Huygens Institute - Royal Netherlands Academy of Arts and Sciences (KNAW)

Citation:

J. de Vries, On bicuspidal curves of order four, in:

KNAW, Proceedings, 11, 1908-1909, Amsterdam, 1909, pp. 499-504

This PDF was made on 24 September 2010, from the 'Digital Library' of the Dutch History of Science Web Center (www.dwc.knaw.nl)
> 'Digital Library > Proceedings of the Royal Netherlands Academy of Arts and Sciences (KNAW), http://www.digitallibrary.nl'

From a comparative ontogenetical point of view, therefore, also the value of the urethra before and behind the fossa navicularis is different. For, whereas behind the fossa navicularis only a very small portion of the wall can be considered as a production of the phallusfrume, perhaps the vertical part of the lumen as it is found in the urethra of man, this clanges before the fossa navicularis in such a way that there the greater part of the wall originates from that frame; therefore behind this fossa the urethra is principally homologons to the "Harnurethra", before it to the "Samenurethra".

Mathematics. - "On bicuspidal curves of order four." By Prof. Jan de Vrifs.

1. It is easy to see, that each curve of order four, C_{4}, with two cusps can be represented by the equation

$$
x_{1}{ }^{2} x_{2}{ }^{2}+2 v_{1} x_{2} x_{8}{ }^{2}+2 b_{1} v_{1} x_{\mathrm{a}}{ }^{8}+2 b_{2} x_{2} x_{\mathrm{a}}{ }^{3}+c x_{3}{ }^{4}=0 .
$$

The triangle of reference has then the cusps O_{1}, O_{2} and the point of intersection O_{3} of the cuspidal tangents as vertices.
From the equation

$$
\left(x_{1} v_{2}+x_{3}\right)^{2}+2\left(b_{1} x_{1}+b_{2} x_{2}+b_{3} x_{3}\right) x_{3}{ }^{8}=0,
$$

where $2 b_{3}=c-1$, is evident that

$$
b_{x} \equiv b_{3} x_{1}+b_{2} w_{2}+b_{3} x_{3}=0
$$

represents the double tangent d of C_{4} and that the conic

$$
u \equiv v_{1} x_{3}+v_{s}^{2}=0
$$

passes through the langential points D_{1}, D_{2} of d and osculates C_{4} in the cusps O_{1} and O_{2}.

- By combining the equations

$$
u^{2}+2 b_{x} x_{3}{ }^{3}=0 \quad \text { and } \quad u=\lambda b_{x} x_{3}
$$

we understand that the conics Λ_{2} through O_{1}, O_{3}, D_{1} and D_{2} generate a system of pairs of points on C_{4}, which are lying in pairs on the rays

$$
2 x_{3}+\lambda^{2} b_{x}=0
$$

of the pencil, having the point of intersection H of $k \equiv O_{1} O_{2}$ and d as vertex.

As this system of points with the curve is given we shall denote it as the fundamenta! involution F_{2}.

If we put $\lambda^{n}=\mu$, it follows from

$$
2 x_{3}+\mu b_{r}=0 \quad, \quad u^{2}=\mu b_{x}{ }^{2} x_{s}{ }^{3},
$$

that C_{4} can be generated by a pencil of conics $\left(O_{1} O_{2} D_{1} D_{3}\right)$ arranged in the pairs of an involution and a pencil of lines (H) between which
such a projective relation exists that the rays d and k througli H correspond to the double-elements of the involution, the first of which is composed of the right lines d and k. The locus of the points of intersection of corresponding elements thus consists of the line d and a C_{4} with cusps O_{1}, O_{2}.

The polar line h of point $H\left(b_{2},-b_{1}, 0\right)$ with respect to the conic A_{2},

$$
x_{1} x_{2}+x_{8}{ }^{2}=\lambda\left(b_{1} x_{1}+b_{2} x_{2}+b_{3} x_{3}\right) x_{8},
$$

has as equation $b_{2}\left(x_{3}-\lambda b_{1} x_{\mathrm{s}}\right)-b_{1}\left(x_{1}-\lambda b_{2} x_{3}\right)=0$ or

$$
b_{1} x_{1}=b_{2} x_{2} .
$$

On the line h lie the points Q_{1}, Q_{3}, which are connected with the pair of points $P_{1}, P_{\text {; }}$ of F_{2} generated by A_{2} in such a way that we have

$$
Q_{1} \equiv\left(O_{1} P_{1}, O_{2} P_{2}\right) \text { and } Q_{2} \equiv\left(O_{1} P_{2}, O_{2} P_{1}\right) .
$$

The fundamental involution F_{2} is thus projected out of O_{1} and out of O_{2} in the same involutory system of points (Q_{1}, Q_{2}). Now Q_{1} is the projection of two points P_{1} and P_{1}^{\prime} of C_{4}, so it is conjugate to two points, Q_{2} and $Q_{3}{ }^{\prime}$, by means of F_{2}. Therefore the pairs Q_{1}, Q_{2} form on h in involutory correspondence (2,2).
2. The points of C_{4} are projected out of O_{1} and O_{2} by two pencils in correspondence (2,2); the line k is for both systems a branch-ray, because it is conjugate to the two cuspidal tangents k_{1} and k_{2}; the remaining branch-rays are the tangents out of O_{1} and O_{5} to C_{4}.
These tangents are represented by

$$
\begin{aligned}
& 2 b_{1} v_{1}{ }^{3}+2 b_{3} x_{1}{ }^{2} x_{8}-2 b_{3} x_{1} x_{8}{ }^{2}-b_{2}{ }^{3} x_{3}{ }^{8}=0, \\
& 2 b_{2} x_{2}{ }^{3}+2 b_{8} x_{2}{ }_{2}{ }^{2} x_{8}-2 b_{1} x_{2} x_{8}{ }^{5}-b_{1}{ }^{2} x_{8}{ }^{5}=0 .
\end{aligned}
$$

Through the points of intersection of these two three-rays passes the figure, represented by

$$
\left(b_{1}{ }^{3} x_{1}{ }^{3}-b_{2}{ }^{3} x_{2}{ }^{3}\right)+b_{8} x_{3}\left(b_{1}{ }^{2} x_{1}{ }^{2}-b_{2}{ }^{2} x_{2}{ }^{5}\right)-b_{1} b_{2} x_{3}{ }^{2}\left(b_{1} x_{1}-b_{3} x_{3}\right)=0 .
$$

It is composed of the line h,

$$
b_{1} x_{1}=b_{2} x_{2},
$$

and the conic

$$
\left(b_{1} x_{1}+b_{2} x_{2}\right) b_{x}-b_{1} b_{2}\left(x_{1} x_{2}+x_{8}\right)=0 .
$$

The tangents r_{1}, s_{1}, t_{1} out of O_{1} can thus be conjugated to the tangents r_{2}, s_{2}, t_{2} out of O_{2} in such a way that the points of intersection $R \equiv r_{1} r_{2}, S \equiv s_{1} s_{2}, \quad I^{\prime} \equiv t_{1} t_{2}$ lie with the point of intersection of the cuspidal tangents on a right line h.

At the same time a new proof has been given for the well-known
property ${ }^{1}$), according to which the singular elements (branch-elements and double-elements conjugate to them) of a correspondence (2,2) can be arranged in such a way that the singular elements of the first system correspond projectively to those of the second one.

For, if two pencils are connected by a $(2,2)$ we have but to rotate them around their vertices until a branch-ray of the first pencil coincides with a branch-ray of the second; in the new position they then generate a C_{4} with two cusps. From this is evident that there are four projectivities between the singular elements ${ }^{2}$).

The (2,2) between the pencils $v_{1}=\lambda \cdot x_{3}$ and $v_{2}=\mu v_{3}$ has as equation

$$
\lambda^{2} \mu^{2}+2 \lambda_{\mu} \mu+2 b_{1} \lambda+2 b_{2} \mu+c=0 .
$$

By the points of h these pencils are arranged in the projectivity

$$
b_{1} \lambda=b_{2} \mu^{\prime}
$$

By eliminating 2. we find ont of these two relations the equation of the correspondence $(2,2)$ between the points which conjugate rays of the pencils $\left(O_{1}\right)$ and $\left(O_{2}\right)$ generate on h. And now it is evident from

$$
b^{2}, \mu^{2} \mu^{\prime 2}+2 b_{1} b_{2} \mu \mu^{\prime}+2 b_{1}{ }^{2} b_{2}\left(\mu+\mu^{\prime}\right)+b_{1}{ }^{2} c=0
$$

that this correspondence is involutory.
This result is in accordance with the well-known property ${ }^{3}$), according to which a $(2,2)$ between two collocal systems is involutory when the two systems have the same branch-elements.
3. Evidently the involutory $(2,2)$ on h does not differ from the $(2,2)$ which was deduced from the fundamental involution F_{2}. Its coincidences arise from the four tangents which one can draw from H to C_{4}. Indeed, the polarcurve of H consists of the line h and the conic u (passing through the points of contact of d).
If the branch-point $R \equiv r_{1} r_{2}$ is conjugate to the double-point R^{\prime}, then R^{\prime} must be the point of intersection of the rays which the points of contact R_{1} and R_{2} of r_{1} and r project out of O_{2} and O_{2}.
We conclude from this that the tangential points $R_{1}, S_{1} T_{1}$ of the

[^0]tangents r_{1}, s_{1}, t_{1} are projected out of the point H into the tangential points R_{2}, S_{3}, T_{3} of the tangents r_{2}, s_{2}, t_{2}.

If S^{\prime} corresponds as a double-point of the $(2,2)$ to $S \equiv s_{1} s_{2}$, then it follows from
$O_{1}\left(R R^{\prime} S S^{\prime}\right)=O_{2}\left(R R^{\prime} S S^{\prime}\right)$, that we have $O_{1}\left(R R^{\prime} S S^{\prime}\right)=O_{3}\left(R^{\prime} R S^{\prime} S\right)$.
From this follows that the points $R_{1}, R_{2}, S_{1}, S_{2}$ are connected with O_{1}, O_{2} by a conic. Also the groups $O_{1}, O_{3}, R_{1}, R_{3}, T_{1}, T_{2}$ and $O_{1}, O_{2}, S_{1}, S_{2}, T_{1}, T_{2}$ lie on conics.
If $K \equiv h k_{2}$ we find out of

$$
O_{1}\left(O_{3} K R R^{\prime}\right)=O_{2}\left(O_{3} K^{\prime} R R^{\prime}\right)=O_{2}\left(K^{\prime} O_{3} R^{\prime} R\right)
$$

that through R_{1} and R_{2} passes a conic which is touched in O_{1} and O_{2} by the cuspidal tangents. The pairs of points S_{1}, S_{2} and T_{1}, T_{2}. procure two analogous conics.
If two arbitrary points X and Y of h are projected out of O_{1} and O_{3}, then the points ($O_{1} X, O_{2} Y$) and ($O_{1} Y, O_{2} X$) lie in a right line through H.

From this follows that H bears three right lines which contain successively the pairs of points

$$
\left.\left.\left.\begin{array}{l}
1 \equiv r_{1} s_{3} \\
4 \equiv r_{2} s_{1}
\end{array}\right\} \begin{array}{c}
2 \equiv r_{1} t_{2} \\
5 \equiv r_{2} t_{1}
\end{array}\right\} \quad \begin{array}{l}
3 \equiv s_{1} t_{2} \\
6 \equiv s_{2} t_{2}
\end{array}\right\}
$$

Above we found that these six points lie on a conic and form two hexagons having O_{1} and O_{2} as point of Brianchon: it is now evident that they determine a third hexagon, having H as point of Brianchon.
4. From $\left(k r_{1} s_{1} t_{1}\right)=\left(k r_{2} s_{3} t_{2}\right)$ follows

$$
\left(k r_{1} s_{1} t_{3}\right)=\left(r_{2} k t_{2} s_{2}\right)=\left(s_{2} t_{2} k r_{2}\right)=\left(t_{2} s_{2} r_{2} k\right) .
$$

So we can bring through O_{1} and O_{3} three conics $\rho_{2}, \sigma_{2}, \tau$ with respect to which the lne k has as poles the points R, S, T, whilst contaning successively the pairs of points 3,$6 ; 2,5$ and 1,4 .
On these three conics the pencils $\left(O_{1}\right)$ and $\left(O_{2}\right)$, arranged in $(2,2)$ determine, just as on h, involutory correspondences (2,2); for, the two systems of points generated on them have again the branchpoints in common.

If M_{1}, M_{2} is a pair of the (2,2) delermined on ρ_{2}, then the points $\left(O_{1} M_{2}, O_{2} M_{2}\right)$ and $\left(O_{1} M_{2}, O_{2} M_{1}\right)$ lie on C_{4} and in one line with the point R, namely on the polar line of the point $\left(M_{1} M_{2}, O_{1} O_{2}\right)$ with respect to ϱ_{2}.
The pencils with vertices R, S and T generate therefore on C_{4} three more fundamental involutions of pairs of points where again each
ray contains two pairs. They differ from F_{2} in this, that unlike the former they do not contain the tangential points of the double tangent as a pair.

For $M_{1} \equiv M_{2}$ we have a coincidence of the (2,2). From this is evident that the tangential points of the four tangents which can still be drawn from R, S or T to C_{4}, are every time connected with O_{1} and O_{3} by a conic ($\Omega_{2}, \sigma_{2}, \tau_{2}$).

In an analogous way as for F_{2} we find by paying attention to the singular elements of the $(2,2)$ on ρ_{2}, σ_{2} and τ_{2}, that the lines $S_{1} T_{2}$ and $S_{2} T_{1}$ concur in R, the lines $R_{1} T_{2}$ and $R_{2} T_{1}$ in S the lines $R_{1} S_{2}$ and $R_{3} S_{1}$ in T.
5. The polarcurve of the pomi $\left(y_{1}, y_{2}, 0\right)$ has as equation

$$
y_{1}\left(v_{1} v_{2}{ }^{2}+v_{2} x_{8}{ }^{2}+b_{1} x_{8}{ }^{3}\right)+y_{2}\left(v_{1}{ }^{2} v_{2}+v_{1} v_{3}{ }^{2}+b_{2} x_{3}{ }^{3}\right)=0,
$$

or

$$
\left(y_{2} x_{1}+y_{1} x_{2}\right)\left(r_{1} r_{3}+x_{3}{ }^{2}\right)+\left(b_{1} y_{1}+b_{2} y_{2}\right) x_{3}{ }^{3}=0 .
$$

By combination with the equation

$$
\left(x_{1} x_{2}+x_{3}\right)^{2}+2 b_{x} x_{3}{ }^{3}=0
$$

of the C_{4} is evident that the points of intersection of the two curves lie on $x_{1} x_{3}+x_{8}^{8}=0$ and on the curve

$$
؛\left(y_{2} v_{1}+y_{1} v_{2}\right) b_{\alpha}=\left(b_{1} y_{1}+b_{2} y_{2}\right)\left(v_{1} x_{2}+v_{n}^{2}\right) .
$$

Therefore the tangential points of the tangents out of a point of $\mathrm{O}_{1} \mathrm{O}_{2}$ he on a conic η_{2}.

For $y_{1}: y_{2}=b_{9}: b_{6}$, i.e. the point $K \equiv h k$, we find the conic $\left(b_{1} x_{1}+b_{2} x_{2}\right) b_{2}=b_{1} b_{2}\left(x_{1} x_{2}+c_{1}{ }^{2}\right)$ through the points $1,2,3,4,5,6$.

Out of the equation

$$
\left.y_{1}{ }_{1} b_{1}\left(v_{1}, w_{2}+v_{8}{ }^{2}\right)-2 v_{2} b_{a_{3}}\right\}+y_{3}\left\{b_{2}\left(v_{1} v_{2}+v_{8}{ }^{3}\right)-2 v_{1} b_{x}\right\}=0
$$

is evident that the conics η_{9} form a pencil having as basis the points of intersection of $x_{1} x_{2}+x_{3}{ }^{2}=0$ with $b_{1}=0$ (the points D_{1}, D_{2}) and two points of $b_{1} x_{1}=b_{2} x_{2}$ (the line h).

One of the pairs of lines consists of the lines d and h; it contains the tangential points of the tangents out of H, two of which are united in d.

The other two pairs of lines belong to two points of $O_{1} O_{2}$, for which the six tangential points lie every time on two lines passing through D_{1} and D_{2}.
6. If (y / k) is a point of d, thus $b_{y}=0$, then its polar curve with respect to C_{4} is represented by

$$
2\left(y_{1} v_{2}+y_{2} v_{1}+2 y_{\mathrm{s}} v_{8}\right)\left(x_{1} v_{\mathrm{a}}+x_{\mathrm{a}}{ }^{2}\right)+6 y_{8} x_{\mathrm{s}}{ }^{3} b_{x}=0 .
$$

The points of intersection of these curve with C_{4} which are not situated at the same time on $a_{1} x_{2}+x_{3}{ }^{2}=0$ lie on the conic ξ_{2},

$$
3 y_{8}\left(x_{1} x_{3}+x_{2}{ }^{2}\right)=2\left(y_{2} x_{1}+y_{1} x_{2}+y_{3} y_{3}\right) x_{3} .
$$

So the tangential points of the foür tangents out of any point of the clouble tangent lie on a conic through the cusps.

For $y_{3}=0$, so $y_{1}: y_{2}=b_{2}:-b_{1}$ (the point H) we find as it ought to be

$$
\left(b_{1} x_{1}-b_{2} x_{2}\right) x_{3}=0 .
$$

The conics ξ_{2} form evidently a pencil of which two basepoints lie on h, the remaining two in O_{1} and O_{2}.
7. The curve of Hesse of C_{4} has as equation.

$$
\begin{aligned}
& 6 x_{1}{ }^{3} x_{2}{ }^{3}+18\left(b_{1} v_{1}+b_{1} v_{2}\right) v_{1}{ }^{2} v_{3}{ }^{3}{ }^{3} x_{3}+(18 c+32) x_{1}{ }^{2}{ }_{2}{ }_{2}{ }^{2} v_{3}{ }^{2}+ \\
& +60\left(b_{1} x_{1}+b_{g} x_{2}\right) x_{1} x_{9} x_{a}{ }^{8}+\left(36 b_{1} b_{3}+24 c-8\right) x_{1} v_{2} x_{s}{ }^{4}+ \\
& +9\left(b_{1} x_{1}+b_{2} x_{2}\right)^{2} x_{s}{ }^{4}+18\left(b_{1} x_{1}+b_{2} v_{2}\right) x_{8}{ }^{5}+\left(18 b_{1} b_{2}+c\right) r_{8}{ }^{8}=0 \text {. }
\end{aligned}
$$

By combination with the equation of C_{4} we find that the points of intersection of the two curves not lying in the cusps are situated on the curve

$$
\begin{gathered}
12\left(b_{1} x_{2}+b_{2} v_{2}\right) x_{1} x_{2}+\left(18 b_{1} b_{2}-18 c-30\right) x_{1} x_{2} x_{3}-27\left(b_{1} x_{1}+b_{2} v_{2}\right)^{2} r_{3}- \\
-(54 c+22)\left(b_{1} v_{1}+b_{2} x_{2}\right) x_{3}{ }^{2}+\left(18 b_{1} b_{2}-19 c-18 c^{2}\right) w_{3}{ }^{3}=0 .
\end{gathered}
$$

So the eight points of inflenion of the C_{s} are situated on a cubic curve passing through the cusps and the point H.
The polarcurve of the point $O_{8}=k_{1} k_{2}$ consists of $x_{2}=0$ and the conic

$$
2 x_{1} x_{2}+3 b_{1} v_{1} x_{3}+3 b_{2} v_{2} x_{3}+2 c v_{\mathrm{s}}{ }^{3}=0,
$$

passing throngh the cusps and through the points of contact of the four tangents which meet in the point of concurrence of the cuspidal tangents.

It is easy to see that O_{3} and H are the only points for which the polarcurve degenerates.

Chemistry. - "On the system hydrogen bromide und bromine." By Dr. E. H. Büchner and Dr. B. J. Karsten. (Communicated by Prof. A. F. Holleman).

The research, a report of which is given here, was undertaken in connection with a remark from Prof. Holleinan, that the existence of compounds of the type HBr_{n} has been assumed several times in order to explain the mechanism of reactions in organic chemistry. In order to test the validity of this assumption it was thought desirable to ascertain, in the first place, whether pure bromine and

[^0]: ${ }^{1}$) Emil Wexr, Beiträge zur Curvenlehre, Vienna 1880, Alfred Hölder, p. 32, or Annali di Matematica, 1871, IV, p. 272.
 ${ }^{2}$, In my paper "Over vlakke krommen van de vierde orde met twee dubbelpunten" (N. Archief voor Wiiskunde, 1888, XIV, p. 193) I have applied the pruperties of the $(2,2)$ correspondence to those curves.
 ${ }^{\text {b }}$) Emil Wexk „Ueber einen Correspondenzsatz", Sitz. ber. der K. Akad. in Wien, 1883, LXXXVII, p. 590, or my paper under the same title in N. Archief voor Wiskunde, 1907, VII, p. 469.

