Huygens Institute - Royal Netherlands Academy of Arts and Sciences (KNAW)

Citation:

J. de Vries, On curves of order four with two flecnodal points or with two biflecnodal points, in: KNAW, Proceedings, 11, 1908-1909, Amsterdam, 1909, pp. 568-575

This PDF was made on 24 September 2010, from the 'Digital Library' of the Dutch History of Science Web Center (www.dwc.knaw.nl)
> 'Digital Library > Proceedings of the Royal Netherlands Academy of Arts and Sciences (KNAW), http://www.digitallibrary.nl'

TABLE VIII (continued).

x	$n=0$	$n=1$	$n=2$	$n=3$	$n=4$
5.0	09596	-0.08: $2^{\text {- }}$	-0 1562	0.0211	0.0140
5.	$0.90 \% 8$	-0.0793	-0.0555	00184	0.0151
5.2	0.9658	-0 0746	-0.0547	0.0159	00162
5.3	0.9686	-0.0701	-0.0538	0.0135	0.0169
54	0.9711	-00659	-0.0527	00112	0.0175
5.5	09734	-0 0618	-00545	0.0090	0.0179
5.6	0.9756	-0.0580	-0.0503	0.0070	0.0182
57	09776	-0.0544	-0 0489	0.0050	0.0183
5.8	0.9794	-0 0509	-0 0475	0.0032	00182
59	0.9811	-0 0477	-0, 0461	00016	0.0181
6.0	0.9827	-0.0446	-0.0446	0.0000	0.0178
65	09887	-0) 0318	-0.0371	-0.0060	00154
7.0	09927	-0 0223	-0 10298	-0.0093	00119
7.5	0.9953	-0 0436	-0.0233	-0.0107	0.1083
8.0	0.9970	-0 0107	-0.0179	-0.0107	00050
8.5	0.9981	-0 0074	-0.0135	-0.0100	00024
9.0	0.9988	-0.0050	--0 0100	-0.0088	0.0005
9.5	0.9992	-0.0084	-0.0073	-0.007t	-0.0008
100	0.9995	-0 0023	-0.0053	-0.0061	-00015
105	0.9997	-0 0015	-0.0038	-0.0048	-0.0019
11.0	0.9998	-0.0010	-0 0027	-0.0038	-0.0020
11.5	0.9999	--0.0007	-0.0019	-00029	-0 0019
12.0	0.9999	-0.0004	-0.0013	-0.0022	-0) 0017
12.5	1.0600	-0.0003	-0.0009	-0.0017	-0.0015
13.0	-	-0 0002	-0.0006	-0.0012	-0.0012
135		-0.0001	-0.0004	-0.0009	-0.0010
14.0		-0.0001	-0.0003	-0.0007	-0.0008
14.5		-0.0001	-00002	-0.0005	-00007
15.0	-	0.0000	-00001	-0.0003	-0.000
15.5			-0.0001	-0.0002	-0.0004
16.0		-	-0.0001	-0.000	-0.0003
165	-	-	0.0000	-0.0001	-0.0002
17.0	-	-	-	-0.0001	-0.0002
17.5	-	-	二	-0.0001	
18.0				0.0000	-0.0001
18.5 19.0	-	--	-	-	0.0000

Mathematics. - "On curves of order four with two flecnodal points - or with two bifecnodal points." By Prof. Jan de Vries.

1. The points of a binodal curve of order four, C_{4}, are projected out of the two double points O_{1} and O_{2} by two pencils in correspondence (2, 2).

So such a C_{4} is determined by the relation

$$
a_{22} \lambda^{2} \mu^{2}+a_{22} \lambda^{2} \mu+a_{20} \lambda^{2}+a_{12} \lambda \mu^{2}+a_{11} \lambda \mu+a_{20} \hat{\lambda}+a_{02} \mu^{2}+a_{01} \mu+a_{00}=0
$$

where

$$
\lambda=x_{1}: x_{3} \text { and } \mu=x_{2}: x_{3} .
$$

According to a well-known property the eight singular rays ($\lambda_{\text {. }}$
are in four ways projective to the eight singular rays (μ) ; consequently through O_{1} and O_{2} pass four conics bearing each four points of intersection of (wo tangents out of O_{1} and O_{2} and at the same tume four points of intersection of rays out of O_{2} and O_{2} to the points of contact of those tangents (double-rays of the $(2,2)$).
If $O_{1} O_{2}$ is a branchray for both pencils, one of the four conics degenerates, in which case C_{4} has cusps in O_{1} and O_{2} (see my paper "On bicuspidal curves of order four", Proceedings of the meeting of Dec. $24^{\text {th }} 1908$, Vol. IX, p. 499).
We suppose that $O_{1} O_{2}$ is conjugate as double-ray to the branchrays $O_{1} \mathrm{O}_{3}$ and $\mathrm{O}_{2} \mathrm{O}_{3}$. The equation of correspondence must then furnish for $\lambda=0$ and for $\mu=0$ the equations $\mu^{2}=\infty$ and $\lambda^{2}=\infty$; hence $a_{20}=0, a_{02}=0, a_{10}=0, a_{01}=0$.
The equation of C_{4} can now be written in the form

$$
x_{1}{ }^{2} x_{2}{ }^{2}+2 x_{1} x_{2} x_{8}\left(b_{1} x_{1}+b_{2} x_{2}+b_{8} x_{3}\right)+x_{3}{ }^{4}=0
$$

In each of the two double poinis one of the branches has an inflectional point; the corresponding tangents are $x_{1}=0$ and $x_{2}=0$.
Out of each of the two flecnodal points three more tangents can be drawn to C_{4}. They are represented by

$$
\begin{aligned}
& b_{1}{ }^{3} x_{1}{ }^{3}+2 b_{1} b_{3} x_{1}{ }^{2} x_{3}+\left(b_{3}{ }^{2}-1\right) v_{1} x_{3}{ }^{3}-2 b_{2} v_{3}{ }^{3}=0, \\
& b_{2}{ }^{2} x_{3}{ }^{3}+2 b_{3} b_{3} x_{2}{ }_{2}^{2} x_{3}+\left(b_{3}{ }^{2}-1\right) \cdot c_{2} x_{3}{ }^{2}-2 b_{1} x_{3}{ }^{3}=0 .
\end{aligned}
$$

By eliminating $x_{3}{ }^{3}$ we find
$\left(b_{1}{ }^{3} x_{1}{ }^{3}-b_{2}{ }^{3} v_{2}{ }^{3}\right)+2 b_{3} x_{3}\left(b_{1}{ }^{2} x_{1}{ }^{2}-b_{2}{ }^{2} x_{2}{ }^{2}\right)+\left(b_{3}{ }^{2}-1\right) x_{3}{ }^{3}\left(b_{1} x_{1}-b_{2} v_{3}\right)=0$.
So on the right line $b_{1} x_{1}=b_{2} x_{2}$ lie three points of intersection of the tangents out of O_{1} with the tangents out of O_{2}. We shall indicate it by h.

It is evident that these three points and the point O_{2} are the branchpoints for the two collocal series of points in correspondence $(2,2)$, determined by the pencils $\left(O_{1}\right)$ and $\left(O_{2}\right)$ on the line h. So according to a well-known property this $(2,2)$ is involutory.

Indeed, we find out of

$$
\lambda^{2} \mu^{2}+2 b_{1} \lambda^{3} \mu+2 b_{2} \lambda \mu^{2}+2 b_{8} \lambda \mu+1=0
$$

and

$$
b_{1} \lambda=b_{2} \mu^{\prime},
$$

that the (2,2) is indicated on h by the symmetric relation

$$
b_{2}^{2} \mu^{2} \mu^{\prime 2}+2 b_{1} b_{3}{ }^{2}\left(\mu^{2} \mu^{\prime}+\mu \mu^{\prime 2}\right)+2 b_{1} b_{3} b_{\mathrm{a}} \mu \mu^{\prime}+b_{1}{ }^{2}=0
$$

between the rays projecting it out of O_{2}.
2. If Q, Q^{\prime} is a pair of the involutory (2,2) on h, then the points $P_{1} \equiv\left(O_{1} Q, O_{2} Q^{\prime}\right)$ and $P_{2} \equiv\left(O_{1} Q^{\prime}, O_{2} Q\right)$ lie on C_{4}^{\prime}. The line $P_{1} P_{2}$
intersects $\mathrm{O}_{1} \mathrm{O}_{2}$ in a point H , separated harmonically by the line 4° from O_{1} and O_{2}.
So the pairs of points P_{1}, P_{2} form on C_{4} a fundamental involution F_{2}, of which each ray through H contains two pairs.

The coincidences of F_{2} are the points of contact of the tangents out of $H\left(y_{1}=b_{2}, y_{2}=-b_{1}, y_{3}=0\right)$. The polar curve of H has as equation

$$
\left(l_{1} x_{1}-b_{2} x_{2}\right)\left(x_{1} x_{3}+v_{3} b_{x}\right)=0
$$

so it consists of the line h and the conic

$$
x_{1} x_{2}+x_{3} b_{2}=0
$$

The points of intersection of this conic with C_{4},

$$
x_{1}{ }^{2} x_{2}{ }^{4}+2 x_{1} v_{2} x_{\mathrm{s}} b_{2}+x_{3}{ }^{4}=0,
$$

lie on $x_{3}{ }^{2}=0$ and on $x_{3}{ }^{2}=b_{2}{ }^{2}$.
By combining

$$
b_{2}= \pm r_{3}
$$

with the equation of C_{4} we find $\left(x_{1} x_{2} \pm x_{3}{ }^{2}\right)^{2}=0$. So H is the point of intersection of two double tangents.

The points of contact of these double tangents forming two pairs of F_{2} and being generated by the conics $x_{1} x_{2} \pm x_{3}{ }^{3}=0$, the supposition is at hand that F_{2} can also be determined by means of the pencil of conics

$$
x_{1} x_{2}=\varrho x_{3}{ }^{2}
$$

Indeed, the movable points of intersection of these conics with C_{4} lie on the rays

$$
\left(1+\varrho^{2}\right) x_{a}+2 \rho b_{x}=0,
$$

passing through H, whilst the line h,

$$
b_{1} x_{1}=b_{2} x_{2},
$$

is the polar of H with respect to each conic

$$
x_{1} x_{2}=\rho v_{8}{ }^{3} .
$$

Resuming we can say:
Of a C_{4} with two flecnodal points O_{1} and O_{2} two double tangents meet on the connecting 'line $O_{1} O_{2}$ of the clouble points. The points of contact of the four tangents which it is possible still to draw out of their point of intersection to C_{4} lie on a right line, which contains moreover three points of intersection of the tangents r_{1}, s_{1}, t_{1} out of - O_{1} with the tangents r_{2}, s_{2}, t_{2} out of O_{2} and the point of intersection of the inflectional tangents f_{1} and f_{2} in O_{1} and O_{2}.
3. From $\left(f_{1} r_{1} s_{1} t_{1}\right)=\left(f_{2} r_{2} s_{3} t_{2}\right)$ follows

$$
\left(f_{1} r_{1} s_{1} t_{1}\right)=\left(r_{3} f_{2} t_{2} s_{2}\right)=\left(s_{2} t_{3} f_{2} r_{2}\right)=\left(t_{2} s_{2} r_{3} f_{2}\right) .
$$

By this three conics $\rho_{2}, \sigma_{2}, \tau_{2}$ through O_{1} and O_{2} are determined containing in succession the quadruplets of points

$$
\begin{array}{llllll}
f_{1} r_{2}, & r_{1} f_{2}, & s_{1} t_{2}, & t_{1} s_{3} ; \\
f_{1} s_{2}, & r_{1} t_{2}, & s_{1} f_{2}, & t_{1} r_{2} ; \\
f_{1} t_{2}, & r_{1} s_{2}, & s_{1} r_{2}, & \left.t_{1} f_{2} \cdot{ }^{1}\right)
\end{array}
$$

On these too the pencils $\left(O_{1}\right)$ and $\left(O_{2}\right)$ arranged in $(2,2)$ determine involutory (2,2), which then again are connected with fundamental involutions on C_{4}. The pairs of such an involution lie on rays through tho pole R, S, T of $O_{1} O_{2}$ with respect to the corresponding conic $\varrho_{2}, \sigma_{2}, \tau_{2}$. This pole is the point of intersection of two double tangents; this follows amongst others from the fact, that the point of contact of each tangent of the C_{4} drawn from R must lie on the conic ϱ_{2} and must be a coincidence of the involutory (2,2); the number of these tangents amounts thus to four, so that the remaining tangents out of R must coincide two by two in two double tangents.

For further particulars about the properties which can be deduced from these observations 1 refer to my paper mentioned above and to the paper named in it published in "N. Archief voor Wiskunde, XIV."
4. We shall now suppose thal O_{1} and O_{z} are biflecnodal points. Let us choose the point O_{3} in such a way, that the tangents in O_{1} and in O_{2} are separated harmonically by $O_{1} O_{2}, O_{1} O_{9}$ resp. by $O_{2} O_{1}, O_{2} O_{3}$, then the equation of C_{4} has the form
$x_{1}{ }^{2} x_{2}{ }^{2}-a_{1}{ }^{2} x_{2}{ }^{2} x_{3}{ }^{2}-a_{2}{ }^{2} x_{1}{ }^{2} v_{3}{ }^{2}+b_{0} x_{1} v_{2} v_{3}{ }^{2}+b_{1} v_{1} v_{3}{ }^{3}+b_{2} x_{2} v_{3}{ }^{3}+c^{3} x_{2}{ }^{4}=0$.
If O_{1} and O_{2} are to become biflecnodal points, then we shall every time have to find when substituting $x_{1}= \pm a_{1} x_{3}$ and $x_{2}= \pm a_{2} x_{3}$ that $x_{3}{ }^{4}=0$. For this is necessary $b_{2} \pm a_{1} b_{0}=0$ and $b_{1} \pm a_{2} b_{0}=0$, thus $b_{0}=0, b_{1}=0$ and $b_{2}=0^{\circ}$).

So we have to deal with the equation

$$
x_{1}{ }^{2} x_{2}{ }^{2}-a_{1}{ }^{2} x_{2}{ }^{2} x_{2}{ }^{2}-a_{2}{ }^{3} x_{1}{ }^{2} x_{3}{ }^{2}+c^{2} x_{8}{ }^{4}=0 .
$$

If we write for this

$$
\left(x_{1}{ }^{2}-a_{1}{ }^{2} x_{8}{ }^{2}\right)\left(v_{2}{ }^{2}-a_{2}{ }^{2} x_{8}{ }^{2}\right)+\left(c^{2}-a_{1}{ }^{2} a_{2}{ }^{9}\right) v_{\mathrm{a}}{ }^{4}=0,
$$

and if we put moreover

$$
c^{2}-a_{1}{ }^{2} a_{2}{ }^{5}=f^{2},
$$

it is evident that C_{4} can be generated by the projective involutions of rays

1) The six points $r_{1} s_{2}, s_{1} r_{2}, s_{1} t_{2}, t_{1} s_{2}, t_{1} r_{2}, r_{1} t_{2}$ lie on a conic; for, through $r_{1} r_{2}, s_{1} s_{2}, t_{1} t_{2}$ passes the line h.
${ }^{2}$) We find moreover that C_{1} cannot have at the same time a flecnodal point and a billecnodal point.

$$
\left.\begin{array}{c}
(57 \dot{2}) \\
x_{1}^{2}-a_{1}^{2} x_{3}^{2}= \\
f x_{3}^{2}= \\
=2 \cdot f x_{3}^{2} \\
{ }^{2}\left(x_{3}{ }^{2}-a_{4}^{2} x_{3}^{2}\right)
\end{array}\right\}
$$

In this C_{4} thus ∞^{1} quadrangles are described having all O_{1} and O_{2} as diagonal points.

The vertices of these quadrangles evidently form a fundamental involution F_{4}.

Out of

$$
\left.\begin{array}{rl}
x_{1}^{2} & =\left(a_{1}{ }^{2}+\lambda f\right) x_{3}{ }^{3} \\
\lambda x_{2}{ }^{2} & =\left(\lambda a_{3}{ }^{2}-f\right) a_{3}{ }^{2}
\end{array}\right\}
$$

we find for the diagonals of the quadrangle (2) the equation

$$
\left(\lambda a_{2}^{2}-f\right) x_{1}^{2}=\left(\lambda a_{1}^{2}+\lambda^{2} f\right) x_{2}^{2}
$$

So all quadrangles have in O_{3} their third diagonal point.
At the same time it is evident from this that we can build up the above mentioned F_{4} out of pairs of the fundamental F_{2} of which each ray through O_{3} contains two pairs.

If the two pairs coincide then the ray which bears them is a double tangent.

The pairs on the ray $x_{1}=\rho x_{2}$ we find out of

$$
f \lambda^{2}+\left(a_{1}^{2}-a_{2}{ }^{3} \varrho^{2}\right) \lambda+f \varphi^{2}=0
$$

Thus for a double tangent we have

$$
\left(a_{1}{ }^{2}-a_{2}{ }^{3} \varrho^{2}\right)^{2}=4 f^{2} \varrho^{2}
$$

or

$$
a_{2}^{2} \varrho^{2} \pm 2 f \varrho-a_{1}^{2}=0
$$

So O_{8} is the point of intersection of four double tangents corresponding to

$$
a_{2}{ }^{2} x_{1}^{2} \pm 2 f v_{1} v_{2}-a_{1}^{2} x_{2}^{2}=0
$$

or, what comes to the same, to

$$
a_{2}{ }^{2} x_{1}^{2} \pm 2 c x_{1} u_{2}+a_{1}{ }^{2} x_{2}{ }^{2}=0
$$

The eight points of contact lie on a conic.
For, the polar curve of O_{3} degenerates into $x_{3}=0$ and the conic

$$
a_{2}{ }^{2} x_{1}{ }^{2}+a_{1}^{2} x_{2}{ }^{2}-2 c^{2} x_{3}{ }^{2}=0
$$

5. We shall show now that the remaining four double tangents are connected with two funclamental involutions of pairs which can be generated by conics.

The çurve C_{4} can be generated by the projective pencils

$$
\left.\begin{array}{c}
\left(x_{1}-a_{1} x_{3}\right)\left(x_{2}-a_{2} x_{3}\right)=o f w_{8}^{2} \\
g\left(x_{1}+a_{2} x_{3}\right)\left(x_{2}+a_{2} v_{3}\right)=-f x_{3}{ }^{2}
\end{array}\right\}
$$

Evidently the two variable points of intersection of conjugate conics lie on the line

$$
2 \rho\left(a_{1} x_{2}+a_{2} v_{1}\right)+\left(\varrho^{2}+1\right) f x_{z}=0,
$$

passing through the point H_{1} having as coordinates ($\left.a_{1},-a_{2}, 0\right)$.
Each line

$$
a_{1} v_{2}+a_{2} v_{1}+\sigma f x_{3}=0
$$

bears two pairs of the fundamental involution which can be generated by each of the two pencils of conics; for we have $\rho^{2}-20 \rho+1=0$.

For $\rho= \pm 1$ these pairs coincide and we find the double tangents

$$
a_{1} x_{2}+a_{3} x_{1} \pm f x_{3}=0
$$

In a similar way the pencils

$$
\left.\begin{array}{c}
\left(x_{1}-a_{1} x_{3}\right)\left(x_{2}+a_{3} x_{3}\right)=\varrho f x_{3}{ }^{2}, \\
\varrho\left(x_{1}+a_{2} v_{3}\right)\left(x_{2}-a_{2} v_{3}\right)=-f x_{3}^{2}
\end{array}\right\}
$$

determine a frudamental involution which is also gencrated by the rays out of the point $H_{2}\left(u_{1}, a_{2}, 0\right)$, through which at the same time the double tangents

$$
a_{1} x_{2}-a_{2} x_{1} \pm f u_{3}=0
$$

pass.
The four double tangents form a quadrilateral having $\mathrm{O}_{1} \mathrm{O}_{2} \mathrm{O}_{3}$ as diagonal triangle.
6. The polar line of $\left(a_{1}, \pm a_{2}, 0\right)$ with respect to the conic

$$
\left(x_{1}-a_{1} x_{3}\right)\left(x_{2} \pm a_{2} x_{3}\right)=\varrho f x_{3}{ }^{2}
$$

is represented by

$$
a_{1} x_{2} \pm a_{2} x_{1}=0
$$

From this ensues that the pencils $\left(H_{1}\right)$ and $\left(H_{3}\right)$ determine two involutory $(2,2)$ on these two lines h_{1} and h_{2}. Their branchpoints are generated by the nodal tangents and the tangents which can still be drawn out of O_{1} and O_{2}.

If we write the equation of C_{4} in the form

$$
\left(w_{1}{ }^{2}-a_{1}{ }^{3} w_{3}{ }^{2}\right) x_{2}{ }^{2}-\left(a_{2}{ }^{9} x_{1}{ }^{2}-c^{2} w_{3}{ }^{2}\right) v_{3}{ }^{2}=0,
$$

it is evident that the lines

$$
a_{2}{ }^{2} v_{1}{ }^{2}=c^{2} v_{3}{ }^{2}
$$

touch it on $x_{2}=0$.
In an axalogous way the lines

$$
a_{1}{ }^{3} v_{2}{ }^{3}=c^{9} x_{2}{ }^{3}
$$

have their points of contact on $a_{1}=0$.
And now we see directly that these two pairs of rays intersect .each other on the lines h_{1} and h_{4},

$$
a_{1} x_{2} \pm a_{2} x_{1}=0
$$

which bear at the same time the points of intersection of the nodal tangents

$$
x_{1}{ }^{2}=a_{1}{ }^{2} \cdot x_{2}{ }^{2} \text { and } x_{2}{ }^{2}=a_{2}{ }^{2} x_{3}{ }^{2} .
$$

The remaining points of intersection of the two fourrays lie on the conic

$$
a_{1}{ }^{2} x_{3}{ }^{2}+a_{2}{ }^{2} v_{1}{ }^{2}-\left(a_{1}{ }^{2} a_{2}{ }^{2}+\iota^{2}\right) x_{3}{ }^{2}=0 .
$$

This is immediately evident, if we elininate out of the equations

$$
\begin{aligned}
& \left(a_{1}{ }^{2} x_{2}{ }^{2}-c^{2} v_{a_{3}}{ }^{2}\right)\left(x_{2}{ }^{2}-a_{2}{ }^{2} x_{3}{ }^{2}\right)=0, \\
& \left(a_{2}{ }^{2} x_{1}{ }^{2}-c^{2} w_{3}{ }^{2}\right)\left(x_{1}{ }^{2}-a_{1}{ }^{2} x_{3}{ }^{2}\right)
\end{aligned}
$$

the quantity x_{s}^{2}.
The coincidences on h_{1} and h_{2} here also originate from the tangents out of H_{1} and H_{2}. Indeed we find for the polar curves of H_{1} and H_{2}

$$
a_{1}\left(x_{1} v_{2}{ }^{2}-a_{3}{ }^{2} v_{1} v_{3}{ }_{3}{ }^{2}\right) \pm a_{2}\left(v_{1}{ }^{2} x_{2}-a_{1}{ }^{2} v_{2} w_{3}{ }^{2}\right)=0
$$

or

$$
\left(a_{1} x_{1} \pm a_{2} v_{3}\right)\left(w_{1} v_{3} \mp a_{1} a_{2} z_{3}{ }^{2}\right)=0 .
$$

From this is evident at the same time that the conics

$$
x_{1} x_{2} \mp a_{1} a_{2} x_{3}{ }^{2}=0
$$

generate the points of contact of the double tangents meeting in H_{1} and H_{3}.
By combining the equation

$$
x_{1}{ }^{2} v_{2}{ }_{2}{ }^{2}-a_{1}{ }^{2} a_{2}{ }^{2} x_{2}{ }^{4}=0
$$

with the equation of C_{4} we find that the eight points of contact of the four double tangents are situated on the conic

$$
a_{2}{ }^{2} v_{1}{ }^{2}+a_{1}{ }^{2} x_{2}{ }^{8}=\left(a_{1}{ }^{2} a_{2}{ }^{2}+c^{2}\right) x_{3}{ }^{2}
$$

7. The curve of Hesse is represented by
$\left(a_{1}{ }^{2} x_{2}{ }^{2}+a_{3}{ }^{2} x_{1}{ }^{2}\right) x_{1}{ }^{2} x_{2}{ }^{2}+\left\{\left(8 a_{1}{ }^{2}{ }^{2} a_{2}{ }^{2}-6 c^{2}\right) x_{1}{ }^{2}{ }_{2}{ }_{2}{ }^{2}-\left(a_{1}{ }^{2} x_{2}{ }^{2}+a_{2}{ }^{2} v_{1}{ }^{2}\right)^{2}\right\} x_{3}{ }^{2}+$ $+\left(a_{1}{ }^{2} a_{2}{ }^{2}-2 c^{2}\right)\left(a_{1}{ }^{2} x_{2}{ }^{2}+a_{2}{ }^{2} x_{1}{ }^{2}\right) x_{3}{ }^{4}+2 a_{1}{ }^{2} a_{2}{ }^{2} c^{2} x_{3}{ }^{6}=0$.

If we eliminate ${x_{1}}_{1}{ }^{2} x_{2}{ }^{2}$ out of this equation and the equation of C_{4},

$$
x_{1}{ }^{2} x_{2}{ }^{3}-\left(u_{1}{ }^{2} x_{2}{ }^{2}+a_{2}{ }^{2} w_{1}{ }^{2}\right) x_{3}{ }^{2}+c^{5} x_{3}{ }^{4}=0,
$$

it is evident that the points which the two curves have in common besides O_{1} and O_{2} are situated on the conic

$$
3\left(a_{2}{ }^{2} x_{1}{ }^{2}+a_{1}{ }^{2} x_{2}{ }^{2}\right)=2 c^{2} x_{u^{2}}{ }^{2} .
$$

The eight points of infflexion of a C_{4} with two biflecnodal points are points of intersection with a conic.

They lie two by two on, four right lines through the point of intersection O_{a} of the four clouble tangents of the first group.

The polarcurve η_{3} of the point (y) is represented by

(575)

As it is toriched in O_{1} and O_{2} by the lines

$$
y_{2} v_{2}-a^{2} y_{3} y_{3} v_{3}=0 \text { and } y_{1} v_{1}-a_{1}{ }^{2} y_{3} v_{\mathrm{a}}=0,
$$

we find that

$$
y_{1} y_{2} x_{1} x_{2}-a_{1}^{2} y_{2} y_{3} x_{2} x_{3}-a_{2}{ }^{2} y_{1} y_{3} v_{1} x_{3}+c^{2} y_{3}{ }^{2} x_{3}{ }^{2}=0
$$

represents a conic η_{2} tonching the polar curve in O_{1} and O_{2}.
If (y) lies on C_{4}, then

$$
y_{1}{ }^{2} y_{2}{ }^{5}-a_{1}{ }^{9} y_{2}{ }^{2} y_{3}{ }^{3}-a_{2}{ }^{2} y_{1}{ }^{2} y_{3}{ }^{2}+c^{2} y_{3}{ }^{4}=0,
$$

i. e. (y) also belongs to $\eta_{y_{2}}$. The tangent (y) to η_{2} has as equation $y_{1} y_{2}\left(y_{1} x_{2}+y_{2} v_{1}\right)-\left(a_{2}{ }^{2} y_{2}{ }^{2}+a_{2}{ }^{9} y_{1}{ }^{\circ}\right) y_{3} x_{3}-y_{3}{ }^{2}\left(a_{1}{ }^{2} y_{2} x_{3}+a_{2}{ }^{2} y_{1} v_{1}\right)+2 c^{2} y_{3}{ }^{3} x_{3}=0$.

As when (x) and (y) are exchanged it determines the polar curve η_{3} it represents at the same time the langent in (y) to C_{4}.
I_{n} each of its points C_{4} is touched by a conic which touches the polar curve of that point in the biflecnodal points.

The curves $C_{\text {, }}$ and η_{9} have two more points in common. If l is their comnecting line, then the pencil determined by C_{4} and $\boldsymbol{\eta}_{3}+l$ contains a curve composed of η_{2} and a second conic. From this eusues: The points of contact of the six tangents out of a point of C_{4} can be connected by a conic.
8. The projective involutions of rays $\left(O_{1}\right)$ and $\left(O_{2}\right)$ have as double rays

$$
\left.\begin{array}{l}
x_{3}{ }^{2}=0, \\
\lambda=-a_{1}{ }^{2}: f, x_{1}{ }^{2}=0 .
\end{array}\right\} \text { and }\left\{\begin{array}{l}
\lambda=0, \quad x_{3}{ }^{2}=0, \\
\lambda=f: a^{2}{ }_{2}^{2}, x_{2}{ }^{2}=0 .
\end{array}\right.
$$

When the double rays $O_{2} O_{3}$ and $O_{1} O_{3}$ are conjugated to each other, their point of intersection becomes a third double point of C_{4}. This takes place when we have

$$
\frac{f}{a_{2}{ }^{2}}+\frac{a_{1}{ }^{2}}{f}=0, \text { or } c^{2}=0
$$

The C_{4} is then represented by

$$
x_{1}{ }^{3} x_{2}{ }^{2}-a_{1}{ }^{2} x_{2}{ }^{3} x_{3}{ }^{3}{ }^{3}-a_{2}{ }^{2}{ }^{2} x_{1}{ }^{2} x_{3}{ }^{2}=0 .
$$

So it has three biffecnodal points. As is evident from the above we can describe in this C_{1} co quadrangles having the three double points as diagonal points.

The double tangents of the first group are now replaced by the tangents in $O_{3}(\$ 4)$. In each of the biflecnodal points the tangents are harmonically separated by the lines to the remaining two double points.

The C_{4} with three billecnodal points have been extensively treated by Lagulires (Nowv. Ann. 2e série XVII, 1878) and by Scioutre (Avchio der Math. vnul Plys. 2e Reine, II, III, IV, VI, 1885-87).

