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The only stable solutions are thus those in which 3 and 3’ are
both 180°, and the only solution which satisfies this condition is (6).
This solution, i.e. the case actually occurring in nature, is thus
found to be the only stable periodic solation.

It needs hardly be mentioned that all the proofs given above
suppose, that the developinents in powers of & and m, converge so
rapidly, that the sign of the various quantities used is determined
by theiv first term. What the upper limits of & and m, are satis-
fying this condition, cannot be stated without a special investigation,
but nature teaches us, that for the values occurring in the system of
Jupiter the solution (6) still exists as a stable solution.

Physics. — “Contribution to the theory of binary miztures, XIIL”
By Prof. J. D. vaN DER WaALs.

We have considered the closed curve, discussed in the preceding
Contributions, as the projection of the section of two surfaces, viz.
¢ 2
ilB: 0, and ilE:_—O, constructed on an g-axis, a v-axis and a T
dx? dv?
axis. Let the z-axis be directed to the right, the v-axis to the front
and the 7-axis vertically. The projection of.these sections on the

other projection planes will now also be a closed curve, in general
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with a continuous course. We shall here chiefly consider the pro-
jection on the T, a-plane. This projection will possess a lowest and
a highest point, and be enclosed on the right and on the left between
a minimum and a maximum value of 2, which two values of z are
the same as those between which the v,v-projection is enclosed. But
the highest and the lowest point of the 12-projection is no special
point in the wv,-projection. Only in this v,z-projection the points

d
lp:O and also a line
dv?

mentioned have the property that a line

& ‘
%:O touches this »,a-projection at the minimum or the maximum
o !
temperature. At all temperatures between this minimum and this
maximum temperature the w,z-projection is intersected by a line
ay g a?

j =0 in two points, and also by a line lp:O. But this contact
dv? da?
can take place e.g. for the minimum femperature in a point that
lies either on the left or on the right of the point in which v has
the minimum value, and even, but in special cases, exactly in that

dv
point. So the quantity 7o can be both positive and negative for the
i

point in which 7" is maximum.

This holds also for the point where 7' is maximuwm, but generally
the first mentioned point is of greater importance.

dv .
If for this first-mentioned point - is positive, this is also the case
- &

d o .
with d—v for the point in which = 0 touches the closed curve,
&

dv?
d¢ | dWdo . a
and as Ede_w + _(;ZF d—w = 0, the qua,nﬁty do'de

will be negative in the

d3
point in which 7" is minimum. In the same way the quantity sz:
&

d* . ) .
is positive, apdd—zz is positive for that point because also the line
A

d’lp dB dalp dv
ke 0 touches, and so T +d.v’du?1;

=0, and the contact takes

£l
place in such a way that the whole closed curve lies inside d—l_!’):O'
&

If the minimum temperature should just happen to be in the point

dv
of the closed curve where — =0, we have at the same time
&£

S

"
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i
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2 a*y - dv
&p and ik =0. If, on the other hand % is negative,

dadv da® 2 @ dv

a -
is negative and also ___1_1:
dz?

If the whole curve has contracted to a single point, this applies
also to the two other projections — and for this case it is easy to
express these projections in the value of ¢, and &, and n. Then, as was

¥ E,
found before, @ = —Zﬁl—, and 1 —a= e
n—1 n—

. Then the valune of

1 X ) (72-])2 ‘/EJ ‘/82
— Or equal to I+B orr=1+— (Ve + 1)

Y |l to
— 15 ejua
p 1

R AN
T T Vet Ve

v—b=0, and as we have to do with a point lying on the line

Both for & =0 and for &, =0 is

d
d—p=0, T—=0. A maximum value of » does not occur, but a
v

v
maximum value of 3 does. The easiest way to find this is by retaining
the form:
-1 a(l—a) N

)
b—:l +B=1+ s T no)

1f » could be maximum, then:

db aB
5 "14+B
or
(u—1y L
n—1 [1+(@—1a]*
14+ (n—1)2 1 (n—1)s(1 - 2)
. [+ (r—1)aT*
After reduction we should find #n = 0. But the maximum value of
2 oor of —— =0 ir =1 —a or = !
; or of o requires nx =

If for # and 1 — 2 we put the value V&, and n}’s,, we find as

v
condition & =¢,; and so pi, = pr,. Then the value of 3 is equal

—1) 1)
to 14 1) = @ t1) . When 2 is small, 2 is only little greater
4n dn b

than 1, and so 7' much smaller than 7%. But for very high values
of n, e.g. about 10, the critical volame can be reached, and so 7'
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. .. . . v
can be = 7%. With constantly rising value of n, the quantity 7
can, indeed, increase indefinitely, in which, however, 7" becomes an

ever smaller fraction of 7). The value, however, which & and
. v
g, will have, and consequently the value of z, 7 and 7, cannot be

chosen arbitrarily. Besides that & and &, must have such a value
that the point denoted by them, lies on the parabola OPQ, the
condition must also be fulfilled that «*,, = l*a,a,. For the case that
It =1, the values of & and & are easy to calculate. Then the point
(5, ,&) must also lie on a second parabola, congruent with PQO,
and shifted by an amount 1 along the £ and ¢,-axis in negative
direction. These parabolae having their axes parallel, there will only
be a single point of intersection. The equations which are to be
satisfied, are then:

(81 —n? 82)’2471'(72-—— 1)(81 ——ns,)
and
(81 ——71.282 +nz_ 1)2::4:”'(71 —1)(81_7’“82 —}'7?.-—1).

Then we find:

n—+3
Ve, ——m(ﬂ —1)
and
8nt-1
Ve E iy ¢
8Sn-t1
or a,:ii——g— and 1—m:—ﬂ—~. The value of 7" obtained in
d(n41) 4(n+1)

this case is smaller than the one calculated above if we take &, —=s,.
If <1, & increases, of course, and &, decreases and reversely. A
value of [* might be chosen so that 7' assumes a maximum value,
but to this we come back later on. But in any case the values of
\ ’ d2,q) dz,lp
&, and & may be such that the two surfaces — =0 and —
da? dv
touch only at one single temperature, without intersecting further.
And if n is not very large, this temperature lies very low. Thus from
v—b\*
(T)

the formula MRT = 2%—— - and the supposition =1 we cal-
v

b

T

1
culate for n =2 the value of 1—,:—12 about, and for other values
k

’nm

'rhn
t

e
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0
i

J




( 702 )

T

of [# this value of — becomes but little higher. But ¢, and e, might
k

be such for higher value of n, that v approaches to 36 and 7 to

T%; this might be the case for n —=10. So we see here the following
possibilities for the phenomena of non-miscibility, dependent on the
value of n. For low value of n, contact of the said two surfaces may take
place at so low a temperature that observation is impossible on account of
the occurrence of the solid state. For increasing value of n this tempera-
ture rises, and for a certain value of n, it may have risen to '/, or '/, Tk
and so the observation will no longer be prevented by the appearance
of the solid state. As, if contact takes place of the two surfaces at
certain temperature, two plaitpoinis make their appearance already
at lower temperature, which vanish again at higher temperature than
that of the contact, three-phase-pressure will exist between two tempera-
tures. A precise determination of the value of n at which this is the case,
is not possible, if it were only on account of the fact that we have
not been able to determine what relation exists between the tempe-
rature of contact and that at which the double plaitpoint begins to
appear or disappears, and moreover because we have not been able
to determine how long the double plaitpoint must have been present
before the plaitpoint appears or disappears on the binodal line. But
for small value of n the lowest temperature at which non-miscibility
sets in, can certainly not be observed, at least not if the cause of
non-miscibility is to be ascribed to the circumstance discussed here.

So in the 7z-projection there is only a single point for which
the value of # will be found in the left half, in the case discussed
here. But if we besides draw the 7 z-projection of the plaitpoints
which are the consequence of the existence of the point of contact

d* d?
of 3 191: =0 and d—:P= 0, we obtain again a closed curve. Probably
@ v

the projection of the point of contact lies, especially as regards the
value of 2, very eccentrically with regard to this curve — possibly
even to the right outside it. The lefthand branch of this curve is the
projection of the irrealisable plaitpoints, and these will always have
considerably moved to smaller values of x. But if the projection isa
closed curve, they must rapidly approach the points of the righthand
branch at higher tempevature. However, another case may be expected.
In the case that the projection of the plaitpoints remains below the
curve indicating the course of 717, the closed curve is to be expected —
but if the value of 7' should rise so high that the curve T} = f(z)
would be cut, the lefthand branch of the projection would meet the
ordinary plaitpoint, which approaches from the side of the component
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with the lowest value of 7). The result is then that the projection
of the plaitpoints forms a curve which begins ate = 0and 7= 7%,
rises from there to the highest double plaitpoint temperature, then
falls to the lowest plaitpoint femperature, and ascends again from
there to 7%, This last case has been treated more exiensively
These Proe. Vol. VII. The fransformation of a branch plait etc.

Figure 39 gives a schematic representation of the Z7’z-projection
for the first case. The point P represents the point of contact of

2 2,

d .
the two surfaces d‘f:O and = 0. The full line represents
i v

the locus of the plaitpoinis, the point Pgy is the lowest double
plaitpoint, and P.; is the highest. In the points ¢, and €, the
realisable plaitpoint appears or disappears on ihe binodal line —
and then there is three-phase-pressure betiveen the temperatures of
Q, and @,. The dofted curve, which has its lowest and its highest

/”

ig, 39

e

Hp

U4
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point in @, and Q,, denotes the concentrations of the coexisting liquid
Pphases at every 7, and the curve ,, @, indicates the concentra-
tion of the third coexisting phase (vapour phase). The curve 1% = /@)
has been drawn higher in the figure. -

It follows, however, from the remark, Contribution XI, p. 440,
Vol. XI, that the point P need not even be present, and that yet
the remaining part of the figure, but (hen between narrower tem-
perature limits, may continue to exist. We might even imagine tle
cireumstances to be such that the points P, and Py coincide, but
then @), and @, and (', and @, would have coincided already before.

The second case is represented in fig. 40. Again P is the projection
a2

d
on the Z,a-plane of the point of contact of the two sm-faces% =10
FH

&

and =0 The full cwwve 4 Q, Py Poy Q, B ete. is that of the

dv?

x=0 X=g
Fig. 40.

plaitpoints. The points £ and P are the double plaitpoints, So

-
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there are three plaitpoints between (he temperature of 4, viz. 7,
and that of £y, unless [%; should lie higher than A4, in which case
Py, would take the place of 7% . The curve 7= f(z) is also
inserted in the figure. It will have to intersect the plaitpoint curve
al @< 1, and that twice. The first point has not been indicated by
a special mark, but-the second point of intersection is supposed to
be in the neighbourhood of B. If we draw a p,a-section of the
surface of saturation, and add to it a line indicating the pressure
at which there would be coexistence 1if the mixture behaved as an
homogeneous substance, the extreme point of this line would lie at
the same value of @ as that of the plaitpoint, at the value of 7" of
the second point of intersection just mentioned.

For higher value of 7' we have then again the rule that for a
given mixtare 7),,>> T}, which is generally considered as the normal
case. This being really the case for a very small, and & nearly 1,
when there is intersection of the curves 7 = f(2) and T =9 (z),
this will have to take place twice. For the points @, and @, the
plaitpoint lies on the binodal line, and between the temperatures
@, and @, there is three-phase-pressure. The concentration of the
three coexisting phases is indicated by the dotted line @, Q,Q, Q..
We might call the part (,Q, of this line the vapour branch. The
vapour branch .presents a particularity in the drawing which has
escaped attention so far, viz. that it can contain a point in which
2 has a minimum value. 1 have not drawn this particularity in the
vapour branch of fig. 39, because it is less probable there. This
applying to a circumstance which has not been noticed as yet, and
which is yet mot devoid of importance, a digression to show the
possibility of the existence of such a point with minimum value of
@, may be useful. The more so, because in the discussion properties
will be mentioned the knowledge of which is necessary if we want
to understand the full meaning of-different particularities occurring
for the three-phase-pressure.

Let us call the concentration of the point representing the vapour
phase, #,, and lel «, and x, denote the concentrations of the liquid
phase — and let us put @, <, <2, Now the following equations
hold:

as .
v, dp = (@, — @,) - du, + n,, d1
dw, pT N

and
d*s ,
Vg, dp = (2, — @,) (W)dem, + 7y, 2T
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. For the three-phase-pressure both -equations hold, and we get the

d
value of (7?; for this three-phase-pressure which we shall indicate by

d -
d{;‘ by eliminating d, from these two equations. If we divide the
123

first equations by a, —a,, and the second by z, —,, and if we
subtract the quotients from each other, we get the well-known formula:
P "‘"11_"13 — M
p  x,—e & —a

e} - *
a1 128 v, — Y Vy — Y

X, — & & — 8

in the two equations given

d
If we substitute this value of h'd
1238

dp
2% dl‘ - ‘ ] 1) "hl

dp
vsxmz(ﬂ’s 1)( ) df+ ]n

After division by »,, and v,, we may also write:

we get:

and

(d”g) da,
dp  \de )p7dl + _ag)
Loy

ar 123 U1 or
&2, —a,
and
(d“g) .'z,,,
n.l' (__)
dTua vn__ or L3t
By—a,
or

dp dp dm1+ op
aT..,  \de, )rdT aT)m

if we represent by (dﬁ) and (@—,) the ratio of the increase of
a1’ Jq,, a7l Joy

p and the increase of 7' on the vapour sheet of the surface of

saturation for a section with constant value of » =w,, respectively

for the coexisting equilibrium between the phases 1 with 2, and

d
- (d—};—,)xm, multiplied by

d
1 with 3. So the difference P
dTllB

B y—&

T TR B R e SAmmsast it St s e

-10 -
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indicates- the sign of dz,. In the same way if we change 2 into 3.
Now it is true that the surface of saturation has been greatly modi-
fied by the existence of the three-phase-pressure. But this modifica-
tion is restricted to values of T, between those at which this pres-
sure begins and ends, and also within these limits of temperature,
the surface of saturation consists only of a lower sheet and an
upper sheet, if we leave the metastable and, unstable coexisting
phases out of account. So every section for given value of z, is
again, except for the modifications inside the said limits of tempe-
rature, the well-known figure in which the lower branch passes
continuously into the upper branch. Let us now think the line p,,,
as function of 7 traced in every section. Only for so far this line
lies between the upper and the lower branch of the section of the
modified surface of saturation, the mixture of the chosen value of
@ can split up into three phases. If this line intersects either the
upper branch, or the lower branch, and if therefore part of the
line p,,, lies outside the surface of saturation, this must be considered
as a parasitic branch, at least for the mixture chosen. So the dotted
lines of fig. 39 and fig. 40 represent the values of 7’ for which the
line p,,, intersects a chosen section of the surface of saturation.
And so the question whether in fig. 40 the situation of point @',
is such that another point occurs in the dotted curve for this value
of @, coincides with the question whether there exist sections for

21

which the line p,,, intersects the saturation curve twice. As
- X, — &,

81

and are negative on the vapour branch according to the formula

&y—,
L

for the calculation of d—l a negative value of this quantity is attended

T

d d .
with a positive value of p — p or with the line p,,, entering
ar,,, rd), -
the heterogeneous region with increasing 7. Reversely a positive
de
value of T shows that the line p,,, enters the homogeneous region

with increasing tsmperature, and therefore appears further only as

parisitic branch. Now in the point @', the value of d?) is
128

d
equal to the value of (d—?) , as il is on the section of the surface of
2

saturation for the x of the point @,, as follows if in the formula

d
for ?‘l—r—]}— we put @, -+ dw, for x,, V,4-dV, for_V,, and %, -+ d,
128

-11 -
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for 7,. Then we find namely

M—n. — ('7"1'—'” @_2

dp _ i -“da,

dT:zs— dv, .

V=Y, — (ml_mz)d_"

’7"2
d dv, dm, dv, A
For =2 and —2 we may write (_17_) and (———) because the

&, by Lo/ pT &y /) pT .

phases 2 and 3 then have equal p and 7. Now the point @, is a
liquid phase, and so a point of the upper sheet of the surface of
G)
saturation. In general the value of (a%) for such a point is not
{2
great at low temperatures. But yet it is larger on the whole than

. (% . : .

the value of 37) on the vapour sheet, even for sections for which
x

x is smaller. At least for tempervatures which lie pretty far from

T4, so that there are therefore two possibilities chiefly dependent on

0
the temperature: either the value of (5-‘;,) in the point @, may be
x

or
of =z for the point @', may either run back or proceed.

Over the full width of the three-phase-curve on the right of Q,
the line p,,, leaves the upper sheet of the surface of saturation with
rising temperature. This is also still the case for points on the left
of Q,; but a point will soon occur where the three-phase-curve
passes to the lower sheet. So this point must lie on the “contour
-apparent” with regard to the 7', a-surface; or in other words: it
must be a critical point of contact. Then too the three-phase-curve
still passes to smaller value of & And 'only afterwards a point can
occur where 2 has minimum value, but this only on the lower sheel.
And if the temperature of @ is comparatively low, the vapour
branch of the three-phase-curve will certainly run again to the right
with falling temperature. Accordingly I have drawn the vapour
branch in fig. 39 in this way, though there too the circum-
stance may occur that & runs back. Besides, the circumstance occurs
there that 2 shows minimum and mazimum value for the liguid
phases. The condition for @, whether maximum or minimum is "
(665),,,: (%’T)m:%ﬁ’ if we denote the phase where # runs
back, by 1.

) 0
larger than (2) for the point @), or smaller — and so the value
kA

-12 -
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But let us return after the discussion of these. particularities, to
the treatment of the T, a-projection of the closed curve.

We have already observed that the point P is not found when
a d*
the surfaces C—l—lg,:: and % =0 do not intersect. Reversely P
& v

extends to a curve if the surfaces do not only touch, but intersect.
We obtain the equation of this. closed curve, if we solve the value

of % from the equation:
U= —2- 4 (l+ By=0

dhp d"!’
and aubetltute it in T = =00 e =0. It is simplest to do thisin
@

U
v——b)”
& b
J—).:O or ]lfRT::?a——-— ; or to substitute the value of

dv? ’ b v\
G

b, a /b AN L6 .
-~ in MRT:Z?(; (l——; . If we write ~ in the following

v

form :

b 1xVA—B{4dB _1x VX
~=

1B )
and )
b _BEVA-BIAB B yX
T 1+ B ~ 1+B
we find:
o (B'—3BX+X) = 2B-B +X)/X
MRT =2+ T ()
When X=4—B+A4B=48B §-~—+ 1€ is positive, 7' is

veal, and there are two values of 7 for every value of ». For the
same values of x for which in the v, 2-projection the two values of

v o . . . s e
v coincide, the two values of 7 coincide in the 7', z-projection.

The values of T assume a simple form for these limiting values

2

> B . .
of .z, because then X =0, i.e. MRT = 9 % e B)“’ of course this

value must also hold for the case that these limiting values of a
coincide, which we treated above. We can even simplify this form

-13 -
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of MRT for the calculation and obiain the form:

7 1
MEL b(_1)[+(" Vel 1)
(n_1)=5+(_n—1)21_—7
L v(l—a,)
b2
by writing b—1~— ﬁ(l_%) i B 2
R @

If we seek the maximum value of 7, we find fov the determination
of z an equation of the 34 degree, viz.:

3n—1 83—
(I1—2) 4 2 {1—a)? e on—n’w’zo

-l

. na
and putting = k:
3n—1 3—n

n o

= 0.

. 1
For n=1 we should have £A=1, for n =2 £ =1,22; but for

k 1
very high value of n - approaches to —. This implies that forn =1

1 1
the maximum value of MRT lies at m:E, and for n==o atw=-3—

1 1
For all other values of n 2 lies between g and 3 By the aid of

this value of 2 we can then calculate the highest value of MRT
for the points where X = 0. But the conclusion is not different from
that at which we arrived above: viz. that only with n appreciably
larger than 3 the value of the temperpture can rise to 7% or even
to T} k -

The value which we found in general in equation (1) for the tem-
pelature of the points of the closed curve is too intricate to be fully
discussed. We can, however, foresee what in general the shape of the
T z-projection will be. For a curve of small dimension the point P
of fig. 39 and fig. 40 is to be veplaced by a smaller chosed curve
which extends according as the former curve itself assumes greater
dimensions. Of course the other lines experience the influence of this.
" Thus in fig. 39 the point P, will descend and P, ascend: For
every value of @, so of a, b, B and X, the first part of MRT in

3
equation (1), viz.: 2 i F+xd BHAd-25 indicates the value of the arith-

(L+ By

-14 -
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metical mean, so half the sum of the lowesli and the highest tem-
perature; and the second part, viz. 2 li (2B — B* + X))V X denotes
)

the amount that the really occurring temperatures lie above or below
this middle value. This second part is imaginary outside the limiting
values of z. For between these limiting values of z, X is positive,
and beyond them negative — but the first part exists over the full
width. The course of this first may be given in the main points.
Beginning with =0 and 2 =0 it ends also with this value at
#=1. But for very small value of z or 1 —z, provided it be
outside the limiting values of «, this first part is negative.

For the linfiting values of @, where X =0, it has the above treated

2

a
itive v. MRT =2 — .
positive value 51+ By

values of 2 a value equal to O must occur; we conclude to this by
noticing that if # or 1—= is very smali, B* and XB may be neglected
by the side of B, while X is negative beyond the limiting value of
2. The curve which represents the first part begins with an ordinate
equal to zero, then descends below the axis, but intersects the axis
again before the smallest value of x is reached for which X is equal
to zero, then rises to a maximum value, after which it descends
below the axis, and finally terminates with a value zero.

So if we draw the curve 77 as in fig. 39, this curve is of course
the limit above which 7' cannot rise for any point of the closed
curve. The closed curve being the section of two surfaces which
have each a ‘‘contour apparent” on the 7z-plane, the projection of
the sections cannot fall outside this outline. So the T2-projection can
have either one or two points in common with the curve 7%, in which

But just beyond these limiting

points it must touch this curve. In these points of contact %: 3.
v
If there are two points of contact 5 is >3 between these points.

v
The observation that 7= 3 in the points of contact enables us to

show that this circumstance cannot occur for low value of n. First
of all not for n<C2, because, as we saw Dbefore, v must there be
smaller than §,= 2b,. If we introduce into the equation:

»\? v )
(5) o-a-2f+a+m=0

v
the condition 7= 3, we get:

'4=94_B

48
Proceedings Royal Acad. Amsterdam, Vol. XI,

-15-
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Now

1
b=y :

(n—1)* & Tl

and 4
1
T lde, 1 w¥(lds) 1
(m—1)w ' (n—1) 1—
Let us take two extreme cases: 1. the case that & and & =0;
g5 1 n%, 1
2, + 2
(—1yz | (1) 1—z

=1.

2. the case that

1
In the first case B—= A4, and so B =3 or it must be possible to

1 1 n® 1
2 + = 3;
n—1)Ys  (m—1)Y1l—pg
which values must, moreover, lie between the limiting values of «,
m this case =0 and # = 1. For the roots to be real

SN

find real values for z from the equation :

1 must be >
or
1
n—]— < V3
o1
Ve+1l.
n >
/3—1"
if the sign > is changed into =, there is only one root at
1
3 1
n= = and 1—a =2 l/——. So for n about 3.75 2 will be
n—1 n-—1 3 b

. 1
=3 for 8= if &, =&, =0. Then the closed curve touches the

carve 7% in the Z7la-projection. But then the Jower branch of the
T,-line will have descended to 7°=10. Then we have to expect
fig. 40, however with this modification that Pq, lies at a height =0

and the three-phase-pressure is already found at all low temperatures.
. . ‘s g 1 n’e, 1

In the second case, in which the supposition = ST =

(-1 2  (@-1)"1-2

v
however, involves the assumption that the point for which 7= 3,
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lies at a value of & which is just one of the limiting values of z,

B
——=A and the equation 4=9 A—B yields the value 2 for B.

1+ B

g 1 1 n? 1

0 (n—1)225+ m—1yi—e 2

50 l/?’ fust be > "1, or 7> 10
5 mus e>n_1, or n >10.

Now, however, if we assign values to & and & the condi-
tion of the second case will in general not be fulfilled, and
& 1 n'e, 1
(n—1Fn ' (a—1p I—=z
o 1 —|— we 1 < 1, or equal to 1—e, in which

(n—1)n = (p--1)"1—ua ’ e
e will have a value between 1 (that of the first case), and O (that
of the second case). And the result will then be that the condition

must then yield real values for z, and

will not have risen to 1 — but we shall

have to put

%: 3 will require a vlalue of n which is greater than 3.75, but

which need not rise to 10.

But I shall not continue the calculations required for this. If we
review what precedes, it appears sufficiently: 1 that the case that
three-phase-pressure exists between temperatures that differ little,
may oceur for all values of » — but that if n is small, these two
temperatures lie too low to be observed. It is not possible to give
the exact value of n for which these temperatures if they exist, can
be observed, before the ratio is known between the temperature at
which the two surfaces (jl—:f = 0 and %}) =0 touch, and the tempe-
rature at which the double plaitpoint has appeared or disappears.
9. That for the case of fig. 40 the required value of » may be
estimated as at least 4. 3. That as & and & descend below the
parabola OPQ, the two temperatures between which three-phase-
pressure can exist, diverge ‘further, and that only if & and & (we
only deal with positive &, and e, here) have become equal to O, the
lowest temperature has descended to the absolute zero point.

If we further take into consideration that the point &, & lies on
the curve af,, = I*a, a,, which represenis in &, and &, an ellipse, a
parabola or a hyperbola according as P11 or >1, and that of
this curve only those points which lie in the triangle OPQ (below
the parabola) yield a closed curve which we have treated, we see
that the phenomena discussed do not only depend on 7, but that
besides special relations must exist for @, and a, and «,,, which are
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, L . a 1+e -
represented by & and & positive in the equalions —l::( +11)—2 and
c n—

@y n' | +g,) l W v . .
—G—_W and n—1 >V + nVe,. By far the greater part of
the curve a’,= la,a, lies outside this region, and the occurrence
of the discussed phenomena will, therefore, have to be considered
as comparatively rare. If we descend in the region OPQ, so that
either &, or & or both become negative, then (but the consequence
of a negative value of & and & has not yet been discussed) three-
phase-pressure is to be expectel already at 7”—0. If we go upwards
along the curve a®, =Pa0,, and if we get above the paraboia
with & and s,, there is perfect miscibility. (For the values of & and
&, required for perfect miscibility consult Contribution XI p. 443).
As the upward movement along the curve a*,, = la,a, is attended

. ky . o
with decrease of 232, it follows from this that if in analogous cases
Py
. Dr - . o \
the ratio 2% decreases, we pass from non-miscibility to perfect
pkl
miscibility.

The conclusions in the derivation of which we have supposed to
treat only normal cases, viz. such for which no chemical action takes
place between the two components, or for which each of the com-
ponents behaves normally, are quite corroberated by the observations.
I know only of one exception, namely that the case of fig. 40 occurs
also in the observations of Kuenen for mixtures of ethane and aethyl-
alcohol, etc. In this case we have to put m either below or just
above 2. How it is that the abnormal behaviour of alcohol has here
an influence as if n were increased, cannot be accounted for as yet.
But in the cases of Btcuner for mixtures of carbonic acid and organic
' liquids, for which also fig. 40 gives the course schematically, n will,
no doubt, have the value found by calculation. (Biicaner, Thesis for
the doctorate 1905).

* In conclusion a few remarks.

1. In fig. 30 of Contribution VI I bhave already given the course
of the plaitpoint line for the case of fig. 39, and also of the three-

phase-pressure of 7.

2. The upper and the lower sheet of the surface of saturation
are subjected to some modification in the case of fig. 39 only between
the two temperatures between which there is three-phase-pressure.
The modification for the upper sheet consisis in whai follows. Between
the limiting values of 2 of the dotted closed curve of fig. 39 the
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upper sheet is raised. At the limiting values of & this rise is still
equal to zero.

But for values of #, which differ from these limiting values, the
rise assumes certain values, at first, however, only between tempe-
ratures which differ little. But this is accurately rendered by fig. 39.
The consequence of all this is that if a certain increase of pressure
is applied, e.g. if we observe above the maximum pressure of the
modified liquid sheet, the total non-miscibility has disappeared. If
we lower the pressure, the non-miscibility may reappear but at a
pressure which is only™ slightly less than the maximum pressure
it exists only over a very small range of temperature. In other words
there the dotted curve of fig. 39 has greatly contracted. In this two
cases will no doubt occur, either real minimum pressure occurs, or
the pressure in the. point @ is the highest. At higher temperatures,
however, splitting up into vapour and liquid is still possible.

3. If in fig. 40 the circumstance occurs of minimum value of &
on the vapour branch, there exists for some mixtures, if we take care
to follow the three-phase-pressure, retrogression of the condensation.

For the mixtures which show the above discussed non-miscibility
between two temperatures, both a®, may be >>a, a,, and a’,, may
be < a,a, However if a*, > a, a,, the chance to non-miscibility
is smaller. In this case the points ¢, &, lie on a hyperbola which
intersects the space OP@Q below the parabola close to the point Q:
and as the intersection takes place nearer to Q, the distance between
the parabola and the -axis is smaller. And as-soon as the value of

9

12

would- become so large that the intersection of the hyperbola
a’la'z

with the s;-axis takes place past (), non-miscibility will be quite

a,’ 1 (n?41)

aa,” 4ntt(n—1)
dy dmp

intersection of the surfaces — =0 and
da* v?

For the full discussion of the

excluded. So if

=0 it now remains to

examine the cases with negative values of &, and e,.

(March 25, 1909).
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