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Mathematics. — “ZThe section of the measure-polytope M, of space
Sp» with a central space Spy— perpendicularto a diagonal.”
By Prof. P. H. ScrOUTE.

(Communicated in the meeting of December 28, 1907).

We determine the indicated section in three different ways:

1. by means of the projection of 4, on the diagonal,

2. with the aid of the projection of M, on a plane through two
opposite edges intersecting the diagonal,

3. by regarding regular simplexes.

L. The projection of My on a diagonal.

1. We can easily prove both analytically and synthetically the
following theorem:

“The vertices of the measure-polytope M, project themselves on a
“diagonal in n -1 points, namely in the ends of the diagonal and
“in the » — 1 pomts, which divide the latter mnto n equal parts, in
“these n -1 poinis are projected successively

1,ninm—1),....5n(n—1),n,1

“points, where these numbers are the coefficients of the terms
“of (a@—-0)"".

From this general theorem ensue the results for . =—4,5,6,7,8
given in the diagrams added here (see the expanding plate). An
explanation of the sketch belonging to n = 4 will sufficiently explain
the others.

The horizontal lnes of {lus figure always represent the same
diagonal on which the projection takes place; on these ten lines are
successively indicated the projections of vertices, of edges, of faces
and of bounding bodies In order to find space for the figures indicatmg
the numbers, the thick projection-lines have been broken off, where
such was necessary.

If we designate the five points vn the diagonal by a, b, ¢, d, ¢, —
sre the bottom line of the ten horizontal ones — then in these places —
se¢ the topmost of the ten lines —- 1;4, 6,4, 1 vertices are projected
there — bear in mind (1 4 1)*.

On the four equal segments ab, bc, cd, de are projected successively
4,12, 12, 4 edges — think of 4 (1 4 1)°.

In like manner the three equal segments ac, 0d, ce ave successively
the projections of 6,12, 6 faces — think of 6 (1 4 1)

Finally on the {wo equal segments /d, be are projected successively
4, 4 bounding bodies — think of 4 (1 4 1).

33*
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It is easy to deduce from this the results given in the qther
diagrams for n=25,6,7,8, if we keep in mind, that the coefficients
by which (14 1), (14 L)?° (A4 1),_(1 -+ 1) are multiplied are
1,4,6,4 and so by addition of unity at the end pass into a repetition
of (14 1.

2. More generally holds the following theorem, comprising the
preceding:

“The vertices of each bounding M, of M, (p £ n) are projected on
“the diagonal of M, in p--1 successive points of division of that
‘“diagonal ; here again the prajections are distributed according to
“the coefficients 1, p,sp(p—1),... of (¢ + O) over these p 41
“successive points.”

The vertices of a bounding square are projected in three of the n-1
points, which naturally demands the division 1, 2, 1. The vertices of a
bounding cube are projected in four of-the n -1 points, which of
necessity must lead to the division 1, 3,3,1 as by the preceding
the division 2,2, 2,2 is excepted.

From this ensues then directly the following theorem:

“The section of a space Sp,—1 perpendicular to the diagonal of 37,
“forming the axis of projection, with the space .Sp, bearing a bounding
“M, of M, is an Sp,~1 in Sp, perpendicular to the diagonal of
“M, connecting the two vertices of M, projecting themselves in the
“ends of the projection of M,.” ')

Bul there is more. If p’ (M) represents the section of a measure-
polytope M, with a space Sp,—1 of 1its space Sp, perpendicular to
one of its diagonals in a point of which the distance to the centre

. . 1
of the diagonal in the diagonal as unity amounts to -~ — p’, from

1
which is evident that p’< —, the two theorems hold:

“For even n a bounding measurc-polytope M, of M, is intersected
“by the central space Sp,—1 perpendicular to the diagonal of M,

1) The indicated diagonmal dp of My is the projection of the axis of projection
d on the space Spp of Mp; so we can obtain the ptojections of the vertices of
My on d by projecting these vertices first in Spp on d, and projecting afterwards
oun d the points found on d, by the preceding means.

As dp and d 1m the edge of M, as unity are vepresented by Vp and V% and

dp is projected on @ asi—’ of d, the cosine of the angle between d and Sp, is

~

1
equal to " Vrp.
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. a . .
“according to an — (#,), where a according to circumstances can
p

“assume for even p one of the% values 1,2, .. .%, for odd p one

—1 —1
“of the ])T values 1,2, ... 29_2_.,,

“IFor' odd n the measure-polytope M, is intersected under the same
Yo -1

““circumstances according to a (M,) where a can assume for

p+1
2

“even p one of the]; values 1, 2,...]_%, for odd p one of the

1
“values 1,9,... 21
We shall now, instead of losing ourselves in further generalities,
give the full results of the diagrams for the cases n—=4,5,6, 7,8
to make clear the above. In order to be able o indicate easily
ratios of measuie we shall suppose the edge of M, to be unity of

length.

3. Case n =4. The space — see first diagram — perpendicular
in the centre ¢ of diagonal a¢ to this diagonal contains the six
vertices of M, projecting themselves in ¢ and cuts — see lines 3

and 4 — no edge; so the section has six vertices. This same space

1
culs twelve faces — see line 7 - according to E(M’) and eight

1
bounding bodies — see lines 9 and 10 — according to g(JVI,,); 80

the section has twelve edges with a length 12 and eight equilateral
triangles as faces. So the section is a (6,12, 8) and, indeed, the
regular octahedron with edges 12.

Case n=>5. We find — see second diagram — thirty vertices
generated by intersection of edges, sixty edges, forty faces and ten
bounding bodies, so a (30, 60, 40, 10). The vertices are of the same

.1 1
kind, the edges have’ as Z(Mﬂ) the length §V2. The forty faces

: 1 1 . .
consist of twenty 5(1113) and two times ten 3 (M), i.e. of twenty

‘ 1
hexagons and twenty triangles, both regular') with sides 0 V2.

1) Where the regularily is obvious — as e g. with lhe triangles by the
equal length of all edges, elc. — the additional “equlateral” or “regular” will
in future be left out.
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3 1
Each of the ten bounding bodies is as — (M,) — compare in the first

diagram the section with a space per pendlculm to ae in the point
" in the middle between ¢ and d — a (12, 18, 8) bounded by four

1
5 — (M) and four —(M ), i.e. by four of the hexavons and four of

the triangles, -and therefore a tetrahedron truncated regularly at the
vertices, 1.e. the first of the equiangular semi-regular (Archimedian)
bodies.

Case n=06. Out of the third of the diagrams we read that.
the section is a (20, 90, 120, 60, 12). All the edges have a
length V2, all the faces are triangles. The bounding bodies are for

one half (30) as — ﬂ]) octahedra, for the other half (15--15) as

u(M o tetrahedra. The twelve bounding polylopes are as g(]'[a) -

compare now again the second diagram — pol:sftopes {10, 30, 30, 10)
bounded by five of the octahedra and five of the telrahedra, which
can be regarded as vegular five-cells, regularly {runcated at the
vertices as far as half of the edges, so as to lose all the original
edges by this truncation.

Case n=". We arrive at a (140, 420, 490, 280, 84, 14).

1

The length of the edges is 51/2, The 490 faces cousist of 210

hexagons and 280 triangles, the 280 bounding bodies of 210 trun-
cated tetrahedra and 70 tetrahedra, the 84 four-dimensional bounding

. . 1
polytopes of 42 polytopes 3 (&) = (30, 60, 40, 10) found already

3 :
under n=>5 and 42 polytopes 0 (21,) = (20, 40, 30, 10) bounded by

five truncated {elrahedra and five tetrahedra .— vegular five-cells
truncated at the vertices as far as a third of the edges. The

. . 5
14 five-dimensional bounding polytopes are as I (4,) polytopes
(GO, 150, 140, 60, 12) bounded by six (30, 60, 40, 10) and six
(20, 40, 30, 10).

Case n=28. Here a (70, 560, 1120, 980, 448, 112, 16) is the
result. The length of the edges is 172, all faces are tiiangles. The
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980 bounding bodies consist of 420 oOctahedra and 560 tetrahedra
" the 448 four-dimensional bounding polytopes of 336 polytopes

2 1
3(M") and 112 polytopes T (M), i.e. of 336 five-cells truncated as

far as half of the edges, found under n =6, and 112 five-cells.
The 112 five-dimensional bounding polytopes are as far as one half

is concerned ZE(MG) = (20, 90, 120, 60, 12) already found above,

1
as far as the other half is concerned 3 (M) = (15, 60, 80, 45, 12)

bounded by six five-cells truncated as far as half the length of the
edges and six five-cells. Finally the sixieen six-dimensional bounding

3
polytopes are as 7 (M,).polytopes (35, 210, 350, 245, 54, 84)

bounded by seven (20, 90,120, 60, 12) and seven (15, 60, 80,45, 12)").
From this all we easily deduce the following general laws :
“The vertices of the section ave vertices of M, for even i, for odd n

they are centres of edges of /,; they are always of the same kind *).”

1
“The common length of the edges is /2 for even n and 5 V2

for odd n; they are always of the same kind?).”

“The faces are triangles for even n, hexagons and (smaller) triangles *)
for odd ».”

“The bounding bodies are octahedra and tetrahedra for even n,
truncated tetrahedra and (smaller) tetrahedra for odd »”. -

“The four-dimensional bounding polyhedra arve five-cells truncated
as far as ha,lfway ‘the edges and five-cells for even =, tive-cells

1) If we had set to work, when enumerating the results, in that sense inversely
that with each new value of % of the bounding polytopes with the greatest
number of dimensions we had de§cended to the vertices, we should have furnished
a geometrical variation of the well known nursery-book : “the house that Jack built”,
Tlowever with two differences. When descending from every one round higher of the
ladder we pass every other time again the same stadia and the ladder is a Jacob’s
ladder with an infinite number of rounds. -

%) That is, in each vertex as many edges meet in the same way, ete.

% The cases n=— odd seem lo be an exception to this, as there are for the
truncated tetrahedra two kinds of edges, namely: sections of two hexagonal faces
and sections of an hexagonal and a friangular face. However, this is only appa-
rently. For, for each edge we find that in the seclion itself always again the
number of faces passing through it of each of the two sorls is steadfast, thus
for n=~5 two hexagonal faces and one triangular one.

"4) We do not mention here, that for =23 only an hexagon appears. Neither
that of the bounding bodies the tetrahedra do not appear for n==¢, etc.

|
|

|

I
I
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truncaled as far as a third of the edges and (smaller) five-cells for
odd n.”
Ete., etc.?). B

The above results are for the greater part given in the general
theorems mentioned above.

II.  The projection of M, on a plane through two opposite
edges cutting the diagonal.

4. For each value of n the indicated projection — see fig. 1 for
n==8 and n=9 — is a rectangle PQQ' P’ with the sides 1 and

P p, B BBP P P P
i

/

/

’ 4‘ T

Q Qé Q5 Q4 Q3 Q,z, Q, Q
72=8

P P P BAP P P P P

B
/
=
D - 642, = ¢
/
/ !
Q ’ Q«7 Q6 Q; Q-4 -A, Q3 Qz Q1 Q
=9
Fg 1.

V'n—i, which is divided by n—2 lines P,Q,, P,Q,, ... Pr_s Qu—es
parallel to the shorter sides PQ, P’ Q' into n—1 equal rectangles.?)

1) We break off here because not until the third division do we indicate that
everything making its appearance in the section can be regarded as simplex or
truncated simplex. -

- The symbol which indicates the numbers of vertices, edges, faces, elc. for
arbilrary 7 is purposely omitted as its form is rather complicated. -

%) To compare the treatise “On the sections of a block of eighlcells, ete.”
(Verhandelingen der K. A. v. W,, vol IX, N. 7).
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The diagonal on which the intersecting space Sp,—1 is at right angles is
one of the diagonals of the rectangle, e.g, PQ’. If the normal erected
in the centre O of PQ’ on this line, representing the projection of
the intersecting space Sp,—1, cuts the side PP’ in A, this point A

1
always lies at a distance ——— from the centre B of PP'. For

. 2V'n—1
in the right-angled triangle AOP we find that B is the foot of the
normal let down out of O on AB and from this ensues AB.BP—=05"

1 1
and therefore 45 :Z : —2—1/ n—1. So A coincides for even n with
the point of division P» and this point lies for odd n in the middle

between Pr—1 and Pat1. From this it is again evident that the
2 2

vertices of the section are vertices of M, for even 7 and centres of
edges of M, for odd n.

In the paper quoted above which restricts itself to the case n=4
we find in a note how we can regard the section under observation
as a “rhombotope” truncated at both sides; the course of thoughts is
as follows. Let us imagine in the direction of the edges PQ, P'Q’
on either side an infinite number of measure-polytopes M, piled on
each- other and let us then remove the measure-polytopes M,_,
projecting themselves on PP, QQ’ and lines parallel to these, with
which the successive polytopes A/, bound each other;then a prism is
formed with A/, as right section. If this prism is intersected by
a space Sp,—1 which projects itself along the perpendicular /; let
down out of O on PQ, the section is thus an M,_;. What varia-
tion does this section A/, of the prism undergo when we substitute
for the intersecting space projecting itself along /, an other one
which projects itself along a line /[, through O, enclosing with /, an
angle ¢? As is easy to see from the figure this variation consists
of a regular enlargement of the perpendiculars let down out of the
boundary of M, on the space Spu.—s, projecting itself in O, which
enlargement means a multiplication of those perpendiculars by sec ¢
and can be regarded as a stretching in the direction of the diagonal
CD. As for n =+, where M,_, becomes a cube, such a siretching
makes a rhombohedron of a cubs, out of M, is formed in general
what we call a rhombotope.

Just as the rhombohedron regarded as a whole passes into itself
when it is revolved 120° about the axis, or — in other words —
just as the axis of the rhombohedron has a period three, the axis
of the rhombotope under consideration has a period m—I1. Let us
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now imagine this rhombotope, for the special case that the projection
of the intersecting space Sp _i — so also the projection of the
rhombotope itself — falls along OA and let us truncate it by the two
spaces Sp,—o standing normal 1o the plane of projection in the ends
A, A’ of the segment 44’ of that projection lying inside the rectangle

and cutting the axis of the rhombotope therefore at right angles; we then

find the required section, to be indicated according io the number of
its dimensions by D,—;. We divectly determine the length of the axis
of the untruncated rhombotope and of D,_;, but before this we
shall deduce some general theorems easy to find.

5. The edges of 1/, project themselves on the assumed plane either
along one of the n lines PQ, P,Q,, P,Q,,... PisQus, P'Q, or
as parts of PP or QQ’. Because the vertices of D,_; must be
vertices of AL, or points of intersection with edges of M, these
points project themselves — compare fig. 1 for n =28 and for
n=9 — for even n exclusively in the ends 4, 4’, for odd =
exclusively in those ends and in the centre O.

From this ensues for » — 2n’ the general theorem:

“The section Djyy—;1 of Msy is a 2n’ — 1-dimensional prismoid
with respect to each pair of opposite bounding spaces Spiv—e and
so in 2n’ ways’.

Here follow two theorems holding for-arbitrary =:

- “Bach line through the centre O normal to two opposite bounding
spaces Spa—s is axis of 0, with the period n—1.”

“Fach space Sp,—o through O parallel to a bounding space Sp,—s
divides 0,—, into two congruent 7 — 1-dimensional prismoids.”

In the demonstration of these three iheorems the entire equivalence
of a pair of opposite bounding spaces Sp,—» with any other pair
has the chief part; moreover the third causes us to inquire how
the space Spy—e through the cenire parallel to a bounding space
intersects D,—1. We prove as follows that this section is a D,_a.

If the projection [ of the intersecling space Sp,— revolves round
0, the SpiZs normal to the plane of projection in O remains in
its place and Sp,—: thus describes a pencil with this Spflolg as axial
space. Therefore then the varying section keeps going through the
section of Spf?_’_q with M,. We can easily know the nature of this
section of n — 2 dimensions by regarding the case in which / coincides
with /. Then our D,—; is an M, and this measure-polytope
projecting itself along /, is intersected according to a D,—_s by the

space Spf,o_)g, which is in O normal to the plane of projection and-
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which therefore bisects the diagonal CD of this M,—,. This D, s
the section of D,—; with the space Sp,,_g, through O parallel to

the spaces Sp,,_g, which are in 4, and 4’ normal to the axis and
which (runcate the rhombotope. So we find:

“Each space Spff’lg through the centre O parallel to a bounding
space Sp,—e intersects D,_; according to a D,_o of which O is
again the centre.”

From this follows again more generally -

“Hach space Sp()’O < p<n—1) through the cenire O parallel
to a bounding space .Sp, intersects D accordng to a J,_, of which
O is again the centre”. . .

Thus we find ascending from below :

“Each chord of D,_, through O parallel to an edge has a
length 12, each plane through O parallel to a face intersects D,—,

~

. oo 1
according to a regular hexagon with sides 5]/ 2, each space through

O parallel to a bounding body intersects [),_, according to a regular
octahedron with edges 12, ete.”

6. We retrace our steps and deterinine of the above mentioned rhombo-
tope the length of the axis before and after the truncation. Out of
the similitude of the triangles AOB and POC follows in connection

with the length l/n l/n, — of OC,OP, OB for O4 the value

o1
2{n —1)

Vau(n—1) and so for half of the unmutilated axis which

r
is m—1 times as large EV”' (n—1). If we represent by Rhy (q, r]

a rhombotope with p dimensions of which g is the length of the axis,
» are the parts of the axis removed by the truncation, the section D,

— 2
has to be represented by the symbol Ri,—i [Vﬂ (n—1), —_“—7(1 — 1)]

So the theorem holds:

“We obtain the section D,_, if we allow the measure-polytope
M, to pass in the indicaled way by stretching in the direction of
a diagonal as far as V/n times the original length into a rhombotope
with a length of axis V' (n — 1) and if we truncate this rhombotope

by two spaces Sp,—s.normal to the axis to a

-10 -
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R/L,,,1LV71 (n— 1)y —— 5 (n ):] )

III. Ezplanation i details of the connection of D,—

with regqular and reqularly truncated simplexes.

7. We consider in the space Spn a rectangular system of coordinates
with an arbitrary point O as origin and OX,, 0X,,... 0X, as axes,
and we now call the 27 part of thal space which is the locus of
the point with only positive coordinates the “n-edge O (X, X,... X.)".

If A, A’ are two opposite vertices of a measure-polytope ]ljn of
Sp, and if Ad4,, 44,,... A, are the edges passing through 4 and
A4 A4, ... A’4A’, the edges parallel 1o these but directed
oppositely, then M, can be regarded as the part of the space Sp,
common to the twon-edges A4 (4, 4,...4,)and 4’ (4’, 4", ... 4",).

If we intersect this figure of the two oppositely orientated n-edges
and the measure-polylope 3/, common to both by an arbitrary space
Spa—1, the two n-edges are intersected along two oppositely orientated
simplexes and the section of M, with that space Sp,_1 appears as
the part of that space that is enclosed at the same time by both
simplexes situated in that space. If the selected space is normal to
the diagonal A4’, connecting the vertices of the n-edges, the simplexes
are regular and they have the point of intersection . of the intersecting
space Spa—1 with AA’ as common centre of gravity. So the general
theorem’ Lolds :

“The section of M, with a space Sp.—i normal to a diagonal
can always be regarded as a part of thal space Sp,— enclosed by
two definite conceniric, oppositely orientated, regular simplexes of
that space”.

If we wish to make use of this theorem we must determine in a
more detailed way the length of the edges of those oppositely orien-
tated regular simplexes wilh common centre of gravity.

8. If we think the intersecting space Sp,,_l to be normal to the

1) This theorem shows distinctly why the sections of an octahedron parallel to
two faces must be identical to those of a cube by planes normal to a diagonalin
points of the middle third part of that line. The same in other words: If we
truncate a cube with the unity of edge at two opposite vertices by planes normal
to the connecting line in the points dividing this diagonal into three equal parts
and if we compress an octahedron with edges 2 in the divection of the norma)
on two parallel faces as far as halt the thickness, then we cause lhe same solid
to be generated in {wo different ways.

-11 -
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{

1
diagonal AA’ in the first point of division 4,, at a distance — y'n
n

from A4, the section is a simplex with edge V2. So the two sim-
plexes, generated when an arbitrary point P of AA’ is substituted
for point 4,, have edges of a length of APV'2n and A’ Py n,
wherefore we indicate them, also with reference to the number of
vertices, by S, (4APV'2n) and S, (4’ PV 2n). So the theorem holds:

“If we shove an M, of which the diagonal 44’ is normal to a
given space Sp,—i, in the direction of that diagonal through that
space Sp.—1, so that the spaces Sp.— of the bounding polytopes
M,_, move parallel to themselves, the section of Sp,—; with the
moving polytope I, is at every moment the part of that space
Spn—1 that is enclosed within two concentric, yet oppositely orientated,
regular simplexes .S, (pV/2n) and S, (p’V'2n) where p and p’ are
connected in such a way that the sum p 4 p’ is equal fo V/n.
During that movement of A/, the common centre of gravity of the two
simplexes remains in its place and the spaces Spn--2 of the bounding sim-
plexes S,—i and §’,—; move parallel to themselves; whilst simplex
S, expands itself from this common centre of gravity to a simplex
Sy (nV'2), simplex S’» inversely contracts from a simplex &', (n1/2)
to this point”.

At the momeni when this process has got halfway and the two
simplexcs are of the same size we find:

“The section D, is the part of the intersecting space Sp,—
enclosed by two definite equal concentric yet oppositely orientated

1 1
regular simplexes S, (? n 1/2) and S» (E 7 |/2) J’
Thus for n =3 the regular hexagon with sides —2—|/2 is the figure

3
enclosed by two triangles with sides —2—|/2 — think of the well-

known trademark —, thus for » —=4 the regular octahedron with
edges V2 is the figure enclosed by two telrahedra with edges 212 —
think of the two tetrahedra described in a cube and the octahedron
common to both. So in general the problem in the space of n
dimensions is reduced to another problem in space of n—1
dimensions and moreover the connection of the result with regular
simplexes is explained.

If we think the simplex S» to be white and the simplex S, to
be black, the n bounding spaces Sps—s of D, originating from S,
will be white, those originating from .S, will be black. From this
ensues that it must be possible to colour the 2n bounding spaces

-12 -
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Spp—s of Dy—y in such a way in torns white and black, that two
opposite bounding spaces” Sp,-o have a different colour. The octa-.
hedron is really the only one of the regular bodies that allows this
operation. )

9. TIf the simplex S expands from a point to an S,(n)/2) and
at the same time ', contracts from an S, (n}/2) to a point, then
S, lies at the beginning of the process within S’ and at the end
inversely &', lies within S,. Gradually first the vertices, then the edges,
then the faces, ete. of S. have passed outward. We shall now in-
vestigate when that takes place.

From the diagrams of the expanding plate given in the first part
it is evident, that the section of M, with a space Sp.—1 changes its
nature when the point of intersection P of that space Sp,— ‘with
the diagonal AA’ passes one of the m — 1 points of division
A,, 4,,... As the nature of the section of course also changes when
bounding elements of S’x lying mside S, pass outward, the latter
must take place at those moments when those points of division of
the diagonal A4A’ of the moving M, pass through the fixed space
Spu—1 . This theorem then really holds:

“In the translation of M, i the direction of A4’ through the
space Spy—1 in succession the vertices, the edges, the faces, bounding
bodies, ete. of S, come entirely outside S', at those moments that
the point of intersection P of the diagonal AA’ with the space
Spa—1 coincides successively with the points of division 4,, 4,, 4,,
4,, ete”

We regard — in order to prove this theorem — the arbitrary
stadium of the simplexes S.(APVY'2r) and S.(4'Py2n), divide
the n vertices of S, in an arbitrary way into two groups § and y
of p and m—p points, and indicate by § and 4’ the groups of the
p and n—p corresponding vertices of Sy, by B, C, B, (" (fig. 2)

the centres of gravity of the point-groups 8,v,8,y — 1e. the
¢ B P B ¢
Fig. 2.

1) In contradiction to this seems that for 7 =5 through each edge threc faces
pass and thus ¢hree bounding bodies (12, 18, 8) lie around it. This contradiction
however is only apparent; it is annulled by the remark that two bounding bodies
(12, 18, 8) having a face in common agree or differ in colour according to the
face being triangular or hexagonal. Of the three faces one is tuiangular, two are
hexagonal; the bounding Eodies to which the two hexagonal faces belong, differ
in colour from the Lwo others, these agreeing in colour.

-13 -
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centres of the bounding simplexes S, Si—p, &), 8 .—p With these
points ag vertices. Then the five points B, C, B/, C’, P lie in such
a way upon the same right line, that B and C’ lie on one side of
P and B’ and C on the other side, and we have
p BP=(n—p)PC AP BP CP
(n—p) C'P= p.PB "PA T PB T PC
We can now assert thal the bounding simplex .S, of the vertices §
of S, lies entirely or partly inside .S, when B is between C'and P,
whilst S, lies entively outside .S, when C' lies between B and .
In other words. as AP increases, the bounding simplex S, of S,
comes entirely outside S, when B coincides with C' and the spaces
Sp,— and Sp,—,—1 of S, and Sy, crossing each other in general
entirely perpendicularly, become incident because they get the point
B = (", then common centre of gravity, as point of intersection.
Under the condition BP = C'P follows from the equations
BP n—p PC AP
PC~ p 'CP  PA
the relation .
(n—p) AP =1p . P4,
which shows that P must coincide with the p** dividing point A,
of A4

10. If P coincides with 4, the spaces Sp,—1 and Sp,—p— of
S, and ., have, as we saw above, the common centre of S, and
Sy—p in common. As this point of intersection of .S, and 8,

becomes vertex of the section, — if we call this again 8(Zl[,,) in
n
connection with preceding investigations — the theorem holds:

“The centres of the (;) bounding simplexes S, of a regular simplex

SypV'2) form the vertices of a polytope congruent to %(M,,) for

p=1,2,..., n—1.7
For even n=2n' we have specially:

2’
“The centres of the ( ,) bounding simplexes Sy of a regular
n

L3

simplex Sow (22) form the vertices of a Day_;.”

11. If P lies between A, and A4,y the vertices of the section
of the two simplexes S, and S', are furnished by the points of
intersection of each bounding simplex S,4. of S, with the p4-1

-14 -
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bounding simplexes S, of .S, which have the property of counting
among their n—jp verlices only one vertex corresponding to a vertex
of this S,11; in each bounding simplex S,11 these p 41 points of
intersection form the vertices of a new regular simplex S,41 which
js concentric to the assumed oue but oppositely orientated. We
determine the length of the edges of this new simplex, for the definile
case that P lies just in the middle between A, and 4,4, with the
aid of reflections in quite close connection with the preceding.

¥ B, CB,C (fig.3) are succesavely the centres of gravity of

:’

M
N
P C
Cl, BW ‘B '
M
Fig. 8.

the bounding simplex S,4;, of the bounding simplex .S,.,_, of the
remaining vertices of S, and of the bounding simplexes Sy, and
S'u—p—1 of the groups of vertices of S, corresponding with the vertices
of Spq1 and Su—p— these points lie on a same right line through
P again, viz.: B and C' on one side and C and B' on the other
side of P. If furthermore M and M' are corresponding vertices of
Sp41 and S’y these points lie in parallel normals erected in B
and B on BB and the line connecting M and M' passes through
P. The point of intersection N of BM and C'M' is the vertex of
Ep_;_l corresponding to the vertex M of S,4q. From CM and c'M'
being parallel follows

BN CB_(CP—BP

MB~ BC  BP L+ PC’
whilst the relations

AP _BP _CP __ op41
m-ﬁﬁﬂﬁ—Zn--Zp—-—i

and

BP BP n—p—1

PC PC p+1
enable us to express C'P and BP in PC. Substitution gives the
result

-15-
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P. H. SCHOUTE. “The section of the measure-polytope M, of space Spn with a central space
Spy—1 perpendicular to a diagonal.”
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BN . .1 . i
MB 22} + 1 ' G . “‘:--':L‘::'z Iy

" So the theorem holds: . ‘
“If we describe in the spaces ;S’p,) bearing the boundmg simplexes

' 2 2 1 ,
Sy ( p+1 1/2) of a regular simplex , ,,( P ¥ [/2) m_rnplexes .

,,+1( V4 2) concentuc and 0ppos1tely ouenlated to. the onémal ones

..‘,

FO\ odd n =2’ -+ 1 we have in pmtlculzu
“If we describe in the spaces ,Spu , bearing the. bounding simplexfes

, 2n' 41 27" 4- 1 ‘
S ( w1 ‘/9) of a regular simplex Sg,"_}-l( ? +— Vv 2) sim- .

plexes Syt (; 1/2) concentric and oppositely orientated to the ori-
2 i
1

1
In connection with the results found above the length —1/2

5 - 2 ’ -
ginal ones we find the (n’—{-i)( " ) vertices of a..Da.”

appearing here.for the edges of the new amplexes contains a con-
firmation. ’ : \

" Mathematics. — “On five pairs of four-dimensional cells derived
' Srom one and the same source.” By Mrs. A. BooLe Srort
and Prof. P. H. ScHOUTE. :

. (Communicated in the meeting of December 28, 1907).
Introduction.

As -this paper must be regarded as a short completion: of the
handbook of the. “Mehrdimensionale Geometrie” included in the.
 Sammlung ScnuBERT We keep the notation used there.
 We regard in succession each of the six regular- cells. C P
Ciss Cipy Clay, Cipy of the space Sp, and derive from jllese two
new . four-dimensional cells. .The. first, which has' the- centres K, of
the edges of the .regular -cell as vertices is formed by-a vegular
trancation at the vertices as far as the.centres-of the .edges;-the
second is the reciprocal polar of the first with respect 10 -{he<sphe-
rical space of the points K. L I
. 34
Proceedings Royal Acad. Amsterdam. Vol, X. '
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