Huygens Institute - Royal Netherlands Academy of Arts and Sciences (KNAW)

Citation:

P.H. Schoute, The sections of the net of measure polytopes [Mn] of space [Spn] with a space [Spn-1]
normal to a diagonal, in:
KNAW, Proceedings, 10 Il, 1907-1908, Amsterdam, 1908, pp. 688-698

This PDF was made on 24 September 2010, from the 'Digital Library' of the Dutch History of Science Web Center (www.dwc.knaw.nl)
> 'Digital Library > Proceedings of the Royal Netherlands Academy of Arts and Sciences (KNAW), http://www.digitallibrary.nl'



( 688 )

in the usnal manner. On microscopic examination the blood-vessel
were found to be filled now with a perfectly homogeneous black mass

This method has an advantage over that of Grosser in the fac
that we need not fear the injection-fluid becoming solidified befor
the injection; besides the preparation of the suspension requires muci

less time.

In another direction too we have simplified the method, viz. by
substituting blood-serum for egg white. A mixture of 3 parts o
blood-serum with 2 parts of the above named Indian ink gave ex-
cellent results.

The blood-serum need not be derived from the same species of
animal. For injections of caviae or rabbits we got good resulls by
using horse-serum or cow-serum, fluids that are easily obtained.

Here too fixation was brought about by means of sublimate-formol.

As yet kidneys aud liver were microscopically examined. But the
injection fluid also penetrated skin, muscles and brain.

An aitempt to prepare suspensions of carmine grains in serumn
suggested itself now, but these experimenis failed as the carmine
particles conglomerated. Perhaps, however, mixtures of dissolved car-
mine or of colloidal fluids may be prepared with serum, giving
good results.

The above mentioned experiments were made in cooperation with
Mr. A. F. Di Borr and Mr. G. A. Karvergamr, medical students.

Groningen, March 1908.

Mathematies. — “The sections of the net of measure-polytopes M,
of space Sp, with a space Sp,—1 normal to a diagonal.”’
By Prof. P. H. Scrour.

1. In the first part of a communication on fourdimensional nets
and their sections by spaces (Proceedings, Febr. 1908) we have i.a.
transformed the mnet (C,) into a net (C,,) and a net (C,,); s0 here
the regular simplex, the fivecell C,, was not considered. Whereas
the regular simplex of Sp,, the equilateral triangle, furnishes a plane-
filling all by iteelf as well as in connection with some other regular
polygons, and the regular simplex of Sp,, the letrahedron, can fill
the space in combination with the octaledron, it is impossible, as
was shown in the quoted paper, to find for the regular simplex C,
of Sp, other regular cells, which can together fill the spare of Sp,.

This leads us gradually to the question, whether it is not possible
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to point out one or more polytopes — if not quite regular ones —
which with €, fill the fourdimensional space. We have here in
view to give {0 this question an answer, emanating from the connec-
tion of a few results formerly arrived at.

2. We consider the net (M) of the measure-polytopes A/, of
space Sp, and cut this by a space Sp, normal to a diagonal. This
work breaks immediately up into two parts.* First the section of
space Sp, with a definite measure-polytope 3/, must be found, e. g.
with the one, the centre of which has been taken for origin of a
rectangular system of coordinates with axes parallel to the edges; we
must next investigate how we can prove from this section in which
way the intersecting space Sp, affects the other measure-polytopes
of the net. i

The answer to the first part of this question can be found by means
of one of the two diagrams 1 and 2, which we shall therefore discuss
successively. Of these diagram 1 is what we arrive at when we project
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the bounding elements of 2/, on the diagonal; it is an extension of
the second diagram 7 =>5 of the plate, added to the communication
on the section of the measure-polytope 3, of the space S, with 2
central space Sp,_; normal lo a-diagonal (FProceedings, Jan. 1908).
Here, 100, we restrict ourselves {o a few sections, viz. {0 the {ran-
sition forms and to those intermediary forms which bisect the distance
of {wo adjacent transition forms; according {o the notation introduced

1
there, we distingnish the transition forms by the symbols 3M5,

3
— A,

2 3 4 . : 1
gﬂls,g]lfﬁ,g]lfs, the intermediary forms by the symbols EM 70

5 7 9
—1-6-11/[5,—1—01115,-1-6 M,. As these sections have been incidentally already

found in the last quoted paper, we can suffice here by a mere
enumeration; to be able to indicate relations in measure we again
assume that we have taken half the edge of A/, as measure-unit.
Transition forms. As Uwo sections pM, and qM, of which the
fractional symbols p and ¢ complele each other to unity, form two
oppositely orientated positions of the same polylope, we have here

1 4
to deal with but two transition forms, viz. 31115_—__3 M, and
2 3 1 . . 272) .
gMﬁ :-—5~]l[5. Of these A M, is a regular fivecell C’5< ), whilst

2 .
5—11[,., is formed (see Proceedings, page 488 under n=0) by trun-

cating a fivecell C';”/Q) al the verlices as far as hallway the edges
and hence transforming it into a polytope (10, 30, 30, 10) with
edges 2172 ; for the last form Proceedings, page 503, can be
compared.

) 1 9
Intermediary forms. Of the three intermediary forms -1—6111 =T A,
3 7 5 ‘ V'2)
M, =——M, —M; the first is a CE, , the second (Proceed-
10 10 10

1%
ings, page 488 under n= 7) a fivecell Cs )Lruncated as far as
a third of the edges, passing by this proceeding into a polytope
(20, 40, 30, 10) with edges /2, the third (Lroceedings, page 487

5172 . \
under n=3) a C§ VD | rancated as far as three fifths of the cdges,
which has on account of this passed into a polytope (30, 60, 40, 10

with edges V2.
We shall now pass lo diagram 2 where the plane through two
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opposite edges PQ, P'Q intersecting the diagonal P'Q has been taken
as plane of projection. The projection of M{®) on this plane is the
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Fig. 2.

rectangle PQQ'P with edges PPQ =2, PP’ =4, which is divided
by three lines pavallel to PQ into four equal rectangles. The inter-
secting space Sp, passing through the centre O stands according to the
perpendicular /, erected in O on the diagonal £ @, normal to the plane of
projection. If we suppose (Proceedings, page 491) a few measure-
polytopes M), which ave laid against each other in the direction

of the edge PQ on either side, to be united to a prism of which
the basis is an M®» and the edges normal to OA have the direction

PQ, then the section of the space Sp, through O with this prism
is a rhombotope IRk, of which AA4' — with a length of 415 —
represents the axis with the period 4. Comparison of this rhombotope
with the measure polytope M® of MY lying in the space Sp, per-

pendicular according to m on the plane of projection shows us
that the rhombotope can be obtained by stretching this polytope
M?) in the divection of the diagonal CC" to an amount of 04 : 0C=y'5.

This rhombotope is truncated perpendicularly by the spaces Sp,

projecting themselves in the points of intersection 5, 5' of (he axis

A4 with the sides PP, QQ of the rectangle. If again we male
47%
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use of the annotation a (p, q) formerly introduced (Verhandelingen,
vol. IX, N°. 7, page 17) then the central section is a polytope

3 8
45 (—8-, §) and we find, omiiling the length of axis 4175 alike

for all sections, for the transition forms and the intermediary forms
described above the following rhombotope symbols:

1
A, = O, — -

107 ( 8)’ 1 1
10 “:(5 §)’ 2 (12
5 3 5 5 e (4’ 4)’
107 (8 8>’ 3111_(2 3)
7 5 7 T \2 4
10 F (8 8)’ 4 3 4

cu,=(2, 2.
9 7 8 5 A
—1—01115:(—é, g)a

3. The second part of the question, viz. how the intersecting space
Sp, affects the other measuve-polytopes can now be answered by
means of analytical geometry as well as by descriptive geometry.

With reference to the system of coordinates assumed above the
centres and vertices of all cells #/( of the nel have all nothing but

integers as coordinates, the cenires only even inlegers, the vertices
only odd ones. From this follows in general that the distances from

=

the centres o the cenival space =, =0 are multiples of (ifth parts
1

of the diagonal, those of the vertices o the same space odd nultiples
of tenth parts of the diagonal. In tlus way a space of inlersection

5

Za=p in general furnishes five different sections of which the
1

1
fractions placed before A/, differ vespectively z It the space of

intersection passes through a verlex we find the transition sections;
if it passes though a centre we find the intermediary forms.

We arrive al the same resull by diagram 2. If we allow the same
space Sp, bisecting perpendicularly the diagonal P'Q of the central
cell to intersect the right adjacent cell with the diagonal PQ",
then the segment QO cut from the diagonal of ihe ceniral cell passes




( 693 )

1
into PR, which means a decrease of QS:E QF’, and this is

repeated every time a cell is taken further {o the right. If we exchange
the central cell by an other one of which the projection P,P,Q,Q,
covers for threc fourths that of the ceniral one, then QO passesinto

. - . .
Q,R’, again a decrease of = and this loo is repeated every time

the projection moves onward in the divection PP’ to an amount of
PP,. So here too we find five different symbols pd;, of which

1
the fractions gradually increase with X With the aid of the above

lable this result of the notation pA, can be transformed into that
of the rhombotope symbols.

We bhave now answered the question put at the commencement.
If we wish to fill Sp, with C; and a single other groundform, then the
form (10, 30, 30, 10) with the same length of edges can do service ;
both forms appear then in {wo oppositely orientated positions. If by
the side of C; we allow {wo other groundforms to fill Sp, , we can make
use of the forms (20, 40, 30, 10) and (30, 60, 40, 10) of the same
length of cdges, if we {ake info consideration difference in orien-
tation, then this space-filling demands five forms. And if one does
not object to connecting more than two really differeni groundforms
we can take the five forms

1 5 9 13

17
MM, M, M. M
50" 30 g0 g0 e g e

. 15 5 9N (9 13) (13
’ﬁ)’(ﬁ’ﬁ '\16'16 ’(16'?6)’(1_6’ )

of which the first is a C4¥?); these appear in only one position.

1. Before passing on to the general case of Sp. we indicate the
shorlest way, by which one can calculate the number of component
parts when, filling a fourdimensional block of one of the found forms
but of A-times larger linear dimension. To prepare the general case
of an arbitrary n we introduce a simpler notation. We distinguish
the transition forms and the intermediary forms by the letters 7"and /
and then indicate by exponent — this, to avoid rootsigns, in /2 as
new unit — the size, by a footindex the place of the section. We
then represent the polytope, formed by truncating regularly a regular
livecell with a length of edges p)/2 at the five corners to the frac-
tion g of the edge by the symbol ¢S®. Thus each of the five dif-
ferenl forms is represented by four different signs as follows:
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9 (
lzvfﬁ,)“@ﬁl”):-’l‘): s
10 8 1 _©® 1 ) N
3 I 3 | w30 :(0’_4' =h'= 5

) 3
__.[UE-,):<—,——):IS>1>:——S(,
10 8 8 3 2M(2)__(1 2) ”(2)_18(4)
.‘BM(Q)_~ 3 5 _I(l)__38(5)5 C\eT )T 2
107°° T\®'s/)” " 7™

. 7.9
whilst the forms appearing past the middle EM; ),EM? and

3 9) 4 2 Q ¢
—5—M§ ), —5-M g)of opposite orientation are indicated by ]__)g, 1_1)

(9
and Tgﬁ.?z, T._)l .

By considering the truncated fivecells ¢S, we find immeditately :

IR )
7(1 =1,
% K
£ g
o)
@) 8 (28)

T2 =Il *—5.[1

k 5k k k
=1 5™ 10

Of these relations e.g. the last one is deduced in the following

k 3 (5% .
way : The form [ §)=—5~ S( )appem's by truncating the fivecell

5k 5k 3

S( ) — ]E ) to—é—of the edges. As each two of the five polytopes
) 3%

S(3 ) =1 E >, which are taken off by the truncation, have an
k k - 5k

S() :J(() in common, we subtract when diminishing J(l ) by

3k E
5[5 > ten times [i to0 much.
Together the equations (1) lead to the relations of volnme:

& bIA & RIA ke ok
R O S L

1 =16 76 - 176 230 384’

where R is the rhombotope formed by the required stretching of

o
an M& )in the direction of a diagonal. If the number 384 is

ok 1 ok
deduced from the remark that T& )=z‘~ R( ),fhen the two relations

2(16 4+ 176) =384 , 2(L 4 76) + 230 = 384,
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2:
which express that R can be built up either out of the four forms

T(z-ek) or out of the five forms / E'k) can serve to control.

We shall now indicate at full length how the obtained relations
will serve to gel us over the entive difficulty of the determination
of the demanded numbers. To this end we notice thal the vertices

of the Z° measure polytopes 1/ E,Q) forming together a block M ,(:k)
project themselves on a diagonal of that block except in the ends
in the 5%—-1 points dividing this diagonal into 5& equal parts. If
we indicate (diagram 3) the 54 4 1 points obtained in this way on the
diagonal by A,, 4, 4,,..., As:, then the segment 4,4, bears the

2
projection of a single Mg ), the segment 4,4, that of a group of
five, the segment 4,4, that of a group of fifteen measure-polytopes,

-/40 Af Af Aé "A‘—
7 s Lo
5 295 %]
75 ) kil 2
42131
Fig. 3.

ete., where the numbers 1, 5,15, ete. of the measure polytopes with
the same projection are the coefficients @, of the terms ar in
A+e+a .. 42k for p=0,1,2, etc. When determining

. 1 (2% . .
the section EM 5 we find that the intersecting space Sp, hits the
diagonal of projection in the point of division Ay, from which ensues

2
that the groups of polytopes M ,(5') corresponding to the coefficients
Tgy @y - -—3 ave NOt yet cut, the groups corresponding to the coeffi-
cienls  a, g1, - -« 31— are no more cut, so that we have but io
deal with (he four groups shown to the right of the diagram:

(2) (2) 2 2)
a1 L=y apsTe, ap—aTe’y ap 10 .

Now for the coefficients @, the particularity appears that for p < 4

they can be represenied as binominal coefficients viz. by the equation

a4, = (p + 4)4’
whilst for grealer values of p they are “gnawed” binominal coeffi-

¢ien{s. So we find here immediately
oy 28) (2k) () A0 (2 )
T =0 =8, T A (k4 2, 1+ £1), 75,7, @)

and in quite the same way
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(2k+1)
=(4), I) 48, T2+ (b +2), 28+ 041), 208, 70,.8)

W}nch two relations in connection with the ratios of volume lead
back to the identities
B = (k+ 8), + 11 (k 4 2),4 11 (& + 1), + (&),

2k +1)' = (k + 4), + 76 (k 4 8), + 280 (k4 2), + 76 (£ + 1), + (%),

From (1), (2), (3) we can now easily deduce all resulis. To prove
this we mention for the two cases, in which the block consists of
an even or of an odd number of measure-polytopes, the composition
of the centml section in the form

k [’
18P = ~k2 1 @8r —11) 790 (288 + 1) 15 +
&) (2)
+ (288 —1) I o+ (234* +11) T z ,
( k1) 5

—k(lc—}—l) (93/c=*—|—23lc——10)(11 + I_1)+

+ (28%* 4 23% 4 8) (I«(.)l)+ Iﬁg)g

. .
+ 5 (115% - 2308 4 185 + 70k 4- 12) .

5. We shall now consider in the space Sp, the net of measure-

polytopes M. ,(,2) and shall discuss the transition sections and the inter-
mediary forms situated in the middle between two adjacent transition
sections furnished by spaces Sp,— perpendicular to a diagonal. We
then find

2—M,(,2)_( znl_ 2) =1"= s Lu,(f’_(o, n%) =1 = g%

2 0= (g ag) =1 = s = (L 2 P L

25 Ms)_<2n—-2 2n-2 )_Igl): f) ;1115;2):(7;_2__1_,7_]?_1)_1’(2) :S(G)

for n even for n even

S A A (5 g
for n odd for 2 odd

—21— M 1(12)= (% ) 2:_\2) Eéiq-n)—n——z s® 7;—_7}1% f: L(% ) %)=1§2-1)=Z—:%S ("—.l :

T R S T

-10 -
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If we restrict ourselves to these forms and if again we do not take
the transition form consisting of a single vertex into consideration,
we have in both cases to deal with n different forms, namely for n

1 | . . .
even with g " transition and 5 " intermediary forms, for n odd

oy 1 - 1 . . .
with 5 (n —1) transition and 5 (n 4+ 1) intermediary forms. Thus we

get again in Sp,—, two more o1 less regular space-fillings in which
the regular simplex of that space shares.
In connection with the symbols (S® the relations hold here

N 3) M
Iy = fs —(an 117,

2) 4 (2)
Tg = IE ) -_ (n)1 Il 3

(1 5) (3) m
I = I( — )y Iy 4 ()2 Ly,

22) (6) C)) @)
Is' =5 —@mh I+ @ I,

which leads
for n even to

2) ) n—2) (n—4) (dn—1)

Ty =1 —@nD Al —.... 4+ (=1) (s 11,
for n odd to

(1) (n) n—2) n—4 #Hn—1)

Logn= I\ — WL,  +@ely  —eid(=1)" @y I,
whilst the ratios of volume are determined by

) (1) (2 (1

A S A S P .
'T T 9n—1" 8u—1_ ("’)1 - 411—1_(n)127l—l - 511—l_(n)13n -1 +( ), — ete.

Tarthermore the formulae of reduction hold :

(2k) © ® @
I == lt + =Ty ot G T

Ol .

(2541 1 1
1, + )-_—(k Fr—1), Ig )—]— (b4 n—2),— IS ) + b B I

which enable us to calculate the number of the parts of different
kinds, into which a block of (2£)* or (2% + 1)* measure-polytopes

@
M," can be cut up.

As an example, which gives something to calculate, we consider
the case of the middle section perpendicular to the diagonal of a

10 9
block of 10 measure-polytopes M (10). We then find in connection
with the relations

-11 -
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T, T T 7 7, _ R

3 1 1

1~ 502 14608 88234 156190 9
where I represents the rhombotope that is the sum of the nine forms
T\ ’ T2 . T.'s, T.;, T-’)y T—-—-ly T—-31 7‘—27 T, 1

starting from

20 2 100) 80 2
—Mso)_f(-o)—— A 21080 £ 455 _ 1204 1 9102

by applying

1 =008 4+ 8) 77 4 W0k + T TS o+ 10 7

for k=25,4,8,2,1 after some caleulation the vesult
304718550 (11 + 101) + 410820025 (757 1.7

+ 422709100 (25”4 7%) 4 480000450 (7 7%

+ 432457640 T4,

which after substitution of the relations given above leads back to
the identity

0 10" 19,

Physiology. — “The electric rvesponse of the eye to stimulation by
light at various wniensilies”. By W. Eintnoves and W. A.
Jorry. (Communication from the Physiological Laboratory of
Leiden).

Although the electrical response of the eye to stimulation by light,
which was discovered by Honmerex has since been studied by
numerous observers, there has notso far been underfaken a systematic
investigntion of the electromotive changes which arc caused by
stimuli of very varying strength. Such an investigation, however,
can as we hope to show, conwibute not a litile (o our comprehension
of the retinal processes.

We have in our work employed exclusively isolated frogs’ eyes.
We have Deen enabled on the one hand by means of the string
galvanometer, which for the velinal currents may be regarded as the
most sensitive instrument available, (o vecord and measure very
weak clectiomotive forces, such as arc evoked by light of extremely
low intensily; on the other hand we have f{ried by a suitable
system of lenses {0 concentrate light of as great inlensity as possible

-12 -



