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Mathematics. — '<“Fourdimensional nets and their sections by
spaces”’. (First part). By Prof. P. H, Scrours.

(Communicated in the meeting of Januz;ry 25, 1908).

Out of the table N
Cs....75°31° 217, C,,....120°, Cpy, ... 144°
Co .. 90° , Gy o0 0120°%, Copy .. .. 164° 287 397/

of the angles formed by two bounding bodies meeting in a face
of the regular cells of space Sp, it is immediately evident thatonly
for the cells C, C,, C,, can there be any question about each
respectively filling that space. 1t is well known, that this is really
the case. In the handbook included in the Sammlung ScrUBERT
“ Mehrdimensionale Geometrie” (vol. II, page 241) is indicated how
the two nets of the cells C), and C,, can be deduced by trans-
formation from the net of cells C,, the existence of which is clear
in itself. We repeat this here in a somewhat different form to add
new considerations to it.

1. Tile points with the coordinates (=1, =1, =1, == 1) are the
vertices of an eighteell Cg-’) with double the unit of length as length
of edge, the origin of the coordinates as centre and the directions
of the axes as directions of the edges. These vertices can be easily
arranged in two groups of eight points, one group of which contains
thie- points with a positive product of coordinates, the otber group
the points with a negative one. Each of these groups has the property
that no two of the eight points are united by an edge. of C'®;
therefore we call them groups of non-adjacent vertices. Let us join
for each of these groups the two points lying in the same face of
C® by a diagonal, then the systems of edges of two cells @V
are generated; as each of the bounding cubes of CQ is circum-
seribed about one of the 16 bounding tetrahedra of each of the two
Og%l/?), we call these last inscribed in ng), where one may be
called positive, the other negative.

Let us now suppose the net of the C, to be composed of alternate
white and black eightcells, so that two C, with a common bounding
body differ in colour — from which it follows, that two C, in
contact of edges do this too, whilst on the other hand two C, in
face or in vertex contact bear the same colour —, and let us assume
that in each white C, is inscribed a positive (), and in each black
C, a negative one; then it is clear that both groups of C,, do not
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yet fill the whole space Sp,. For to make of a C, the inscribed
C,, we must truncate from this measure polytope at each of
the eight vanishing vertices a fivecell rectangular at this point, of
which the four edges passing through this point have a length 2.
Because a vertex which vanishes for one of the sixteen cells C,,
to which it belongs, does this for all, there will remain round
this point sixteen alternate white and black rectangular five-
cells and these will form together a C'(%® of which this point is
the centre. Thus a space-filling for Sp, is formed by three equally
numerous “groups of cells C{®? with the property that all cells
C,, of the same group can be made to cover one another by translation.

To show how striking the regularity of the net of the C,, is we
must suppose three cells C(2“®, of which no two belong to the same
group, to be removed parallel to themselves {o a common centre,
the origin of coordinates. We then see immediately that the vertices
of the three (% together form the vertices of a C{). For

the two inscribed cells C(%® together again furnish the vertices
(=1, =1, £ 1, = 1) of the original eightcell C{») and the coordinates
of the vertices of the third cell (2 are

(+2,0,0,0), (0,4 2,0,0), (0,0,4+2,0), (0,0,0,42),
from which is evident what was assumed (compare *Mehrdimensio-
nale Geometrie”, vol 1I, p. 205).
We shall presently use this observation to trace the connection
between the four groups of axes of the three systems of cells C,,

with the groups of axzes of C, .

2. To transform the net.of the cells C; into a net of cells C,,
we must again suppose the cells of the former alternately coloured
white and black in order to break up each of the hlack cells into
eight congruent pyramids with the centre of the eightcell s common
vertex and the eight bounding cubes as bases. By adding to each
white eightcell the eight black pyramids having a bounding cube
in common with it, the net of the cells C() is generated; in reality
to the sixteen vertices of the eightcell supposed to be white with the
'01'igin of coordinates as centre, viz. to the points (=1, &= 1, =1, £ 1)
the eight vertices mentioned above .

(= 2,0,0,0), (0,%2,0,0), (0,0, %=2,0), (0,0,0, == 2)
are added.

The transformation of the net of the C(® into that of C,, can also
take place in the following simple way. Divide each of the cells C/2
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into 16 equal and similarly placed cells C{) by means of four spaces
through the centre O parallel to the pairs of bonnding spaces. Then
divide each of the sixteen parts () (fig. 1) by the space in the
midpoint of the diagonal concurring in the centre O of C{) normal
to this line into two equal halves; here the section as is known is
a regular octahedron 4,, 4,,...4,,. We now direct our attention
first to the half cells C.")surrounding the point O; they form a C{/2).
Of the 24 bounding octahedra sixteen are furnished by the sections
A, Ay .. 4,,, whilst the eight remaining ones are obtained by joining
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Fig. 1.

jin each of the eight ends of the chords along the four axes 0X,,
0X,, 0X,, OX, through O, e.g. in X,, the eight rectangular tetra-
hedra X, (4., 4,5 4,,), where it is clear that in X, eight of those
tetraheda really meet, because we can reverse the direction of each
of the segments X, 4,,, X;4,,, X;4,,. Furthermore we observe that
around an arbitrary vertex A of the original cell also 16 half
cells C{) are lying and that these form in exactly the same way a
CY/®. By this the net of the C() has been trapsformed into a net

of cells Cy/», where the centres and the vertices of the cells C(» -

form the centres of the cells Cg'{” placed in the same way.

It we add to the considered sixteenth part Cg‘) (fig. 1) the three
parts generated by reversing the sign of one of the two axes OX,
and OX, or of both, it is immediately evident that 4,, is the centre
of a face of the original cell C'?. From this is evident to the eye
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the truth of the wellknown theorem, that the centres of the faces
of a C® — and therefore also the centres of the edges of each of
the two inscribed cells (%% — are the vertices of a C{/2. N

3. Before examining more closely the nets of the cells C,, C.,, C,, —
or, as we shall express ourselves, the nets (C,), (C,,), (C,) — in
their mutual connection we put to ourselves the question whether
it is possible to fill Sp, entively with different regular cells. Here
the table given above points to two possibilities. We can either com-
plete the sum of the angles 75°31/21' and 164° 28’ 39" with 120°
to 360° or by combination of one of the {wo cells C,,, C,, with
twice the other arrive at 360°. The latter is however already
excluded by the fact that C,, and C,, differ 1n bounding bodies,
which obstacle does not occur when one tries to arrange the three
cells C,, C,, C,, with the same length of edges around a face.
Yet, though this is possible, neither in this way does one arrive at
the object in view. If the indicated space-filling had taken place then
two bounding tetrahedra of C,, having always a face in common,
would have to differ from each other in this, that one would at the
same time have to belong to a CY, and the other to a C,,, and this
is impossible. For one cannot colour the bounding tetrahedra of a
C, alternately white and black for the mere reason, that the number
five of those tetrahedra is odd. So there is no space-filling of Sp,
where different regular cells appear.

4. We shall now consider more closely the systems of points
formed by the centres of the regular cells of the nets (C,), (C,,),
(C;) which we shall indicate by the symbols (P,), (P,,), (P,,)

Of the systems of points (£2y), (P.,), (£,,),, which we might call
fourdimensional “assemblages of Bravais”, (F,) is the simplest. If the
axes of coordinates are assumed through the centre of a definite cell
C® parallel to the edges of this cell, then () is the system of the
points (2a,, 2a,, 2a,, 2a,) with only even integer coordinates which
we indicate by means of abbreviated symbols by the equation
(P,) = (2a;).

Of the two other systems of points, (P,,) can be most simply
expressed in (P,). Out of the second mode of transformation of the cells
C®) into the cells C¥® it was clear to us that (P,,) is found by
joining the system (P,) to the system of the vertices of the cells
CQ. Now this system of the vertices can be deduced out of (P,) by
a translation indicaled in direction and magnitude by the line-segment
connecting the centre of the eighteell, which served to determine the



( 54:0')r h

system of coordinates, with one of the vertices; thus this system of
vertices is indicated in the same symbols by (24, 4 1) and we find
(P,) =1(2a) 4+ (2a, 4+ 1), i.e. (P,,) is the system of the points with
integer coordinates which are either all even or all odd.

Finally (P,,) is derived from (P,,) by adding to (P,) not the
whole system of the vertices of the cells C@®), but only that half
which is not occupied by the vertices of the inscribed C{2. We

express this by means of the equation P, = (2a,) —}—%(2@1—}—1).

o
Here we have to understand by ~2—(2az -+ 1) that system of points of

which the coordinates are only odd integer numbers under the con-
dition that half the sum is either always even or always odd. Ifin the
cell (® which furnished us above with the system of coordinates
a positive C’%VQ) is inscribed, which for the future we shall always
suppose, then the point (1, 1, 1, 1) is occupied by a vertex of the

1
inscribed (2“4 and so for the non-occupied vertices §(2ai—|—1) half

the sum of the four quantities @; is odd.

If we make the connection between the systems of points (P,),
(Py,), (P,,) in the indicated way, then the number of points of (P,,)
is twice, and the number of points () is one and a half times as large
as that of (Z) and so the fourdimensional volnmes of C;2), ('(2V2), cy®

21
have to be in the same ratio as the numbers1, 33" This can be easily
verified. To make a C(® of ('®) we have truncated at eight ver-
. ., L 2
tices a rectangular fivecell, which 1s—2—1 of Cgf); S0 gof Cgf) remains.

And to make of 0%2) the cell 0(2‘4/2) contained in the former we
have halved each of the sixteen parts C(".

5. By the “transformation-view” of each of the nefs (C,), (C,,) and
(C,,) with respect to a space Sp, of the bearing space Sp, as screen
we understand the interseclion varying every moment, of thisnon-moving
space with the fourdimensional net moving along in the direction
normal to this space. If for this movement we interchange the relative
and the absolute, we can also take this transformation-view to be gene-
rated by the intersection of the non-moving fourdimensional net
with a space Sp,, moving along in a perpendicular direction and
remaining parallel to itself; there we can again assume that this
view is observed by one who shares the movement of the space
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Sp,. The chief aim of this communication is to indicate how we can
connect the transformation-views of the nets (C,,), (C,,)- with that of
the net (C,), which is by far the simplest. Because the three views
furnish at every moment a filling of the intersecting space, this
investigation can lead to new threedimensional space-fillings, even
though they be not entirely regular.

To be able to design a transformation-view of the net (C,,) we must
know for each of the component cells C, the place of the centre
and the position about the centre; as the coordinates of the centres
of the cells are given above, we bhave only to occupy ourselves
further with the position about the centre. We designate that position
by means of the four diagonals of each C,, and we then notice that
these four lines for each of the two kinds of inscribed cells C,, are

also diagonals — groups of-non-adjacent diagonals — of the circum-
seribed cells C,, whilst for the cells C,, of the third group they are
parallel to the axes of coordinates. -

If we suppose the centre of a cell C(¥%) of the third group to
be at the same time the centre of a cell C;"), the edges of which
are parallel to the axes of coordinates, the C(2'?) is inscribed in this
new eightcell in such a sense, that the vertices of C%® are the
centres of the eight bounding cubes of C({Y. For an obvious reason
we call this C(V? polarly inscribed in C{¥ — and now to distin-
guish, we call the cells of the two other groups bodely inscribed in
the cells 0&8‘2>. For, as was observed above, in each of the eight
bounding cubes of Cgﬁ) a bounding tetrahedron of C(IQGV 2) is inscribed,
whilst each of the vemaining eight bounding tetrahedra of C(V2)
has with respect to each of the four pairs of opposite bounding cubes
of C three vertices of one and one vertex of the other cube as

vertices.

In this way each of the cells C2/? of the net (C,,) is packed
up in a C; as small as possible, of which the edges are parallel to
the axes of coordinates; here the fourdimensional cases of the “erect’”
cells C,, of the third group are cells C g‘), those of the “inclining”
cells C,, of the first and the second group 4re cells Cgﬁ). Whilst the
cases C® of the inclining cells C, fill the space Sp,, the cases
C{ of the erect cells C,, do so eight times, because C{%2 is the

1th . ..
o1 part of O, — as is immediately evident when one divides the

erect C(2?) and its case C{# by spaces through the common centre
parallel to the pairs of bounding spaces of C) into sixieen equal parts
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and when one compares the rectangular fivecell of C%to the
CY of C(¥ —, and the erect C,, together fill a third of Sp,.

In the second mode of transformation of the cells C(® of the net
(C,) into the cells C¢» of a net (C,,) the vertices of the C{/?
concentric to Cg) are the centres of the faces of these C(s2>, from
which it follows that the six centres of the faces of each of the eight
bounding cubes of Cg/ are verlices of a bounding octahedron of
C¥? and so this cell may again be called inscribed — and bodily
inscribed too — in (. Also the remaining bounding octahedra can
be directly indicated with respect to these circumscribed C®); through
each of the sixteen vertices of ({2 pass six faces of this cell, of
which the centres form the vertices of a bounding octahedron
of C{/.)

From the preceding it follows, that the fourdimensional cases, in-
closing the cells C{{® and having edges parallel to the axes of
coordinates, consist of two nets (C,) of cells C@®), which by exchange
of centres and vertices pass into each other.

~

6. We conclude this first part by indicating the connection
existing between the systems of axes of the five diffevent cells
with the origin of coordinates as common centre, which can be
obtained by parallel wanslation of one of the cells ({3, one of each
of the three groups of cells C,2¥® and one of the cells C{'2. We
indicate these cells for brevity by C,, C,, €', C",, C,, where
C,, represents the polarly inscribed sixteencell and (', and ("),
successively the positive and the negative bodily inseribed one. Further
here too — according to the notation of the handbook mentioned
above — FE, K, F, R will denote a vertex, midpoint of edge, centre
of face, cenire of bounding body and therefore OFE, OK, OF, OR
will have to denote the axes converging in these points. Thus OZ,
is an axis OF of (,, OK,, an axis OK of C,,, OF,, an axis OF
of (', ete.

The numbers of axes OF, OK, OF, OR of each of the three
different cells are always the halves of the numbers of the elements
E, K, F, R; they are contained in the following table.

Here C,, of course represenis the three cells C,,, C',,, C",,.

We now indicate the connection of the systems of axes of the

1) By doubling the radii vectores of the six centres of the faces from the chosen
vertex of these C’?) we find the central section normal to the diagonal of this

point.
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OE OK OF OR

o 8 16 12 4
Cye A 12 16 8
Co 9 48 48 12

five cells C,, C, Ch4 Oy Ciy by giving the coordinates of the
points £, K, F, R belonging to ihese concentric cells with respect
to two systems of axes of coordinates with the common centre of
the cells as origin, the systems (OX,) of the four axes OR, and the
system (OT;) of the four axes O, (fig. 2) between which the relations

y, = @+t
5 2y, = @, — & — ot

2ya :—ml'l_w:"—ws"l—‘”-x

y, =—a,—a,+ 2+

exist. ')

Fig. 2.

1) We selected this transformation T, because it causes the octuples of vertices of Cyq
and 'y o pass into each other and those of C"g into itself. It satisfies the condition
T4=—1, so that first 7% gives unity. We find that 7% is a rectangular double-
rotation round O by which (%, %,) passesinto (— a4, %) and {zy, 23) into (— 3, %),
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" We shall now give in Dboth sysiems of  coordinates ‘the coor-
dinates of the vertices of the five concentric cells and we divide in
doing so -— see the following table — the sixteen vertices of C(®
into the eight vertices of (’., and the eight vertices of C"  ; to
that end it is necessary for distinction to indicate whether the product
of the coordinates is positive on negative.

+ Number Coordinates B Coordinates - | §
Cells of 3 g
vertices (043 g o1 &
Cyand C'y 8 (FLELELED |+ (£20,0,0)
Csand %y, 8 FEh£h, £, | — ) (L, £,LLE0) | —
Cis 8 (£2,0,0,0) (44,41 |4
C., 2% (EhLH+1,00 (+1,41,0,0)

With the aid of this it is easy to find both quadruples of coordinates
of the systems of the points K, F, R of the five cells. They are given
in the following table, which after all the preceding is clear in ifself.

5 - -
Cells 5 Coordinates 8 Coordinates o
£4 g g
G| Cis { Cho | C'ys| Cyy Eﬁ (0 x) & ©OY) oy
4
E\2R| E |gRI2R| & |(x1+4,£1,£1) |+ (2000
4
E|2R|ZR| E |2R| 4|(£h£),£040) |~ (&h£,x44)  |—
3 3 3 01 1t 1
K|SF| — | — [3F] 16 | (&1 21, £1,0) (t5454555) -
F| K| K| K| E|12]|(x,+1,00) (4 1,£1,0,0)
1 1 1,1 1
RIE| R | R| R | &|(x4,000) (tpEmEmEs )1+
1 1 1 2 2 2
—- - F|—| F|16 (iﬂi‘g‘;ij;i'é‘)_(ig’i—ti‘gto)
FlF 16 |(+), 40 et FICTILI.
B - (—- J—3)——3!-—3 >+(—— 7:): 3)—3)-—-3 )+
! ) 11
——i—1— K 48, (il:ig)izyo (i')i?)i?)o)

Of course the axes, of which the number is given each time,
agree in nature with the points connected by them with 0. So the

-10 -
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four axes given in the first row are axes O F for C,and (',,, axes
. . . 4
OR for C,, C", and C,,; moreover the coefficients 2, §,20f'

2 R, 4 R 2R indicate that the quadruples of coordinates appearing
in _thls row relate to the point which is obtained by multiplying
the observed axis O R of C,,, C",,, C,, as far as the length from
O goes by 2, %, 2.

With the preceding we have pointed out the position of each axis
of one of the cells of the three nets (C,), (C,,), (C,,) with reference
to each of the two systems of coordinates and so we have furnished
in connection with the preceding the material by which it is possible
to deduce easily all the spacial sections of these three regular nets
connected in a simple way with these axes. To give an example
here already we observe that a. space normal to one of the twelve
axes O F, is normal to0 an axis O I for all the cells of the net (C,,);
if it now proves possible to determine such a space in such a way
that it is equally distant from the centres of all the cells C,, which
are intersected, then in the intersecting space a more or less regular
space-filling is generated by a selfsame body in three different positions.

In a future part we hope to commence with the determination
of the remarkable spacial sections of the nets (C,), (C,,), (C,,).

Mathematics. — “Contribution to the knowledge of the surfaces
with constant mean curvature”. By Dr. Z. P. Bouman. (Com-
municated by Prof. JaN pE Vriks).

(Communicated in the meeting of January 25, 1908).

§ 1. As is known the great difficulty connected with the study
of the surfaces with constant mean curvature is the integration of
the differential equation )

0’4 096
W ovt

The. course followed here leads to two simultaneous partial dlt’fe-
rential equations of order one and of degree two.

In Gauss’ symbols the value of the mean curvature H of a surface
is indicated by

= — sinh G . cosh 8.

2FD — ED"— GD

H= EG — F° ' )
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