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(545 ) .
four axes given in the first row are axes O F for C,and (',,, axes
. . . 4
OR for C,, C", and C,,; moreover the coefficients 2, §,20f'

2 R, 4 R 2R indicate that the quadruples of coordinates appearing
in _thls row relate to the point which is obtained by multiplying
the observed axis O R of C,,, C",,, C,, as far as the length from
O goes by 2, %, 2.

With the preceding we have pointed out the position of each axis
of one of the cells of the three nets (C,), (C,,), (C,,) with reference
to each of the two systems of coordinates and so we have furnished
in connection with the preceding the material by which it is possible
to deduce easily all the spacial sections of these three regular nets
connected in a simple way with these axes. To give an example
here already we observe that a. space normal to one of the twelve
axes O F, is normal to0 an axis O I for all the cells of the net (C,,);
if it now proves possible to determine such a space in such a way
that it is equally distant from the centres of all the cells C,, which
are intersected, then in the intersecting space a more or less regular
space-filling is generated by a selfsame body in three different positions.

In a future part we hope to commence with the determination
of the remarkable spacial sections of the nets (C,), (C,,), (C,,).

Mathematics. — “Contribution to the knowledge of the surfaces
with constant mean curvature”. By Dr. Z. P. Bouman. (Com-
municated by Prof. JaN pE Vriks).

(Communicated in the meeting of January 25, 1908).

§ 1. As is known the great difficulty connected with the study
of the surfaces with constant mean curvature is the integration of
the differential equation )

0’4 096
W ovt

The. course followed here leads to two simultaneous partial dlt’fe-
rential equations of order one and of degree two.

In Gauss’ symbols the value of the mean curvature H of a surface
is indicated by

= — sinh G . cosh 8.

2FD — ED"— GD

H= EG — F° ' )
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As independent coordinates on the surface we choose those which
are invariable along the lines with length zero and we represent
them by § and %. So we find. .

!

D -
H=—2F., whilst =G = 0.

~ Let us multiply both members of the first equation by X (cosine
of the angle of the normal with the X-axis); we then find:
FHX = —2D'X.
But
&z Y)
DX = ——
080y

and moreover?) :
0y dz .
i |0y 0z i \§ 7
On O
where 2, y, z represent the Cartesian coordinates of the surface with
respect to a rectangular system of axes.
So we find

or:

0% H/y z\ \ ,
o 2 (§ n )
and likewise:
=—x(sr) (1)
5507 ACE e e e
0z  Hfazy
5@ T (§ % ) !
Moreover @, y and z must satisfy -
E=G=0,

therefore )
0z\?
2f—=] =0
&)=
0z \?
= (i) =0
on
1) Brance, Vorlesungen iber Differential-Geometrie, translation into German by

Max Luxar, page 89.
% L ¢, page 86.

(1)
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The equations (I) and (II) give back for H =0 the problem of

the minimal surfaces.

H .
For g we shall introduce for brevity the symbol Q.
?

§ 2. To satisfy beforehand (II) we put
0z Oy 0z oz Oy 0z}
ETET Y wm wmT
0z 0y 102" Odz- 0y 10z
8% woE ' om oy
where u and v are functions to be determined of § and .

When we substitute the equations (III) into (I) we find the equations
0z 0a Oy 0y
5% on' 5 and e
derived from (III) must obey the conditions of integrability.

The latter furnish

. . . (IIX)

which % and v must satisfy, whilst moreover

0z 0z

a u a—'g_ a‘v "a-;z

o 08 '’
and

1 0z 1 02

o — 0
which is clear.

Writing out we find ,
du 0z 0%z dv 0z 03z
@) woEt e ®w T
; 1 du 0z 1 0%z 3 1 dv 0z 1 0% (V)
©) Won 3 wiE.on o 9F 9y 9%.9m!
dz Oz Ody

. ;0 dy
If we nciw also substitute the values of -a—g, 572, 55 n 55

3

- H
equations (I) whilst we put @ = — 5 we find :
Ou 1 Ow\oz 1N Q7 1 1\0z 0z
GremEt (D=t Ew
1 /0u 1 0w\oz 1 1Y 0%z 1 1\0z 0z
R GOy ol (et i) 2

Pz Qfu v \0z 0z
08 2\v w /0§ oy’
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From these three last equations we derive directly with the aid
of (IV):

"0u 0z 0%z . .. 0z Oz
@ wET s T Ry
1 0u 0z 1 9%z 1 1\0z 0z

® R R Cr) = B
) 0%z _Q (u v\ 0z 0z
whilst -ag—a’i}— % (7—'7 %.a-—n-l

We can easily show that one of the equations (V") is dependent
on the two others, as is clear.
If we divide both members of (V,2) by «* and if we add (Vh),
we find :
0z 20 Ou
M Qip—u)* Oy’
From (IV,a) follows:
0u 0z Ov 0z 0? w—o™\ Q 0
Ju

z
a_na_é:—(?g;a—n :(v—zt)m:(v—u) —

w
Qs
[

S|

T
<

=

J
By substituting here é—z we find :
Y/

0z 2u ov
08 Qi(v—u? 0
We can now write down out of (//7) the following set of equations:

ox 1 ( 1) 0z — (w*—1) ov N
. —

% 2\ u) %  Qv—u® 05
am_l 1 az_ vi—1 ou l
5%“5( _?)"E_Qm—w"ﬁ
dy 1 1y 02 w41 v
i=a(' ) w =gy L
dy 1 1\ 0 —('+1) ﬁa
37 27(v+5)'—5_ Quv—u® ‘O
az_ . — 2u ov
0f T Qifv—u) 0§
0z . . % Ou |
on T Qiv—up? Oy

So, as soon as u and v are known, the problem will be solved.
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- § 3. In order now (o write down the equations which » and »
must satisfy, we can make use of (I7") and (VI), or we can use
the conditions of integrability.

(IV,a) gives:
Ou 0z —2u  Ov Ou 2w 2  O0u Ou 1 0%
= G ot G iy )
(IV,b) gives:
du Oz —2u  Ov Ou 2u 2 du Ou 1 0%
= % ot G o)
Out of {V/) we find:

6<az) 2 v4u Ou O 2 [ 2 Ou Ou 1 a"u>
% 3 ’

on) " " iQw—wp on 0F T Qe ~w\ (o 0% 3y T o—ndBOn

0 [0z 2v4+u Ou Ov 2u 2 dv Ov 1 0%
a‘z(B‘) = TR0 o %E T iQ(v—u)((v——u)’ 080y ﬁa‘éﬁ)’
and
0%z Q/u v\ 0z 0z 0%z 2 v+ u Ou Ov
ag_an:é?(F"z?)'a—g‘a_n SIVES 88w — T iQ(o—wy® "On ' 0F
The equations given above show that all the conditions of the
problem can be satisfied in the only way by putting :

2  Ou Ou 1 0%u 2  dv v 1 9%

o G, t % oand e 2 OV
(v—u)?0§ Oy +(v -u) 050m _ and (v—1)* 0§ an_l_(v——u) 080y 0
which equations we write in the form :
Ou Ou 0%u
2~ . — —4)— =10
% o T 0T 55,
ViI
9 Ov Ov () v 0 ( )
'a—g . a_)] — \v—Uu agan ey

So the problem is entirely reduced to the integration of these two
sumultaneous differential equations which are of order two and
non-linear.

It is easy to deduce from (VII), that the conditions

0 (am)_ 0 (67}) q 0 ay) 9 (ay)
o\ 08/ ~ &\dn) " am\2g) T \an)”
are satisfied.

We find namely always:
oz  2ww-—1) du Ov oy 20w+ 1) Ou Ov
3y Qiv—u) on 0% ' d%om Qu—u)® ~ oy &’
whilst
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Pz 20w 4w Ou dv
080y iQu—w)® Oy 0§
After substitution we get:

H -
D’:—-z—FandX’—}— ' 4 2t =1,

so that really all the conditions of the problem prove to be satisfied by
the equations (V/[). Thus only the solution of (VZII) is left to be
found.

§ 4. We already know, that for the coordinates § and 7
H
D=—_.F
2 i

must be satisfied.
But moreover follows from the equations of Copazzi®):

0D oD
ﬁ_o and —a-—g—_O
So
D=f ) and D"=f,(m), . . . . (VIII)

where f, and f, are respectively functions of § and # only.

The case that either D or D" is equal to zero offers no difficul-
ties, but nothing remarkable either.

The case that D and D" are both equal to zero, leads, as
is immediately clear, to the sphere as the simplest form of a surface
with constant mean curvature. We can namely write down the
condition for umbilical pomnts, which 1s as follows with the omission
of infinitesimals of higher order : *)

E_F @G
D~ D D"

When for each point of the surface /== G =0 then each powmnt
is an umbilical point, as soon as always D= D"=0, and these
surfaces are (in as far as 1t concerns the real solution) spheves only.

§ 5. We shall now take the matter a little more generally.
Let us regard the total curvature of a surface as a simultaneous
differennal-invariant of both groundforms, we then find?):
1) Biancar, lc. p. 9. In usmg the cooidmates £ and . the CuristorreL
2 2 . H
‘. By making use of D ==y I,

1
symbols are all zero, except z 1 2 and

we prove what was said in the text.
%) See e g. V. and K. Kommerewr, Allgemeine Theorie der Raumkurven und

Flichen, II, p. 21.
%) Brancar, lc. p. 68.
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Total curvature = 1—)‘—9—:—1)— _E — @M =

EG—F" — 4 P
_ L dseor 1 a=(1ﬁ)(
2iF Oy (27’ ?é‘) F 050y
(We notice moreover that, as is direcﬂy to be seen,
2 1 1

—_— T —

F~"r, 2’
where 7, and », are the principal radii of curvature).
Let us now deduce from (V1) the value of F, we then find:
2 Ou Ov

Fome . .,
Q*(o—u)* O 0§
or:

8 Ou Ov

F= H*(v—u)* 0 0§

IX)

We substitute this value of F into (IX) by means of the following

calculations. Out of (V/II) follows
0%u
10F _op* | 2 Ou
Fdy 0w ' v—u 0y
o
0%u 0w Ou Ou Ov

) 2wt
05\ F 0/ 0% ou (v — u)? ’
o
This must be equal to
H Fi(8) - () 2 0w Ov  Hv—u)'fi(§),()
F+ F :_"(v—u)"&—]'_a'é_l— Ou Ov |
. o' 98
and so we find:
0%u 0%u
H.f,8).f,()-0—) _ 007 3.0
8 9}_& 93 T 0g _(Zzi v—u
On 0§ on

The second member can be once more reduced by means of (VII),

and we find:

B A @fme—y _ 2 b
gdu T (v—w) o 0§
oy 0§

38
Proceedings Royal Acad. Amsterdam. Vol. X,
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So
16 OJu O0u dv Ow

o f, )/, (n)=(v__‘;)7'a‘§'a?,'a_§'6_n )

§ 6. Let us now return to equation (V1I). We see immediately that a
38 0v Ou

E—(—v—:;);-a—g 5;2 to vanish, is

solution, which does not cause I'=

given by
u=g@) , v=p@), ’
where ¢ and ¢ are respectively functions of % and § only.
It is elear that equation (IX) is satisfied, when f, (§) = f, () = 0»
so when D= D"=0(§4).
I{ is worth noticing, that when = ¢ (7) and » = W (§) are sub-
stituted into the equation for F', this form becomes a solution of

_H Ly 1 oF
4 —%(Fﬁﬂ

and so this tallies perfectly, becaunse we have here the differential
equation of Liouvirpe. Indeed, the problem of the surfaces with
constant mean curvature always leads to an extended equation of
LiovviLLe, as (IX) does, in whatever way we treat it.

That we really find a sphere here must follow from (VI). These

equations give for w = (3) and » = (§),

1v4u
z:@v—;’
1w —1
w_@ v —u'
. 1 w41
y_———(?v—u’

the wellknown formule for the sphere in minimal coordinates.
We find - .
a* -y +z’=—-1—=—4—
Q’ N

.2
i.e. a sphere with radius 77> 86 i5 necessary.

Now that we have regarded the special case f, (§) =/, (1) =0,
we can pul both functions equal to 1 by introducing new functions
S (&) =28, and f, () = n,,

,which we shall again indicate by & and %. This is of high importance,
if eventually the solution of equation (VII) were to be found.
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§ 7. We can now put the question whether the equations (VII)
can be solved by puiting » equal to f(v), where for the present f
is arbitrary.

From (V1l) can be deduced

0%y 0%u
B, W _
8_12 0v ' Ou Ouw
08 0y 0§ o
For u = f (v) this leads to
Oou , ov
—— :f (’U) . -a—'g,
a"' by Ov 8 /
o =10 g )
So: 0 dv 0 d
‘v iy 92 9% oy O
'a_gs;z' f (v)‘ag' +f (v)'agan—o
dv Ov H()av 0z -
% o 705 o
or
s " dv ov .
7@+ Ol g 7 0)- 555 =
dv Bv v—u 0%
Then, according to (V1I), E T o S50

So:
£ @)+ f () + 2 f”f”()—o

One integral of this is sufficient to recognize the nature of the
surfaces found. We find that satisfies

f@)=—0o?).

1) Prof. W.KapTEYN was so kind as to draw my attention to the following general
solution of the differential equation.

Put
F() =y,
then
v—yd'y
2 do? + ( ) +
Now put B
y=v 4w
S0
dw &’y  dw
=14 — _— = —
dv + "odvr T do?’
50 that

38*

-10 -
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The equations (VII) become
du Ou 0%u dv Jv d%
—_— — =0 d = ——v—=20 ’
0 on  “oBm 0 0Eom o
which are satisfied by a function and iis-opposite. From this we
deduce:

- 08

Therefore e. g.
u == e +o) | v = — ) ().

By quadratures we find out of (V1),
2Qiz = — p(n) + (),
4Qiz =  eHDF9E) 4 o—in) —ol®),
4Qy = — e+ B |- = ¥a)—5(®).
The surface is a cylinder of revolution. Its section with the plane

XOY is a circle, as we find
1 1

3 S e o —
- K + T = 4Q’ — H? *
1
The radius of the circle is therefore e as it has to be.

We can furthermore easily show that our solution agrees with {he
differential equations (/X), when we put

- L&) =/0) =1.

We find namely that the second member becomes zero, so that

1 _H 1/1 1
FoaTa\n e

1

1 171 1
As moreover —=(—-——), as we saw before, », is therefore = co.
Fo2\»r,

§ 8. We can now investigate what in the equations (VII) the
significance would be of a solution w =y (£), if it were possible.

w d*w dw 3 dw 0
12 () e

dw dw__ dp
Let & & Paw
then:
ap
gP o TP+ +2)=0
from which ensues, (_pigl_ = kw? (k = const.)
p+1

For =0 this soluiion gives the one used in the text.

-11 -
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The equation
Ou Ou 0%u
—_ —_ — =0
0¢ oy to—w 2 0k0y

is satisfied by uw =y (§).
So there remains to be integrated

Ov Ov 0%
a—g.gﬁ—(v—u)m:‘O,
when u =y (§). !
We find:
0v

1
a_:§(v—x(§))’ S (E),

with f (&) as arbitrary function of &.

The solution =1y (§) furnishes (see (V1)) the value zero for
g—z,g%zmd%% a—g, g—gandé the wellknown formule are
found back for the minimal curves.

Entirely the same (with exchange of % and », § and %) is found
by putting v =¥, (%).

This solution therefore shows what relations there are between
the minimal surfaces and those under consideration. For the former
we have but to join the two solutions found to get the complete
solution with two arbitrary functions. So we see that the minimal
,surfaces are translation surfaces, generated by moving a minimal
curve out of a set along the various points of a curve out of the
second set; i. 0. w. we have found back the integration of the minimal
surfaces and in the usual form too.

Because of H tending to zero there is in this case no fear of
I becoming O.

+ whilst for

- § 9. Now that the special cases of sphere (plane), cylinder and
minimal surfaces are excluded, the integration of the equations (VII)
would remain. I have not been able to attain more than the lowering
of the order of the two differential equations, which is perhaps a
step onward to a complete solution or, to solutions for definite
series of surfaces.

To this end we put:

0v 1 w, ou 1 w,

— B —

&7 o—u 2 ' dml—uy

where w, and w, are functions of & and 7.

-12 -
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From these we devive, by differentiation with respect to § and
respectively

0%v dv ou 1 s awL
m=(u_u)'w1 '(ﬁ*a)ﬁ-é—(v-—u) ‘W’

0w Ov Ou 1 , Ow,
S (v—u) . w, . (EE_BE) — 5 (v—u) "3

By means of the two non-differentiated equations and by equation
(VI), we deduce from our last equation:

w 0v (av bu) awl
— = | —— v—1

au dv Ou 0w,
and — a.a‘:__w (5;5 )—{-— —(v—u). =2

and

a§
or:
ou 1 dw, v 1 0w
—=—(—u) o — and w, === — —(v—u) . —
w, 2 (v—u) 3 and w, 3 5 (v—u) 3E"
from which ensues:
ow, . Ow
— —U4) = — and — — ) == —.
w, w, (v—u) 5 an w,w, (v—u) 3

So we may put:

w, —-—gb- and w, 3{7

wheve [ is a function of £ and % which has however to satisfy a
new differential equation.

So we have:
dv 1 1 af 1 1 9f
52:60_:7:)_; F) a§ an (v—-—u)’z—‘?a_'q’
whilst moreover :
o°f
g 0Edn
V— U= — W.
0F '3
Out of (VII) follows : .
dv Ov Ou Ou
v——u::ZM and v —u=—2 6§ B*q.
0%y 0%y
050y Edy

-13 -
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o ov 0v
By substitution of v — u, 5 and 5, e thus find :
of Ov of Ou
gy g
- 0%v ’ - 0%u
R 080y
0*/ 0w 0*f Ou
_ 0Edy Oy [ _ 050y 0E
oy A
9Edn O 9o " dE
0% 0*f 0%u 0*f
w__mw T W
o o o
o o CE OF ]
After integration we find :
d0v Of du 0f
= d =
5 on = F,(n) an FERCE =F, (&).
v
Joining these equations to the values of % and g , we find:
n
0v Ou . ou 0v .
-a-’-"'] . a—';l - (’U —_ u) F (’Y]) a;nd ag at (1.7 —_ u) Fl (§).

These equations must be regarded as the intermediate integrals;
they contain the arbitrary functions F, and F,, and it is easy to
prove that by differentiation they lead back to the two equations
(VII) of order two.

It goes almost without saying that F, and F, appearing here are
closely connected to f, and f, appearing in (VIII).

From the equations just found follows:

dv Ov Ou Ou ] .
5;1"6'2'6_”’5—;—_2_(”—“) ‘Fn(n)*Fx‘($))
or
0v O0v Ou Ou
Oy " 08 "om " 0E

w—1

F,(m).F,(§) =
If we compare this to (X), then:
- —4F=(ﬂ)-F1(§)=H’f1(§)fa(ﬂ)-

The first integrals found satisfy therefore all the conditions entirely.
We have transformed our original coordinates in such a way that

-14 -



( 558¢)

f, (&) and f, () both became 1 and so now we can take In accord-
ance with it:

F,(q) = £[z;md F, (E)__I—{z

so that the first integrals become:

0v Ou H \ ou 0v H \
E]- 6’;-1__—@( U) and — ag a§ '4"—1:(1)—-’“),
, or .
ou O0v _ Q Ou Ov Q \
5—7-2.6—"__5(0 u)? a,nda§ 3 —E(v—u) N |

By replacing moreover » —u by s, and v 4« by s, the final
equations hecome :

0s, 0s, 0s,\* _ [ds,\* .
aﬂ) (M) 2Qs," and( ) (55)+2Qsl . (B

These are still to be solved.

Mathematics. — “On the multiplication of irigonometrical series.”’
) By Prof. W. KAPTEYN,

1. If f(2) and @ () are two functions which are finite and conti-
nuous in the inferval from £ =0 to 2 = &, we have
f@=4%a, +acosx 4 a, o822 +....
f@=0b,sinetbsin2a+....
ple)y=4%d,+ ad,cosa +d,cos2....
p@) =V sine +b,sin2a 4 ....
where

2 T 2 w
ay = —ff(w) cos new dw by = —ff (w) sin nw do
4 n

—f w) cosnw do = —f @ (w) sin nw dw.

In the same way the product f @) .9 (w) may be developed, this
product being finite and continuous in the same interval; therefore
f@.o@ =434, 4+ 4,c0s2 -+ A, o822 4 ....
f@.9@ =B, sinz -+ B,sin2a 4 ....
where -

n 2 n o
A, = —;-ff(w)(p(w) cos nw dw, B,,_—_;r—ff(w)go(w) sin nw do.
0

0
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