Huygens Institute - Royal Netherlands Academy of Arts and Sciences (KNAW)
Citation:
J. de Vries, On curves which can be generated by projective involutions of rays, in: KNAW, Proceedings, 11, 1908-1909, Amsterdam, 1909, pp. 576-579
This DDE was made on 24 Sentember 2010, from the 'Digital Library' of the Dutch History of Science Web Center (www.dwo.lmov.ml)
This PDF was made on 24 September 2010, from the 'Digital Library' of the Dutch History of Science Web Center (www.dwc.knaw.nl) > 'Digital Library > Proceedings of the Royal Netherlands Academy of Arts and Sciences (KNAW), http://www.digitallibrary.nl'

Mathematics. — "On curves which can be generated by projective involutions of rays." By Prof. Jan de Vries.

1. By the symbol

$$(a_1x_1 + a_2x_2)^{(n)}$$

we shall indicate a homogeneous form of order n.

By the projective involutions of rays

$$(a_2 x_2 + a_3 x_3)^{(n)} + \lambda (a_2 x_2 + a_3 x_3)^{(n)} = 0,$$

$$(b_1 x_1 + b_3 x_3)^{(n)} + \lambda (\beta_1 x_1 + \beta_3 x_3)^{(n)} = 0$$

a curve C_{2n} is generated in which ∞^1 2n-sides are described possessing in O_1 and O_2 n-fold vertices. For brevity I call such a 2n-side bisingular.

 O_1 and O_2 are *n*-fold points of the curve. The tangents in O_1 form a group of the first involution which is conjugated to the group of the second containing the ray O_2O_1 . These two groups determine a singular 2n-side, where O_1 replaces $\frac{1}{2} n (n+1)$, and O_2 replaces $\frac{1}{2} n (n-1)$ vertices.

If we can describe in a C_{2n} with two n-fold points one bisingular 2n-side it bears an infinite number of those figures.

For, if the indicated 2n-side is represented by the two groups of rays

$$(a_2x_2 + a_3x_3)^{(n)} = 0$$
 , $(b_1x_1 + b_3x_3)^{(n)} = 0$,

and if $x_3 = mx_2$ is one of the rays of the first group, then the substitution must furnish $x_2^n (b_1x_1 + b_3mx_2)^{(n)} = 0$, $x_3 = mx_2$, O_1 being an *n*-fold point. Hence the equation of C_{2n} must have the form

$$(a_2x_2 + a_3x_3)^{(n)}(\beta_1x_1 + \beta_3x_3)^{(n)} = (b_1x_1 + b_3x_3)^{(n)}(\alpha_2x_2 + \alpha_3x_3)^{(n)}$$
. (1)
But then the equation can be formed by elimination out of

$$\begin{array}{l}
(a_2x_2 + a_3x_3)^{(n)} + \lambda (a_2x_2 + a_3x_3)^{(n)} = 0, \\
(b_1x_1 + b_3x_3)^{(n)} + \lambda (\beta_1x_1 + \beta_3x_3)^{(n)} = 0,
\end{array}$$
(2)

and the curve contains the ∞^1 bisingular 2n-sides which can be indicated by these two equations, λ varying.

2. We shall now investigate under which condition two projective involutions of rays will generate a curve C_{2n} with three n-fold points O_k , so that n^2 points of intersection of two conjugate groups of rays are vertices of three different bisingular 2n-sides having each two of the points O_k as n-fold vertices.

In that case we must be able to bring through the points of intersection of

$$(a_2x_2 + a_3x_3)^{(n)} \equiv 0$$
 and $(b_1x_1 + b_3x_3)^{(n)} \equiv 0$

a group of rays

$$(c_1x_1 + c_2x_2)^{(n)} = 0$$

It is now at once evident that this is only possible when the first two equations have the following form

$$a_2^n x_2^n - a_3^n x_3^n = 0, \quad a_1^n x_1^n - a_3^n x_3^n = 0,$$

so that we have

$$a_1^n x_1^n - a_2^n x_2^n = 0.$$

Out of

$$a_1^n x_2^n - a_2^n x_3^n + \lambda (a_2^n x_2^n - a_3^n x_3^n) = 0$$

and

$$a_1^n x_1^n - a_2^n x_3^n + \lambda (a_1^n x_1^n - a_3^n x_3^n) = 0$$

follows

$$(a_2^n x_2^n - a_3^n x_3^n)$$
 $(a_1^n x_1^n - a_3^n x_3^n)$ $- (a_1^n x_1^n - a_3^n x_3^n)$ $(a_2^n x_2^n - a_3^n x_3^n) = 0$ or in transparent notation

$$(a\alpha)_{3}x_{1}^{n}x_{2}^{n} + (a\alpha)_{1}x_{2}^{n}x_{3}^{n} + (a\alpha)_{2}x_{3}^{n}x_{1}^{n} = 0. (3)$$

The tangents in O_a are represented by

$$(aa)_1 x_2^n + (aa)_2 x_1^n = 0.$$

If $x_2 = kx_1$ is the equation of one of these tangents, then the substitution in the equation of the C_{2n} evidently furnishes $x_1^{2n} = 0$. In each of the *n*-fold points each tangent has thus (n+1) points in common with the corresponding branch.

For each value of λ we find a figure consisting of 3n lines (of which however only 3 or 6 are real, according to n being even or odd) and $(n^2 + 3)$ points (of which 4 or 7 are real). (1)

$$\left. \begin{array}{l} \xi_1 = 0, \; \xi_2 = 0 \\ \xi_2 = 0, \; \xi_3 = 0 \\ \xi_3 = 0, \; \xi_1 = 0 \end{array} \right\} \; \text{and} \; \xi_1 = \varepsilon^{k \xi_2} = \varepsilon^{\ell \xi_3}, \; \text{where} \; \varepsilon^3 = 1 \; \text{is.}$$

The three lines $\xi_3 = \xi_2 = \xi_1$, $\xi_4 = \varepsilon \xi_2 = \varepsilon^2 \xi_1$, $\xi_2 = \varepsilon^2 \xi_1 = \varepsilon \xi_3$ contain together the 9 points. They are also indicated by

$$x_1 + x_2 + x_3 = 0$$
, $x_1 + \varepsilon x_2 + \varepsilon^2 x_3 = 0$, $x_1 + \varepsilon^2 x_2 + \varepsilon x_3 = 0$.

The 9 points lying also on $x_1x_2x_3=0$, they are the base-points of the pencil

$$(x_1 + x_2 + x_3) (x_1 + x_2 + x_3) (x_1 + \varepsilon^2 x_2 + \varepsilon x_3) + m x_1 x_2 x_3 = 0.$$

And so here we have found back the canonical equation of C_3 .

39

Proceedings Royal Acad. Amsterdam. Vol. XI.

¹⁾ We have in particular for n=3 a configuration $(12_3, 9_4)$. From this ensues, by the way, that of the configuration $(9_4, 12_3)$ corresponding dually to it only 3 points and 4 lines can be real. From the above it is evident that the 12 lines of the $(9_4, 12_3)$ can be represented by

3. The projective involutions of rays

$$\begin{pmatrix}
(a_3x_3 + a_3x_3)^{(n)} + \lambda x_3^k (\alpha_2x_2 + a_3x_3)^{(n-k)} = 0, \\
(b_1x_1 + b_3x_3)^{(n)} + \lambda x_3^k (\beta_1x_1 + \beta_3x_3)^{(n-k)} = 0,
\end{pmatrix} . (4)$$

generate evidently a C_{2n-k} , which has O_1 and O_2 as (n-k)-fold points and as equation

$$(a_2x_2 + a_3x_3)^{(n)}(\beta_1x_1 + \beta_3x_3)^{(n-k)} = (b_1x_1 + b_3x_3)^{(n)}(\alpha_2x_2 + a_3x_3)^{(n-k)} . (5)$$

The two multiple points are for k > 1 of a particular kind. For the tangents in O_1 are represented by $(a_2x_2 + a_3x_3)^{(n-k)} = 0$, and each of them has as is evident from substitution (k+1) points in common with the corresponding branch of the curve.

For $x_3 = 0$ we find

$$x_2^{n-k} x_2^{n-k} (a_0 \beta_0 x_2^k - b_0 a_0 x_1^k) = 0.$$

Therefore the curve is intersected by O_1O_2 in a group of the involution I_k which has O_1 and O_2 as k-fold points.

If we can describe in a C_{2n-k} with two (n-k)-fold points a bisingular 2n-side having those multiple points as n-fold points it has an equation of form (5). But then it can be generated by two involutions of form (4) and it bears therefore ∞ bisingular 2n-sides.

4. For k = n we find a C_n which will in general not possess any singular points. Yet it is in general not possible to generate a C_n by two involutions of rays of order n. For, the centres O_1 and O_2 of the involutions must be n-fold points of an involution I_n , of which the points of intersection of C_n with O_1O_2 form a group. But then the polar curve of O_1 would have to have (n-1) points in O_2 in common with the right line O_1O_2 , and this is not possible for a general C_n .

But each cubic curve can be generated by two projective cubic involutions of rays. Their centres O_1 and O_2 are conjugate points of the curve of Hesse, for the two double rays which O_1 possesses (besides the threefold ray O_1O_2), bearing each of them the points of contact of three tangents out of O_2 , form the polar conic of O_2 , whilst the rays which complete the two double rays to groups of the involution form the satellite conic of O_2 .

Let us now take inversely O_1 and O_2 as two conjugate points of the curve of Hisse. We regard O_2 as centre of a cubic involution which has O_2O_1 as threefold element, whilst a second group is formed by three tangents the points of contact of which lie in a line r, so that their points of intersection with C_3 are situated on a line s. The line r counted double and the line s we unite to a group of a cubic involution (O_1) having O_1O_2 as threefold ray. We now make the two involutions projective in such a way that the threefold rays correspond, that the group $(\bar{r}rs)$ is conjugated to the group of the three tangents and that finally the groups are assigned to each other which are determined by the rays to an arbitrary point of C_3 . The two involutions then generate a C_3 having with the given C_3 ten points in common, thus coinciding with it.

In each general cubic curve we can thus describe ∞^2 bisingular hexagons.

Their threefold points lie on the curve of HESSE.

5. If the ray O_1O_2 counted double belongs to corresponding groups of the cubic involutions (O_1) and (O_2) , these involutions generate a C_4 which has O_1 and O_2 as points of inflection the tangents of which meet each other on the curve. For, out of

$$a_0 x_2^3 + 3a_1 x_2^2 x_3 + 3a_2 x_2 x_3^2 + a_3 x_3^3 + \lambda x_2 x_2^2 = 0,$$

$$b_0 x_1^3 + 3b_1 x_1^2 x_3 + 3b_2 x_1 x_2^2 + b_3 x_3^3 + \lambda x_1 x_3^2 = 0$$

we find

 $(a_0 x_2^3 + 3a_1 x_2^2 x_3 + 3a_2 x_2 x_3^2 + a_3 x_3^3) x_1 = (b_0 x_1^3 + 3b_1 x_1^2 x_3 + 3b_2 x_1 x_3^3 + b_3 x_3^3) x_2,$ and this is satisfied by

$$x_1 = 0$$
, $x_2 x_3^3 = 0$ and $x_2 = 0$, $x_1 x_3^3 = 0$.

According to the rule found in § 3 O_1O_2 is harmonically divided by C_2 .

Inversely, when two stationary tangents of a C_4 intersect each other on the curve whilst their points of contact are harmonically separated by C_4 , then those points are threefold vertices of ∞^1 bisingular hexagons described in C_4 .

For, in that case the equation of C_4 has the form

$$(c_1x_1^2 + c_2x_2^2)x_1x_2 + (f_1x_1 + f_2x_2 + f_3x_3)x_1x_2x_3 + (g_1x_1 + g_2x_2)x_3^3 = 0.$$
 If we replace it by

$$\{c_1x_1^3 + f_1x_1^2x_3 + (\frac{1}{2}f_3 + Q)x_1x_3^2 + g_2x_3^3\}x_2 + \{c_2x_2^3 + f_2x_2^2x_3 + (\frac{1}{2}f_3 - Q)x_2x_3^2 + g_1x_3^3\}x_1 = 0,$$

it is evident, that the curve can be generated by the pencils

$$\begin{array}{l} c_1 x_1^3 + f_1 x_1^2 x_3 + (\frac{1}{2} f_3 + Q) x_1 x_3^2 + g_2 x_3^3 + \lambda x_1 x_3^2 = 0, \\ c_2 x_2^3 + f_2 x_2^2 x_3 + (\frac{1}{2} f_3 - Q) x_2 x_3^2 + g_1 x_3^3 - \lambda x_2 x_3^2 = 0. \end{array}$$

Here we can still replace $(\lambda + \varrho)$ by μ .