Huygens Institute - Royal Netherlands Academy of Arts and Sciences (KNAW)

Citation:

Barrau, J.A, The extension of the Configuration of KUMMER to spaces of [formule] dimensions., in: KNAW, Proceedings, 10 I, 1907, Amsterdam, 1907, pp. 263-270

Mathematics. - "The extension of the Configuration of Kummek to spaces of ($2^{\mu}-1$) dimensions." By Mr. J. A. Barrau. (Communicated by Prof. D. J. Korteweg.)
(Communicated in the meeting of September 28, 1907).
§1. If we represent by S_{1} the system ${ }^{a b b}$, built up out of two letters and by S_{1} the same system in new letters c and d; if likewise we represent by T the system of signs ++ and by $-T$ the opposite $-\overline{+}$, we obtain by connecting these

$$
\begin{aligned}
& S_{1} S_{2} \\
& S_{2} \\
& S_{1}
\end{aligned} \text { and } \begin{array}{rr}
T & T \\
T-T
\end{array}
$$

the two systems

By giving each row of four letters in turn the signs of each row of the system of signs sixteen quadruplets of algebraic quantities appear which, as is known ${ }^{1}$), represent the elements of the $\operatorname{Cf}\left(16_{6}\right)$ of Kumarer whether they are considered as homogeneous coordinates of points or as coefficients of planes in $S p_{8}$. For, to each element are incident the elements of another kind, represented by the three permutated letter quadruplets and for each of them with half of the sign combinations.
§2. If now we call S_{1} and T the letter- and the sign-system of 4 resp. and if we repeat the combination described above suchlike systems of 8 are formed of which that one of the letters furnishes the permutations of a regular G_{s} of order 8^{2}), consisting exclusively of binary substitutions, whilst that of the signs is anallagmatic ${ }^{3}$), i. e. every two rows show as many sign variations as

[^0]sign-permanencies. The systems become (that of the signs somewh differently arranged):

I	a	b	c	d	e	f	g	h
II	b	a	d	c	f	e	h	g
III	c	d	a	b	g	h	e	f
IV	d	c	b	a	h	g	f	e
V	e	f	g	h	a	b	c	d
VI	f	e	h	g	b	a	d	c
VII	g	h	e	f	c	d	a	b
VIII	h	g	f	e	d	c	b	a

1							
2	+	+	+	+	+	+	+
3	+	+	-	-	-		
4	+	-	+	-	+	-	+
5	+	-	-	+	-	+	
6	+	-	-	+	+	-	
7	+	+	-	-	+	-	
8	+	-	-	-	+		

By providing each of the rows of letters with each of the sigı combinations there appear sixty-four octuples of algebraic number to which we assign the notations I1, I 2, VIlI 8. Whether w consider these numbers as homogeneous coordinates of points or a coefficients of equations of $S p_{8}$ in a $S p_{7}$, each element is incident ${ }_{1}$ $7 \times 4=28$ of another sort, namely to half of the sign combination of each letter permutation; so a $C f$. $\left(6 t_{28}\right)$ appears, to be designate by $K^{V I I}$.

As with K^{111} it is possible to combine the $C f$-elements to sin plexes A, B, C, D, E, F, G, H in various ways. Such an arrang ment is i. it.:

	1	2	3	4	5	6	7	8
A	I 1	II 4	III 5	IV 3	V7	VI 8	VII 6	VIII 2
B	I2	II 7	III 6	IV 8	V4	VI 3	VII 5	VIII 1
C	13	II 6	III 7	IV 1	V5	VI 2	VII 4	VIII 8
D	14	II 1	III 8	IV 6	V2	VI 5	VII 3	VIII 7
E	15	II 8	III 1	IV 7	V3	VI 4	VII 2	VIII 6
F	16	II 3	III 2	IV 4	V8	VI 7	VII 1	VIII 5
G	17	II 2	III 3	IV 5	V1	VI 6	VII 8	VIII 4
H	18	115	III 4	IV 2	V6	VI 1	VII 7	Vill 3

The table indicates that eight vertices of e.g. the simplex A an resp. the points I1, II 4 etc, according to the former notation, whil: at the same time the eight opposite side-Sp of the simplex ar represented by those same notations.

The connection of $C f$-elements can now be represented by a diagràm (pl. I) the rows of which indicate the $S p_{8}$, the columns the points, whilst incidence of a $S p_{6}$ with a point is indicated by hatching the square common to the respective row and column.

We see that the diagram can be brought to a more condensed shape:

	A	B	C	D	E	F	G	H
A	S	a	b	c	d	$\stackrel{ }{\circ}$	f	g
B	a	S	g	f	e	d	c	b
C	b	g	S	e	f	c	d	a
D	c	f	e	S	g	b	a	d
E	d	e	f	g	S	a	b	c
F	e	d	c	b	a	S	g	f
G	f	c	d	a	b	g	S	e
H	g	b	a	d	c	f	e	s

Here S indicates a simplex-filling; each of the other letters a system $\left(8_{8}\right)$ denoting the incidence connection between the elements of two simplexes. These systems (8_{3}) have all degenerated into two $\left(4_{3}\right)$, each pair of our simplexes is thus connected in an equal way and forms a $C f\left(16_{10}\right)$ of the same type.
§3. Ànalogous to the well-known decomposition of $K^{I I I}$ into four tetrahedra lying in pairs in a Móbrus-position, it is obvious to call the position of two of the simplexes, e.g. A and B, by that name. Each side- $S p_{6}$ of one S contains three points, so a face, of the other; each vertex of one lies in three side-Sp p_{0}, so in a side-Sp p_{4} of the other; the correspondence is such that opposite elements of A_{1} e.g. vertex A_{1} and side-space A_{1} also furnish opposite elements of B, namely resp. the side- $S p_{4}: B_{1} B_{5} B_{0} B_{7} B_{8}$ and the face $B_{2} B_{8} B_{4}$, just as this is the case with the tetrahedra in Möriosposition.

There exists already however. provided with the same property, an extension of this notion, that of Berzolari ${ }^{1}$) where each side- $S p_{s}$ of one S contains one vertex of the other, and is generated by operation with a focal system on an arbitrary simplex; let us call this position $M I$, then it is evident that the discussed more specialized $M I I$ is to be regarded as a threefold $M I$.

[^1]The elements of two simplexes A and B in $M I I$ can be arranged only in one other way to two sucblike simplexes, namely as
first simplex $P: A_{1}, A_{2}, A_{3},-A_{4}, B_{5}, B_{0}, B_{7}, B_{8}$, second " $Q: B_{1}, \mathcal{B}_{2}, B_{8}, B_{4}, A_{6}, A_{9}, A_{7}, A_{9}$.
If we regard such a new simplex in connection with $C, D, \ldots H$, it then shows with each of these a new sort of position; for all however of the same type, showing analogy to the pairs of tetrahedra in Steiner-position which can be separated in the same way from $\left.K^{1 I I}{ }^{1}\right)$. We find for the $c f\left(16_{10}\right)$ of two such simplexes a diagram of the shape:

$$
\begin{aligned}
& S a \\
& x S
\end{aligned}
$$

where x again represents a system $\left(8_{8}\right)$ which however does not degenerate now, but is identical to the cyclic system which is obtained out of the initial row: 12 . 5 ...
Opposite elements of one simplex furnish, as in $S p_{3}$, no opposite ones of the other.
$\$ 4$. The 28 operations determining in each $c f$-space the $c f$-points incident to them and reciprocally, are focal-correlations; thus e.g. the $S p_{8}: A_{1}$

$$
(+a,+b,+c,+c,+e,+f,+g,+h)
$$

is transformed into the point A_{2} situated in it

$$
(+b,-a,+d,-c,+f,-e,+h,-g)
$$

by operating with the skew-symmetrical determinant of transformation :

$$
\left|\begin{array}{rrrrrrrr}
0 & +1 & 0 & 0 & 0 & 0 & 0 & 0 \\
-1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & +1 & 0 & 0 & 0 & 0 \\
0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & +1 & 0 & 0 \\
0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & +1 \\
0 & 0 & 0 & 0 & 0 & 0 & -1 & 0
\end{array}\right|
$$

These focalsystems are mutually in involution as the group of the letter substitutions as well as that of the sign variations are Abel groups.

The 36 remaining reciprocities are polarities with respect to some 36 quadratic $S p_{0}$, which serve for $K^{V I I}$ as the 10 fundamentalsurfaces of order two for $K^{I I I}$.

[^2]Their equations are of two types; namely eight of the form

$$
\pm x_{1}{ }^{2} \pm x_{2}{ }^{2} \pm x_{3}{ }^{2} \pm x_{4}{ }^{2} \pm x_{5}{ }^{2} \pm x_{6}{ }^{2} \pm x_{7}{ }^{2} \pm{x_{8}}^{2}=0
$$

where the combinations of signs must be derived from the sign system; and twenty-eight of the form:

$$
\pm x_{1} x_{2} \pm w_{8} x_{4} \pm x_{6} x_{6} \pm w_{7} x_{8}=0,
$$

where the connection of the indices is given by the seven binary substitutions of the regular G_{8}, whilst the signs must be selected:

$$
\begin{aligned}
& +++ \pm \\
& ++- \\
& +-+- \\
& +--+
\end{aligned}
$$

The sixty-three operations which transform an element into another of the same sort are collineations; so we obtain, analogous to the Klein G_{32} in $S p_{3}$, a geometrical Abel group G_{128}, consisting of the identity and sixty-thrce collineations; twenty-eight focal systems in involution and thirty-six polarities.
§ 5. The twenty-eight points in each $S p_{\mathrm{e}}$ of $K^{V I I}$ lie on a quadratic Q_{5} and reciprocally.
To prove this we regard the determinant of the terms of order two, formed of seven of the eight homogeneous coordinates; so this is of order $7+\binom{2}{7}=28$. The omission of a coordinate is geometrically the projecting out of a vertex of the fundamental simplex on the opposite $S p_{a}$; if the projections of 28 points lie in it quadratically, then the points themselves do so in their $S p_{8}$.

Let us first restrict ourselves to $S p_{8}: A_{1}$.
The twenty-eight points are to be divided into seven quadruplets of the same order of letters; the purely quadratic terms within such a quadruplet are in each column alike, the mixed ones may differ in sign. Let us call the four terms in a column p, q, r, s, then the substitution
$P=p+q+r+s$
$Q=p+q-r-s$
$R=p-q+r-s$
$S=p-q-r+s$, the $\Delta \equiv\left|\begin{array}{rrrr}1 & 1 & 1 & 1 \\ 1 & 1 & -1 & -1 \\ 1 & -1 & 1 & -1 \\ 1 & -1 & -1 & 1\end{array}\right|$ of which is $=k 0$,
causes three of the four quadratic terms to disappear, the $\Delta_{g 8}$ breaks up into the product of a Δ_{y} of quadratic and a Δ_{21} of mixed terms. Here

$$
\Delta_{7}=\left|\begin{array}{ccccccc}
b^{2} & a^{2} & d^{2} & c^{3} & f^{2} & e^{2} & h^{3} \\
c^{2} & a^{2} & a^{2} & b^{2} & g^{2} & h^{2} & e^{2} \\
d^{2} & c^{2} & b^{2} & a^{2} & h^{2} & g^{2} & f^{2} \\
e^{2} & f^{2} & g^{2} & h^{2} & a^{2} & b^{2} & c^{2} \\
f^{3} & e^{2} & h^{2} & g^{3} & b^{2} & a^{2} & d^{2} \\
g^{2} & h^{2} & e^{2} & f^{2} & c^{2} & d^{2} & a^{2} \\
h^{2} & g^{2} & f^{2} & e^{2} & d^{2} & c^{2} & b^{2}
\end{array}\right|
$$

That in general $\Delta_{7} \equiv \equiv 0$ is evident i. a. from

$$
h=1, a=b=c=d=e=f=g=0 .
$$

The Δ_{21} gets after change of signs of some rows the form:

I.

The sum of the numbers in each column amounts to zero; so

$$
\Delta_{21}=0 .
$$

As each element with the 28 incident to it can be transformed into, any other by means of a direct or reciprocal projectivity, the quadratic position of every 28 is now proved.
§6. Each couple of $S p_{\mathrm{f}}$ of the $c f$ has twelve points in common lying thus in a $S p_{j}$. No other $S p_{6}$ containing these twelve, all these $S p_{5}$ differ and their number is $\binom{2}{64}=2016$. The $c f$-points form with them a $c f\left(64_{3 ; 8}, 2016_{12}\right)$.

There are triplets of $S p_{6}$ which have six points in common, lying thus in a $S p_{4}$, each $c f-S p_{s}$ has namely in still $32 S p_{0}$ six of its points. Such a sextuple can be deduced from three groups of twelve, their number is thus $\frac{2016 \times 32}{3}=21504$; they form with the $c f-S p_{5}$ a cf $\left(21504_{3}, 2016_{\text {r2 }}\right)$.

There are quadruplets of $S p_{0}$ having four points in common which therefore determine a $S p_{3}$; each $c f-S p_{4}$ has namely four of its six points in fifteen other $c f-S p_{0}$. Every $S p_{3}$ can be derived from four $S p_{1}$, their number is thus $\frac{21504 \times 15}{4}=80640$. They form with the of $S p_{4}$ a cf $\left(80640_{4}, 21504_{15}\right)$.
There are sextuplets of $S p_{6}$ having three points of the $c f$ in common, which therefore determine a $S p_{2}$; each $c f-S p_{3}$, has namely three of its four points in eight other $c f-S p_{0}$ more, these eight $S p_{0}$ furnish two by two however the same triplet; as furthermore each $S p_{2}$ can be deduced from $\binom{2}{6}=15 S p$, their number is $\frac{80640 \times 4}{15}=21504$. This could be expected as the whole consideration starting from the $c f$-points might have been put reciprocally, and would then have led on account of the self-reciprocity of the system to the same elements; so still $2016 S p$, are obtained, the right lines of connection of the pairs of points.

The further amounts of incidences of the kinds of elements mutually can now' be easily deduced; the notation of $K^{V I I}$ becomes finally:

	$S p_{0}$	$S p_{1}$	$S p_{2}$	$S p_{3}$	$S p_{4}$	$S p_{5}$	$S p_{6}$
incident to:		64	2016	21504	80640	21504	2016
$S p_{0}$	-	2	3	4	6	12	28
$S p_{1}$	63	-	3	6	15	66	378
$S p_{2}$	1008	32	-	4	21	160	2016
$S p_{3}$	5040	240	15	-	15	240	5040
$S p_{4}$	2016	160	21	4	-	32	1008
$S p_{5}$	378	66	15	6	3	-	63
$S p_{6}$	28	12	6	4	3	2	-

By the method of intersecting and projecting triplets and doublets of consecutive kinds of elements are to be transformed into elements of $S p_{3}$ or $S p_{2}$; thus are formed e.g. a of $\left(21504_{21}\right)$ of points and planes, with $80640 c f$-lnes, and a plane $c f\left(2016_{32}, 21504_{3}\right)$ of points and lines, or reciprocally.
$\$ 7$. If we represent the system of letters and that of signs of 8 resp. by S_{1} and T and if we repeat the combination

$$
\begin{aligned}
& S_{1} S_{2} \\
& S_{2} S_{1}
\end{aligned} \text { and } \begin{array}{lr}
T & T \\
T-T,
\end{array}
$$

we obtain systems for 16 belonging to each other, etc., the operation allowing of indefinite continuation; one always arrives at a regular Abel substitution group $G_{2} p$ and a suitable anallagmatical system for the signs.

These always furnish in $R_{2}{ }^{p}-1$ a $c f$, analogous to that of Kummer with the notation :

$$
C t\left(2_{\left(2^{p}-1\right) \cdot 2^{p-1}}^{2 p}\right),
$$

arising from an arbitrary starting element by an operation with a geometrical Abel group:
the identity and $2^{2 p}-1$ collineations on one hand
and $\left(2^{p}-1\right) .2^{p-1}$ focal systems mutually in involution with
$\left(2^{p+1}-2^{p}+1\right) \cdot 2^{p-1}$ polarities on the other hand.
The quadratic situation of the elements incident to one element can always be proved by reduction of the determinant according to the example of $\S 5^{1}$).

[^3]A. BARRAD. "Analogon of the configuration of KUMmer in $\mathbb{S p}_{7}$."

1234567812345678723456781234567812345678123456781234567812345678

eeedings Royal Acad. Amsterdam. Vol. X.

[^0]: ${ }^{1}$) See a.o. Jessop Line-Complex p. 23 or Hudson Kummer's Surface p. 5.
 ${ }^{2}$) Compare Miller Quart. Journ. 28 p. 255, group 8 No. 4.
 ${ }^{3}$) Lucas Récréations Mathématiques II p. 113; Nieuw Archief voor Wisfunde 7 p. 256.

[^1]: ${ }^{1}$) Rendiconti del Circolo Matem. de Palermo 22.

[^2]: ${ }^{\text {1) }}$ Martinetti, Rendic. Palermo 16 p. 196.

[^3]: ${ }^{1}$) A more extensive treatment also for spaces of other numbers of dimensions will follow in the dissertation to be published: J. A. Barrau, Bydragen tot de theorie der cff. (Amsterdam 1907).

