
vertical distribution of C. montana var. tenuior Mre. in the Wilis mountains on the Darawati sumınit in the residency Madioen, I append here, what I published on this subject in 1894 in a Dutch article "On the composition of some forests in the residency of Madioen" (in Tijdschr. v. Nijverh. en Landb. in N. Indië XLVIII (1894) part 4 p. 18-22 namely in the chapter " T To the top of the Wilis. Ascent of the Darawati]: "At 7 "0 $=1670 \mathrm{~m}$. altitude the mixed shady forest of high trees suddenly ceases, at least on the ridge, for in the valleys it continues further northwards and we arrive at a small alang-alang field with scattered young trees of Albizzia montrina Bentu. and immediately after this we see the first specimens of C. montanca Jungh".

From this point, at about 1700 m . allitude, the ridge, which leads to the summil of the Darawati, is completely covered with this trec alone. On the slopes (and even almost right up to the ridge) other trees grow, up to an altutude of 2000 meters. Not until this altitude is reached, do Cetsurtrina's occur in the valleys." 「Koord. 1.c. (1894) p. 19-20 of the reprint]. From this it results, that Castarina montana var. tenaior is not found on momnt Wilis below 1650 m . altitude, but that it occurs from there upwards to the highest top, at 2550 m . altitude. These data, and those about to be given, should be substituted for the ligures of vertical distribution, published in Koond. and Valeton Bijdr. Boomsoorten dava X (1904) p. 274.

I may further add, that also on journeys undertaken by me after the above-named year (1894) in the residency of Madioen, I nowhere found C. monterne growing wild below 1650 m . altitude. It is indeed interesting, that this species al once forms forests, almost from the spot, where it first appears. and above 2000 m . not only covers the ligher ridges, but also the valleys, almost to the exclusion of other trees. In the leakforcsts of Madioen, as in other parts of Java, 1 have only fomd C. montena and $($. aquiselifolice here and there cultivated (e. g. near pasinggralians, along road-sides, ctc.) but never growing wild. On the Idjen-plateau in the residency of besoeki C. montana var. tenuior descends somewhal below the vertical limit of 1500 m . At this lower limit of distribution C. monteruc var. tenuior grows only on the dry mountain ridge, whereas it is crowded ont from the ravines and moist places by other trecs. On Mt. Tengger in 1899 I male the following note on the var. tenuior: A lange frec athaining 35 m . with a trunk of $11 / 9 \mathrm{~m}$. in diameter; on stecp rocks at 2000 m . ahtilude often only 20 m . high with a irmuk 30 cm . diam. On Mit Tengecr forming forests, especially between 2200-

2800 m ., but on the ridges of the N.E. side of the range descending to 1600 m . altitude.

Although adult trees cannot well sland deep shade, this does not apply to very young individuals. This is evident from the following note made by me in $1891^{\text { }}$): Small trees of Albizzia moluccana Bentri., which had shot up after a forest fire in August 1891 on mount Wilis (in Java) at an altitude of about 1800 m ., had were $11 / 2-2 \mathrm{~m}$. high, when I ascended the mountain on October $15^{\text {th }} 1891$, and there so crowded together, that these naturally grown Albizzia-woods resembled nursery beds. Under these, in fairly deep shade, I found numerous seedlings of Casuarina montana, growing wild and about 0.2 m . high.
The distribution and the oecological conditions of C. montana var. tenuior may be characterized as follows: Extraordinarily great power of resisting drought, strong winds and the strong direct sunlight of the alpine region, and, but only in earliest youth (not later) power of resisting shade. Very common in Central Java at 1650 - 3000 m . and in the eastern part of Eastern Java at about $1400-3000 \mathrm{~m}$. altitude, but wild growing quite unknown west of mount Lawoe, indigenous not known either from the mount Oengaran [in contradiction to the inaccurate statement of Mrquil. in his Flora Ind. Bat. I. 1. p. 875].

§ 4. Means of distribution of Casuarina equisetifolia and C. montana.

Both species appear to be well adapted for distribution by wind, and in spite of the negative results of Guppr's floating experiments, they seem also adapted for distribution by ocean currents.

In the winged fruit of Javarese specimens, examined by me, I observed the following dimensions. C. equisetifolia Forst. : fruits $1^{1} / 2-2 \mathrm{~mm}$. long and $1-L^{1} / 2 \mathrm{~mm}$. broad compressed laterally, with a very thin, obovate wing, 5 mm . long and 3 mm . broad. In C. montana var. tenuior Mrq.: fruits $1 \frac{1}{2}-1^{3} / 4 \times 1-1^{1} / 2 \mathrm{~mm}$., strongly compressed laterally, with very thin ovate wing, $2-2^{2} / 4 \mathrm{~mm}$. long and $11 / 2-1 \frac{1}{4} \mathrm{~mm}$. broad.

In his well-known experiments, on the floating of fruits and seeds Guppy found, that the fruit cones of Casuctina equisetifolia Fonst. remain floating on a $31 / 2$ percent solution of common salt for $1-2$ days at the most. This period is not, however, sufficient to account for the known, wide over-sea distribution of this species. On repeating the experiment of Guppy, I could only confirm the shortness of the

[^3]floating period for separale fruit cones. I found, however, that the floating period on a similar sall solution is so much greater for fruitlets, which have been liberated from the cone (e. g. by dessication), that the wide distribution now becomes quite intelligible, if one but supposes, that the germinative power is not damaged by a sojourn of one month in sea-water. On this point, however, no experiments have as yet, to my knowledge been made. Meanwhile I feel justified in deducing from the anatomical structure of the fruitlets, that the embryo is most probably sufficiently protected aganst the entry of sea-water. In some flotation experiments I found that after one month 100% of the frutlets of C. equisetifolia Forst., and upwards of 75% of those of C. montana Jungh. var. tenuior Mig. remained floating.
Besides by anemophilous and hydrophilous distribution, C. equisetifolia and C. montrna can spread by rootsuckers. The latter are however rarely found in these species further than 10 m . from the main trunk. Should the main trunk de off (for instance in consequence of a fire) one can often observe, e.g. with C. montcina, that a young copse round the dead trunk has grown up from these rootsuckers. The distribution over very large intervals of sea, however, no doubt takes place in Cusuarina montana and C. equisetifolia by means of the winged fruits, first through wind trinsport and then through ocean currents.

§ 5. On a monstrosity of Casuarina.

In the Herbarium at Leiden I found a specimen, which had been labelled by Boerlage as a monstrosity, collected by Junghuns in Java [in H. L. B. sub. n. $50(899-173)]$. This malformation proved to be a fruiting branch, resembling a witcles' broom (in German "Hexenbesen") and belonging to Cusuarina montana var. tenuior" Miq. Besides the above mentioned aberrant mode of branching, this specimen shows the peculiarity, that the axis of all its fruit cones has continued to grow. The axis, thus continued, gives the characteristic appearance to the shoots; are these branched like a witches' broom, have abnormally thickened internodes and bear abinormally developed leafsheaths. The shoots in question also bore a small number of normally formed young twigs and thus the determination was possible to me. These normal bruches, have regular cylindrical internodes, about 1 cm . long and $3 / 1-1 \mathrm{~mm}$. thick, generally with 11 vaginal teeth, as is often the case in the above variety. I was unable to find a fungus or other canse for the formation of these witches'brooms in the herbarium-specimen referred to.

Proceedings Royal Acad. Amsterdam. Vol. XI.
(424)
§ 6. Phyllogenetic note on Casuarina montana Jungh, and on C. equisetifolia Forst.

In the Herbaria at Leiden and at Utrecht I found herbariumspecimens of young seedlings and of very young shoots, developed from adventitious buds.

Accompanying one of the former specimens I found a manuscript note by Miquer, to the effect that these young seedlings had been raised from seed of Casuarina montana, imported in 18 ± 6 from Java to the Hortus at Rotterdam. These seedlings have on their youngest twigs internodes of about 2 mm . length and ${ }^{1 / 8} \mathrm{~mm}$. diameter, with 4-5 deep grooves; in the 24 leaf sheaths examined by me, the number of vaginal teeth was as often 4 as 5 , but never more and never less. The accompanying note of Minver, indicates, however, that although $4-5$ vaginal teeth were most common, he had also observed 6 teeth. The teeth are narrowly lanceolate and finely acuminate. The stems of these seedlings are only $21 / 2-3 \mathrm{~mm}$. in diameter. Miquel has added in autograph: "Casuarina montana (non alior)" and below also C. Brunonima. The species C. Brunonima, which Mrquer had described from young hot-house plants from the Rotterdam and Berlin Gardens, afterwards proved to be nothing but the "Jugendform" of Casuarina equisetifolia and C. montana. From two authentics of this species in the Herbarium at Utrecht, I could see that Miquri himself has withdrawn his C. Brunoniana, and regarded it partly as C. equisetifolia and partly as C.montana. It appears to me possible, however, that all the specimens named by Miquel C. Brunoniana belong to C. montana Jungh. only. For the young specimens, named by Miquel as C. equisetifolia agree well with this. Of young seedlings, which are derived with certainty from C. equisetifolia, I have here no material at my disposal for investigation. In Jara I have only observed the constant unusually small number of vaginal teeth in young seedlings of C. montana, of the var. tenuior. In the very young seedlings I examined, the number was never more than $4-6$ as in the seedlings of C. Brunoniana of the Utrecht Herbarium.

Concerning a herbarium specimen (Kds 37348β in Herb. Lugd. Bat.) of Casuarina montana var. tenuior Miq., collected in Oct. 1899 at 2000 m . altitude near Ngadisari on Mt. Tengger in Eastern Java, I observed the following: The specimen consists of ordinary fertile old branches, and of some young sterile shoots, which had evidently dereloped from adventitious buds, after an oldor thicker trunk had been cut down near the ground. These young
shoots were characterized by internodes of $1 / 2 \mathrm{~mm}$. diameter with 5-6 deep longitudinal grooves and only 5-6 vaginal teeth. On the other hand the youngest twigs, which had been formed on the ordinary ascending older branches of the same individual, had cylindrical internodes, not deeply-grooved, $3 / 4-1 \mathrm{~mm}$. diameter, with 9-10 vaginal teeth. For the sake of completeness the morphologically unimportant, but physiognomically striking circumstance should be mentioned, that a great number of the youngest twigs of these young root-suckers were malformed at their tops to ovate or irregularly formed galls, about $3-5 \mathrm{~mm}$. long and $21 / 2-3 \mathrm{~mm}$. thick. In these galls I could generally still detect the insect which had produced these malformations. It need scarcely be mentioned, that the above description of the morphologically aberrant structure of the twigs, refers only to normally constituted ones, and not to the pathological malformations on the rootsuckers, formed from adventitious buds. I may further allude to a specimen collected by Teysmann and De Vriese in 1859-1860 in Java? (without further indications as to locality) and labelled by Miquel "Casuarina equisetifolia Forst., monstrosa?" This specimen, found by me in the Herbarium at Leiden, appears to me to be quite similar to the one, described above, of the ordinary Casuarina montana var. tenuior Miq., with young root-suckers, partly deformed by galls at the shoot-tops, the number of vaginal teeth in this specimen, examinet by Mrquer is (also in the youngest twigs not attacked by galls) invariably only 6-7, never more.
Summing up (and wholly leaving out of account the abovedescribed malformations due to galls) we find briefly the following:

1. In these very young seedlings of Casuarina montana var. tennior Mig., some internodes are provided with 4, others with 5 -6 deep longitudinal grooves, while the number of vaginal teeth is $4-6$, (never more) and in the youngest stages only 4.
2. Very young shoots formed in Casuarina montana var. tenuior from adventitious buds in the base of the trunk, had similar deeper grooved internodes with 5-6 (never with more) vaginal teeth, like the young seedling mentioned sub 1.
3. It appears that in the species here in question (C. montana) the youngest developmental stages of the seedlings show phylogenetically older phases of development than the young shoots from adventitious buds of the trunk examined above.
4. The structure of the seedlings referred to sub 1 seems to point to both Casuarina equisetifolia Forst. and C. montana Jungh. being -muants of parent forms with quadrangular internodes and 4 deep longitudinal grooves, with 4 vaginal teeth. Such forms, which in my
opinion are older (e.g. C. nodifora Forst. and C. sumatrana Jungh.) still survive for instance, in Australia, in Sumatra, Borneo, Celebes, and in the Moluccas, but recent forms are now wanting in Java, and fossil ones have not yet been found in Java.
5. Of the two Javanese indigenous species of Casuarina, C. montana Jungh. appear to be plylogenitically younger than C. equisetifolict Forst.; the former species is probably a mutant, which has only maintained itself within the region of the Malay Archipelago, and which has arisen from the latter species.
6. Probably C. montana var. validior Mre. is a mutant, which has maintained itself in Java only and which has arisen from C. montana var. tenuior Miq.

Physics. - "Contribution to the theory of binary mixtures," XI.
(Continued). By Prof. J. D. van der Waajs.
Now we shall proceed to the investigation of some propertics of the loci of the points of intersection of $\frac{d^{2} \psi}{d x^{2}}=0$ and $\frac{d^{2} \psi}{d v^{2}}=0$, in the first place when this locus is a closed figure, lying wholly at volumes larger than b. Let us write.

$$
(v-b)^{2}+x(1-v)\left(\frac{d b}{d a}\right)^{2}=x(1-x) \frac{c}{a} v^{2}
$$

in the form:

$$
v^{2}\left\{1-v(1-x) \frac{c}{a}\right\}-2 v b+\left\{b_{1}^{2}+v\left(b_{2}^{3}-b_{1}^{2}\right)\right\}=0
$$

The form of the third term in this equation appears only to depend on the first power of x, because $b^{2}+x(1-x)\left(\frac{d b}{d x}\right)^{2}$ may be written $._{1}{ }^{2}+2 x b_{1} \frac{d b}{d x}+x^{2}\left(\frac{d b}{d_{1}}\right)^{2}$ and to this added $x(1-x)\left(\frac{d b}{d x}\right)^{s}$. The third term then becomes $b_{1}{ }^{2}+\frac{d b}{d x}\left(2 b_{1}+\frac{d b}{d x}\right) x$, in which $\frac{d b}{d x}=b_{2}-b_{1}$. If we put $a(1-x) \frac{c}{a}=A$, the equation (φ) becomes

$$
v^{2}(1-A)-2 v b+b_{1}{ }^{2}+v\left(b_{2}{ }^{2}-b_{1}{ }^{2}\right)=0
$$

Let us seek the points of this line in which the tangent is parallel to the x-axis, and so in which $\frac{d v}{d v}=0$; then we find another equation

[^0]: ${ }^{1}$) Continued from Transactions (Verhandelingen) Roy. Acad. Sciences Amsterdam Second Section Vol. XIV. (1908). N'. 4.

[^1]: ${ }^{1}$) Koorders, S. H., Eerstc Overzicht d. Flort N. O. Celebes (189S) 616; cf. Koorders and Valeton. Bijdrage Booms. Java X. (1904) 172 (Mededeelingen Lands Plantent. $\mathrm{n}^{0} .19$ en 68).

[^2]: ${ }^{1}$) Compare the distribution of Quercus Pinanga Bl. in Koord and Valeton. Bijdr. Booms. Java X (in Meded. Lands Plant. LXVIII 1904) p 65 and in Koord. Contribution No. 1 to the knowledge of the Flora of Java in Proc. Roy. Acad Sciences. Amsterdam 28 March 1908 p. 772.

[^3]: ل) Compare Koord. and Valeton Bijdr. Booms. Java II. (1895) 294.

