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Mathematics. — “On fourdimensional nels and their sections by
spaces.” (Second part). By Prof. P. H. Schours.

(Communicated in the meeting of February 29, 1908).

The net (C,).

1. The problem to determine the section of the net (C,) with a
given space can be naturally divided into two parts. The first part
occupies itself with the question, how a series of spaces parallel to
the given one intersects an eightcell; in the second is indicated, how
the section of each of the eightcells intersected by the given space
can be deduced from that section which determines this space in
the eightcell assumed in the first part. Of course the four series of
parallel spaces normal to an axis of the eightcell come here to the
fore and then in the first part of the problem are investigated in
the first place the so-called “transition forms” where the intersecting
space contains one or more vertices of the eightcell, whilst between
each pair of transition forms adjacent to each other a single intermediary
form is introduced, namely that one by the space which bisects the
distance between the two spaces bearing those transition forms.
Grenerally this is sufficient for our end; moreover it is not difficult
to interpolate where necessary other intermediary forms.

In the preceding communication of the same title we have packed
up each of the cells C,, of the net (C,,) and each of the cells C,,
of the net (C,,) in the smallest possible eightcell with edges parallel
to the axes of coordinates, with the intention to connect the spacial
sections of the nets (C,,) and (C,,) with those of the net (C,) by cutting
with each C,, and each C,, also the case C, enclosing these cells.
With a view to this application we add to the above indicated
four series of parallel intersecting spaces {wo others, viz. those
normal to one of the two lines connecting the origin of coordi-
nates with the point (3,1,1,1) and the point (2,1,1, 0); indeed,
these lines are — see the lasl table of the preceding communication
— axes of one or more of the cells C,, and C;, enclosed in a cell
C,. Also for these two new series we resirict ourselves to the forms
of transition and the intermediate forms lying in the middle between
two adjacent forms of transition.

In order to simplify the survey of the sections appearing in’ the
six series of paralle]l spaces we give the results to which the first
part -— the determination of the section with one C; — leads in two
different ways. In the first place we project all vertices, edges, faces,
bounding bodies of the cell C, on the axis normal {o each of the
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six series of spaces to deduce the sections from this tabularly; in

the second place we indicate the sections themselves in parallel

perspective in the eightcell. To each of those two closely allied

modes of transacting an extending plate is given.

- To promote the uniformity we indicate the axes O, OK, OF,
OR by their ends (1,4,1,1), (1,1,1,0), 1,1,0,0), (1,0,0,0).

Then we have to deal successively with the six series

a,4,1,1), d,1,1,0), (,,1,0,0), 1,0,0,0), (3,1,1,1), 2,1,1,0)

and we have now to investigate for each of those six cases the two

parts into which the problem was above divided.

2. Case (1,1,1,1). — This case was, as far as the first part of the
problem is concerned, completely solved in a foregoing study (Pro-
ceedings, Jan. 1908, page 485). Heuce the first part of the first plate
with the superseription (1,1,1,1) OF, is an extension of the fiist
diagram n =4 of the plate given then. In order to be able to indicate
together with the projections of all bounding elements the projections
of the vertices of these elements, which considerably promotes the
insight into the spacial figure, the numbers of edges, faces, bounding
bodies are denoted here outside the scheme on the righthand side. More-
over the sections of the eightcell with the spaces of transition and
the inlermediate spaces perpendicular lo the diagonal of projection
are mentioned tabularly ; here use has been made of a method formerly
(Verhandelingen,volume IX, n°.4) developed in all details which acquaints
us not only with the chavacteristic numbers (¢, £, /) of each section,
but also with the nature of the faces. Thus the central section is a
(6, 12, 8), because it contains 6 vertices and does not cut an edge,
intersects 12 faces and contains no edges, intersects 8 bounding cubes
and contains no faces; this section is a regular octahedron in connec-
tion with which each cube of the two guadruples of bounding bodies
is cut according to an equilateral triangle of the same size. In this
way the adjacent intermediary section is a (12,18, 8), becanse 12
edges, 18 faces and 8 bounding cubes ave intersected, viz. a tetra-
hedron regularly {runcated at the vertices, i.e. the first of the
semi-regular Archimedian polyhedra (Proceedings, page 488) because
four of the bounding cubes are intersected according to regular hexa-
gons, the four remaining ones according to equilateral triangles. Here
the number of edges is found back as half of the total number of
sides of the faces, thus 12 as half the product of eight and thvee,
18 as half the sum of four times six and four {imes three. Moreover,
when indicating the polygons lying in the faces, we have underlined
the figure of each group of regular polygons.
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The second plate indicates the obtained sections in parvellel per-
spective. The first diagram on the top lefiside, represents an eighicell
which indicates besides the diameters normal to the different series
of parallel intersecting spaces a few other lines appearing in the
solution; for our case (1, 1, 1, 1) to which the fomr following
diagrams refer the axis £/’ is this diameter. To characterize
this case the mark (1,1,1,1) is noted down fo the right at the
4 3 2 : Jaced to
g5 gsl
the left at the top of each diagram indicate the part of the axis
EE lying with E on the same side of the intersecting space. It is
easy to follow in these diagrams the changes in form which each
face of the regular octahedron forming the central section undergoes
when the point of intersection of the intersecting space with the axis
OF moves from O to K. Thus the face lying in the upper cube of
the eighicell, which is at the same time the visible upper plane of
the octahedron vegarded by itself, transforms ifself first into a regular
hexagon, then into an equilateral triangle of opposite orientation, etc.;
if the eightcell is a C), then the sides of the triangles of the first

bottom in the rectangle; moreover the fractions

and thivd diagrams are 2172, those of the lLiexagons and the triangles
of the second and fourth diagrams are /2, whilst the series closes
with the transition form consisting of the single vertex Z to which

.0
the fraction 5 answers.

We now arrive at the question how the remaining eightcells that
are likewise cut by the infersecting space are intersected in each of
the considered cases. To this end we suppose the above intersected
eightcell to be the central one of the netand so we assume the centre
of this'cell to be the origin of the system of coordinates with respect
to which we have determined in the first communication the coordinates
of the centres of the remaining cells in the symbolic form (2a;). The
equation of the central space perpendicular to the axis OF, towards
the point (1,4,1,1) is «, 4+, +a, + 2, =0; the length of the
normal let down out of the centre (2a;) on to this space is there-
fore Za;. So the eightcell with the centre (2a;) is cut by the central
space Zx; =0, when — 2 < Zq; <2, and here the five cases occur
where 2'¢; has one of the values — 2, —1, 0,1, 2. In other words:

.4
if with the central cell the central section 3 makes its appearance,
\ 0 2 46 8
then with the remaining cells the sections —, — - =, = occur and
¢ §8888
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0 8 .- T
no others. The sections 3 zmdg being points and therefore not under

consideration, we find as section of the net (C,) a threedimensional
space-filling consisting of two groundforms, octahedron and teira-
hedron, where the tetrahedron occurs in two positions of opposite
orientation. From a close consideration of ihis result follows now
that the fractional symbols of the intersecied cells furnish in general
differences of multiples of quarters with that of the central cell and

1 3

5
are thus represented by 98y when the symbol of the central

3
.3 1 . . . o
cell is g% g We find then again a threedimensional space-filling

consisting of two groundforms each of which appearing in two
oppositely orientated positions, the first semi-regular Avchimedian
body and the tetrahedron. As we arrive again at cightcell and

C e .2
tetrabiedron when starting from the section g of the central cell, ihe

above-mentioned two cases are for {his series the only ones where
the threedimensional space-filling .consists of two groundforms. In
every other case — as e. g. the one answering {o the fractions
1 5 9 13
16’ 16’ 16° 16
we recommend the designing of the just mentioned quadruplet of
sections as a good practice.

If we exchange the infinite system of cells () by a finite block

— we find four different groundforms and never more ;

of &' cells O forming fogether a @M, if we divide a diagonal of

this block into eight equal parts and if we suppose the block to be
intersected by a space slanding in one of the points of division perpen-
dicular to the diagonal, we then find according to circumstances
either a finife system of octahedva O®V2) and tetrahedra 7€V with
“edges 2172, or a finite sysiem of Archimedian bodies AV and
tetrahedra 702 with edges V2, enclosed in an octabedron, a tetra-
hedron or an Archimedian body of greater size, viz., in the section
of the block Ci* with the intersecling space. In connection with

the notes joined (o the pages 15, 16 and 24 of the study “On the
sections of a block of eighicells, cle.” (Verkandelingen, volume 1X,
n’. 7) we here indicate how large in cach of those cases the number
of the component parls (X2, AV, 7@V 1072 is. We rvestrict
ourselves here (o mentioning the resulls and we only remind the readers
{hat the deduction of these avc based on the aclual conneclion
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between the coefficients of the different powers of # in the development
of (1 424 a*4...4 2*)* and the numbers of cells ({2 of the

block (%) which agree witl each other in projection on a diagonal.

In the following table of results we have separated from one another

. . 1 1
the three cases leading to sections 1 CR) = TV, 3 O = 0@

1 3
and the two cases leading to sections 3 O = 1), 3 (2= A0,

Moreover, the two positions of opposite orientation appearing for
T and 4 arc distinguished from each other as 7}, T, and 4,, 4.,
and then those parts 7702 and A2 get the same foot-index which
answer not only as regards volume but also as regards position of
juncture to the relation
AVD) 44 TV = TV

whilst this index is a p (positive) for 7?2 when this tetrahedron
agrees in position to 772 and ACHW2 and can be taken arbitra-
vily in the third case 023, where the two amounts are indeed
equal. :

In this table the symbols (& 4 2),, elc. represent binomial coeffi-
cients. The coming to the fore of the numerical factor 23 is
connected with the relation holding only for the volume

AWV =23 TV,
which ensues immediately from the one given above. It forms part of
Oeve) AW 7eve) TV?2)
32 ~— 28 8 1’7
of which we have availed ourselves when arranging the preceding
table, either as an aid in the calculation or as control.

The cases (1,1,1,0),{1,1,0,0), (1,0, 0,0). — These three cases are
so much simpler than the preceding one, thal we can treat them
collectively, now that the application of the results appearing here to
the nets (C,,) and (C,,) make a short treatmeunt necessary. The pro-
jection of the bounding elements on the corresponding axes OK, OF,
OR are immediately found; in order to take into account the duality,
appearing on one hand between OF and OR and on the other hand
between OK and OF, the projections on OR are placed on the
first plate next to those on OF, whilst the projections on OK and
OF find a place there side by side. A single glance given to these
diagrams already arouses the conviction that the sections in the direc-
tion of DE over OK and OF to OR musl keep on becoming sim.
pler. That this is really the case — and for what reason — is

44

Proceedings Royal Acad. Amsterdam. Vol. X,
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clearly evident fromn the second plate, giving the sections for the cases
OK and OF. As is shown in the three diagrams with the fractional
symbols g, g, é belonging to (X here one of the dimensions of the
section, viz. the dimension in the direction of the edge with K as
centre, is of constant length, by which the sections become prisms
with a lheight 2, namely an hexagonal prism H¥2), a triangular
prism P2 and o triangular prism Py with these symbols A
and P the indices 12 and 2172 indicate the length of the sides of
the bases. As a matter of fact we can now assert that with these
prisms of which the endplanes arve the determining variable elements,
the problem of the intersection has lost a dimnension; for, in
order to determine the prism we have only to ask how the ground-
cube is intersected by a plane perpendicular to a diagonal of this
bounding body of the eightcell, i. 0. w. the problem has become
threedimensional. In the same way we find in case OF rectangular
prisms of which two dimensions remain constant, which has been

indicated for the section of transition i and the intermediary sec-

tion T whilst the section in case OF is an invariable cube, which

is of course not designed.
It is almost superfluous to stop for the two space-fillings of case UK,

* that by HV2 and PV2 together and that by PV alone, as they

appear indeed as well-known plane-fillings. We suffice by giving
the following relations:
PtV = (k42), PﬁVﬂ) -+ (1), HOV 4 (&), PV

HO 2= B(k4-1), PVD - (Bke341) HV9 - 6(k4-1), P2

PO = (k41), PV + k), PV
Hk?) = 3k2 Pg/ﬂ + 3k P2

4. Case (3,1, 1, 1). —1If the vertex 4 of the eightcell C® — see
first diagram of second plate — is point (1,1,1,1) then the point

1 1 1 . - . . ,
(1, —%—, 3 -3—) is obtained by dividing the inner diagonal AB of
the cube lying in the space @, =1 into three equal parts and theu
to take the first point of division C*). The line OC is for this case

1 1
1) By mistake in the diagram for AC has been laken §AR instead of 3 4B,
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the, axis upon -which we must project to determine the projec
of the bounding elements. Now it is clear that the projection of
cube with 4B as a diagonal is obtained by projecting first
bounding body on the projection 4B of the axis OC on its s|
xz, = 1 which furnishes with regard to the vertices the slratifica
1, 3, 3,1 and by determining then the projection on OC of i
new points lying on AB. Now, angle BOC is a right one, for
}_, _l._’ _1_) of B
. 3°3 3
C follows immediately OB* - OC* = BC*. So B projects itself
OC in O and so this of cowse is also the case with the ve
(—1,1,1,1) of the eightcell lying opposite 5. So we find -
the first plate under head (3, 1, 1, 1) C, — the stratification
the 16 vertices by causing the group of points 1, 3, 3, I
upon the axis of projection at equal intervals {o be followed
a second group of the same structure in such a way that the
1 of this second group coincides with the last 1 of the first grc
It 7is from this that this projection has ils type, as is indicatec
the foot. One really finds without any difficulty all that is giver
the scheme by representing {o oneself the two bounding cubes i
cated in the typical image — here lying in the spaces 2, = 41
and to suppose that their corresponding vertices, edges, faces
united by edges, faces and bounding bodies.

If again we do not take the isolated point A into considerat
then we have to deal here with six different forms of the section, tl
intermediary forms and three forms of transition ; these are given v

of the coordinates (1, —1,— 1, —1) and (1,

the addition of the corresponding fractional symbols T

on the second plate. We shall indicate somewhat in details h
these diagrams are deduced by drawing, independently of the res
of the first plate, and to this end we immediately notice that the sp
through 4 perpendicular to OC is represenied by 3z, +a,+2, -+, =
and that this space after a slight parallel displacement io O trunce
from the edges of the eightcell passing through A segments wh
are in the ratio to each other of 1:3:3:3. If now the edge £
drawn horvizontally is parallel to OX,, we begin {o set off, in ov
to obtain the first intermediary form, on the other edges thro
A — see the last of the six diagrams — segments AP, , AP, , «
to the length of halt the edge, i. e. of the unit, on the edge 4
a segment AP, with a length of a third of the unit, which cau

the tetrahedron P P,I% P, corvesponding to the Symbol%to be ge

44*
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rated. The space a, = 1 contains of this tetrahedron the equilateral
triangle P,P,P, with the side V/2; the other faces I P, P,, P PP,
P, P,P, lying mn the spaces a,—=1,2,=1,2, =1 are isosceles

' . 1 : o
triangles with basis 12 and sides —3—|/ 10. So this section is not a

vegular fetrahedron bui a vegular friungulur pyramid, of wiich {he
perpendicular let down out of the vertex P, on to the groundplane
P.P.P, is an axis with the period ihree; because the foot of
this perpendicular lies on the diagonal A/ of the right cube al a
distance from /A forming a sixth part of AB and as 4P, is likewise
a sixth of AB’ this axis is parallel to the diagonal BB’ of the eight-
cell. 1t is now easy to deduce the changes of the section following
from the displacement of the intersecting space by invesligating
either the paralle] displacement of the edges of the section over the
faces of the eightcell or the parallel displacemeni of the faces of the
section through the bounding cubes of the eightcell. If the intersecting
space has removed iiself as far as double the distance from 4, then
— as is evident from both considerations — the tetrahedron of
intersection has simply been multiplied by two from A. Passing on

. .2
from this section B it seems preferable to waich more closely the
2
edges. If the edges PP, and P, of the section 5 have arrived

. s . 3
in the positions £, and /P, of the section 13 when the inter-

4
secting space has come al the threefold distance from the starling
point 4, it is sufficiently evident that the connectiou of the points P,
must furnish a new edge. So we see gradually how the entire

»

6
rhombohedron forming the section 5 develops itself. We yet point

to the fact that the section in each position of the intersecting
space during its parallel motion has an axis with period three,
parallel to the diagonal BB’ and at last passing into this line.
Indeed, the dingonal 4B of the bounding cube lying in space », =1
being an axis of revolution with the period three for that cube, so the
planc through AB and AB’ is a “planc of revolution” with the
period three for the eighicell. As new the moving intersecting space

is and remains normal to the line (JC lying in this plane — see
the first of the 20 diagrams — the line of intersection of this plane

with the intersecting space, which line is of course normal o OC,
must be an axis with the period three for the section. As was found

-10 -
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already above the line OB is really normal to OCand so the obt:
axis is parallel to OB. Because the plane through 4.5 and B’ cou
the perpendiculars OC and OR oul of O on to the interse
space and the space x, =1 of the righthand cube, each line of i
therefore also OB must be normal to the plane determined by
intersecting space in the space @, = 1; so if we move the interse

-

6 5 :
space in an opposite sense and retwrn from T by 5 ete. to]

rhombohedron forming the ceniral section, and then moving i1
direction of the edge B’A through the eightcell, is truncated nc
to the axis by the plane determined in the space of that right
In fact, in the above mentioned paper ( Verkandelingen, vol. IX, :
has been found that the section is always a rhownbohedron or a trun
rhombohedron when the intersecting space is normal to a |
through two opposite edges, which is here the case, as the |
through AB and B’ contains the edge AB’ and the opposite

We now indicate the body corresponding to the fractional sy

{iz by D,, where n can take one of the values 1,2,...,11,12

D, and Do, vepresent the two oppositely orientated positions
selfsame body, with a view to then investigating which of those
make their appearance when the net (C;) is cut by the central
3z, + 2, + &, +«,=0. From the distances of the points witl
coordinates (2 a,), forming the system of centres of the net, fo
immediately that the parts D,, D,, D,, Dy, D,, appear together
that thus the corresponding threedimensional space-filling co.
of three -— and if we notice the orientation even of five — diff
groundforms. Now, as we know, the form D, alone already i
to fill the space and so this is also the case with the forms D
D, and the forms D, and D,, together. What is more, fron
condition that in the obtained space-filling with the three o
different groundforms the face of ome of those forms must con
itself in faces of the surrounding forms, follows immediately
beside each D), must lie a completing D, beside each D, a compl
‘D, and that recomposition of those paris completing each othe
D, must lead to a net of rhombohedra D,. We really cause th
of rhombohedra to be generated in a simpler way if, before ct
the net (C,) by the assumed space, we suppose the series o
spaces @, = 2a, -+ 1 o have disappeared, a thing to which the
of the plane of projection through the two edges, here 4B’ an
opposite one, has led us involuniarily in the paper quoted last
this the net (C,) transforms itself into a threefold infinite net

-11 -
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infinite series of reclangular prisms which have a cube with the edge
two as basis, and the section of this net of prisms is exactly the net
of rthombohedra. That the sections which, when the intersecting space
has an arbitrary position, are quite irregular parallelopipeda, here
become rhombohedra is the result of the fact that the intersecting
space forms with each of the three spaces 2, =0, v, =0, 2, =0

. . 1
equal angles, angles with a cosine of the value g|/3. Out of the

6
diagram with the symbol 5 it is furthermore evident that the ends

a

BB’ of the axis of this rhombohedron lie in two conseculive spaces
@, =2a, +1 and that the distance of the parallel spaces of inter-
section of the intersecting space with these spaces, which spaces
cut the net of rhombohedra in the intersecting space into pieces,
must amount to 4. This tallies; for the angle between the spaces

1
3, +a,+ 2, +2,=0 and 2, =0 has ) V3 as cosine and there-

.1 . : 1
fore g s sine, so that the distance of the planes must be 2 : 7

From the preceding follows now likewise that the section with
the space 3¢, + &, + @, +2, =1 furnishes a space-filling consisting
of the pavis D,, D,, D, D,, D,, D,,; of course also this space-filling
consisting of three groundforms each of which appearing in two
opposite positions can be obtained by cutiing up a net of rhombo-
hedra. It is also clear that by taking an intermediary position of
the space of intersection we are led to six quite different ground-
forms, which can be indicated by Dy, Dy. ... . D, 1, or in opposite
orientation by Dy, Dyy..... Dy .

By cutting a block of £* cells C, instead of w fourfold infinite net
(C.) we can also deduce how one of the forms L&) of J-times greater

linear size can be built up oul of the above mentioned segments
D,. We avoid this not to become too longwinded.

5. Case (2,1,1,0). — When (reating the case (1,1, 1, 0) we have
seen that the appearance of nought in the symbol causes prisms to
be found with the constant height 2, by which the fourdimensional
problem is reduced to a threedimensional one. Thus we are placed
before the consideration of the section (2, 1, 1) of the net of cubes
which in various respects for the threedimensional space forms the
analogon of that of the section (3, 1, 1, 1) in Sp,.

If we suppose that the space, in which the section (2,1, 1)is 10 be
taken, contains the upper cube of the eightcell and the vertex P — see
the first of the 20 diagrams —— is taken as origin of a rectangular

-14 -
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system of coordinates with the edges passing through this point as
axes, the edge FQ as axis corresponding to the figure 2 of (2,1, 1),
then the centre /' of the upper plane of that cube is the point
(2,1,1) and PJ7 is therefore {he axis normal {o the series of intersecting
planes ). Now it follows from the rectangle APQE with the sides
AE=2, AP =272, that AQ is normal to P/ and that the points
A and @ project themselves on PF’ in the same point. Thus we
find the projection of the eight vertices of the cube under considera-
tion on PF by placing the projections (1, 2, 1) of the faces with
PA and QF as diagonals so side by side that the last 1 of the
first coincides with the first 1 of the last, by which the stratification
1, 2, 2, 2, 1 15 arrived at, which, with a view to upper and lower
cube, passes by doubling into 2, 4, 4, 4, 2. From this ensue then
the results given on the first plate. If we now — returning to the
seccond plate —— set off on the three edges of the cube passing through
£, m the assumed supposition that PQ agrees with the 2 of (2, 1, 1),

from P segments %, 1, 1 then — see the last diagram — the triangle
P PP, appears forming the upper plane of the triangular prism cor-
4 v
3 3 g% de-
veloped in the same way as was pointed out above. Of triangle
P P,P, the line connecting P, with the middle of P, P, is an axis
with the period two, or to cxpress it more sunply a line of symmetry,
and this line is parallel io the diagonal AQ of the first diagram. In
cach position of the intersecting plane the section has the line of
intersection of this plane with the plane APQE as line of symme-
try ; in connection with this the lozenge, unmnutilated for the case

: .1 _— .
responding to the fraction gzmd out of this the sections

4 . . 1
Y which when following the reverse way to the case 3 moves pa-

rallel to itself through the cube in such a way that the vertex @
describes the edge @2, is cut by the groundplane of the cube accord-
ing {0 a perpendicular on the line of symmetry. If we imagine in
the chosen space of the upper cube of the eightcell the threefold
net of cubes and if we remove before passing to the intersection by
the series of paralle] planes the partitions parallel to the endplanes,
we oblain in the intersecting plane a net of lozenges which are cul
by the removed partitions into segments of the found form, ete.

In the ensuing parts we shall pass on to the intersection of the
nets (C,,) and (C,,).

1) It is really inaccurate to speak of an upper plane of the upper cube; of
course the plane is meant, which appears in the diagram as upper plane to the eye.
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