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Mathematics. — “On the cyelic miniwmal surface”. By Prof. J. C.
Kruyver.

(Communicated in the meeting of January 25, 1908).

Exzrrur  (Zeitschr  Math. Phys. 14) pointed to the existence of a
minimal surface containing a system of circles lying in parallel planes,
witl cenires situated on a plane curve. Let us suppose that this
curve passes through the origin of the rectangular coordinates, that
it is situated in the XZ-plane and that the variable circle with the
centre (£, 0,8) and the radius R, generating the surface, lies always
in a plane parallel to the .X'Y-plane.

The reclangular coordinates «, y, z of a point of the surface are
given by the equations

2=§+ Rese , y=~=Rsina , 2 =25,
so that they are expressed in the two paramefers « and & We find
that the differential equation of the minimal surfaces s satisfied when

R (&' Reosa 4 RR') — R (L 4+ §* 4 R* + R* 25 Reos ) =0,
in which equation the dashes denote the differentiations with regard
to &.

The equation breaks up inio

§R=2ER
and inlo
RR'=1 4 & + R™
The first equation furnishes
AR?

bﬂ

¥ =

1

where 4 denotes a positive constant and 0 the minimum value of .
The second equation now passes into

d (RN 1 APR?
Z\&)Tw T
and the integration furnishes
1 AR
R :F-(R-'-_bﬂ)( 14 ib‘_>

so that finally we can express £ en §in i by means of elliptic integrals.

We find

i
dR r—y * RdR .

4 R
B bf l/(Rg_b,) <1 N jzl‘_) bj[/(fﬁ-‘-bﬂ)(i 1 Abfz)
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Here an elliptic argument can be introduced. We put
b
Re=—,
cnu

1

k=snf =

and we find
®

g:b/c'fihf’_ Ry —

oW
0

By allowing « to vary from — K to < K the centre A/ with the
coordinales ¢, § in the XZ-plane describes completely the locus of
the centres and the equation

r="t_
nu
indicates how the radius of the circle changes during the motion.
We nofice that the minimal surface depends on two constants b
aud &, that the smallest civele (w==0) is found in the XY -plane,
that with respect to the origin there is symmetry, and that for u = X,
§ = bkK the radius R has become infinite whilst at the same time
the centre A/ is at infinite distance.
As however

1
L ) " dw 177 b
Lim (§ —R)y=10b Lim |&| —/— — —|=—({#*K—E)
w—K w= KL e’ cnu K
and §—Z& retains therefore a finite value the surface contains two
right lines
2= %= bk K,

b
v =k - (" K—E).

For £ =1 the eliptic integrals degenerate. We have
E=0, §=1bu, R=0bChu,

and the suvtace has passed into a catenoid. The smaller £ is, the
more the surface deviates from the catenoid and the more oblique
it becomes. For, we find for the coefficient of direction of the tangent
to the locus of the centres 4/ :

dg _ken*u

BT
and the greatest value of this coefficient £ :4’, which is arrived at in
the origin, tends {o zero when £ tends to zero. The surface is then
altogether in the .X'V-plane,

91¥
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I shall now endeavour first to investigate in the following whi
it is possible to bring through two equal circles placed in parall
planes a cyclic minimal surface and then to calculate the part of tl
minimal surface extended between those circles.

When for both circles the radius R is taken equal to 1, the centr
M (& 8) and M’ (—E —3) are siluated in the XZplane symmetrical
with respect to the origin and their planes ave parallel to the X.
plane, the question is whether the two equations :

U

dw
§:k’cnuf , S=rluenu

en? w
Q

admit of suitable solutions for £ and w. If these are found, we hax
b=cnwu and both parameters ) and £ of the minimal surface a
known.

In order to investigate the indicated equations we regard for (t
present in the &&-plane § and § as variables and we consider tl
carve which is described by point (§,§), when for constant £ tl
variable w« describes the range of values from O to X. We have:

E(0)=0 , §(0)=0,
EK)=1 , §X&)=0.

So for all values of £ the cuvrve will run from the origin O i

point 4 on the E-axis (see the diagram).

¢
B
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Farther we have:
u u
*d (tn w) d (tn w)
E— e 4 ke —
13 konuj o <sonuf A
0 v
. _ksnu
s< dnw’
so that from :
d 1
c-lz%: — (¥ — snudnuf)
follows :
d
—é >kenu.
du

We conclude that for increasing « the variable § grows regularly
from O {o 1. So the.curve OA is intersected but once by a line
& = conslant.

At the same time:

d .
ﬁ:k(cn u—usnudnuy=kenu l—n————szz——lf-——— .
dus sn (u + K)

d§ .
For small u we find o to be positive, it keeps on decreasing, becomes
(22

one time zero and is then negative. So the variable § reaches
somewhere a maximum and the curve OA 1s cither not cut by
a line §=constant or in two points The form of the curve
k = constant 1s therefore as is indicated schematically in the diagram.
In order to be able to compare the curves belonging to different

values of & we can determine the values which the differentialquotient

dg : :
— assumes in the points O and A4.

ds d
= =K, il = £,
du Ju=o du Jy=y

S
d d
—§ =F — K, -g = — k'K,
du w=K du u=KN

We have
fromy which ensues

d§ _k ds . WE VK 5
55)5:0_ F'o\@El=  E—FK = O
kﬁ?t’zodw

0

a5 . :
From this is apparent that in O the value of 7& \ncreases with £,
E]
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dl
that on the other hand the absolute value of d—g decreases in 4 for

increasing 4. For, if % becomes greater 'K decreases, but the deno-
K
minator £ | cn®w dw increases.
0

Taking into consideration the form just sketched of a curve OA
belonging to a definite value of 4 we find that a second suchlike
curve belonging either to a larger valne ov fo a smaller value of %
will certainly ntersect the first curve somewhere. So as soon as a
cyclic minimal surface passes through two equal cireles placed in
parallel planes we shall be able to bring a second cyclic minimal-
surface through these circles. )

We must now investigate when the two cyclic minimal surfaces
coincide, i. 0. w. we must find the envelope of the curves OA.

If we put e=12, ¢’ =4’%, then the sysltem of curves is given in
the equations

u

~ dw -
§:::l/c'cnuf b= "Viucnu;

ent w

0
we regard ¢ as the pavameter of the curve, ¢ =amu as the para-
meter determining a point on a given curve, so that the coordinates
(,8) of a point of the envelope satisfy the condition
DGEY_,
Decs9)
If here and in future we put for shortness’ sake

1

‘d 143
Alw) :f v , Blw) = e

en®w dn® w

0
and we take into account that for constant ¢ =amu we have

% = 51; (B(e) — u),

we find

9% - enu Bw) 9—%‘
de

de Ve

1
= ——=cnu B(w),
2V¢ ®)

0 -
(2— — V¢ snu(c Blwy — Q) , —-S = — Viesnu(d B(u) 4+ Q)),
O O b
where Q(u) is given by the equations

dnwenw

ass

Qu) = u — Blu) —

m U



K

dw
=K —E — T

n®w

u

(w — en? u A(u) — dn® u B(u)),

sn®u

= A(u) + k* B(u) —

smuenudnw
From this ensues
D, 8 __
Die,9) 2V
and so the points of the envelope of the curves 04 are determined
by the equations

en usnw Bw) Qu) ,

Quy=K—E fsn —=0").

As when ¢ is given, the first member of the equation increases
regularly from — oo for u =0 to K— % for w = K, the equation
Q () = 0 admits of one solution 1w, By differentiating we find

du, . dn’u,
Ao dn® w

i.e. a negative value; therefore the greater ¢ is, the smaller is the
argument u,, which I call the critical argument. This argument
moves finally between rather narrow limits. For ¢=0 we find

K= E:g and so also zoo—_:g_—_i.s’?OS. For ¢=—=1 we find

dnwenu 1 Chu

—u—E{W)———=t———=u— .
Qlo = (v) snu “ smu “ Shu

So the critical argument u, satisfies the equation
Ch u,
= Sk u, ’

From this ensues
i, = 1.1997,

P, = am v, = 56°.28',
cot p, = u, cn v, = 0.6627.

1y G. Juca. (Ueber die Constantenbestimmung bei emer cyklischen Minimaltliche,
Math, Ann. Bd, 52) gives this equalion in the form
enw dn 4~ (L {u) — w) snu = 0.
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For values of ¢ between 0 and 1 it is easy to solve w, out of

the cquation
K
dw

sn?aw

Qu) =K — E — =0

tg

by means of the tables of Lrguxpru. If «', is an approximate value
of the critical argument, the calculation of Nmwron furnishes

uy — Q(u'y) sn® ',

as following approximation. In this way the critical argument is
calculated in the following table for some values of I =¢

> v I vt it

k=Vcin=amuy, u, b=cnu, i % ¥o 5’ %o

sin 0° | 90° 1.9708 | O I. 0. 900 1. )
150 | 87° I’ 1.5442 | 0.0520 ; 0.99G6 | 0 0208 | &7° O 9954 | 0.0245
300 | 79T 1.4701 | 0.1839 ' 0.9498 | 0.1367 | 79723
450 700 ¥ 1.3708 | 0 3412 | 0.7930 | 0.3308 | 70010

.0427 10 1423
0.3325

3549 0.5133
2776 | 0.6205
0.6627

600 | 69081r | 1.2801 | 0.4614 | 0.3573 | 0.3116 | 62035
750 | 57057 | 1.2498 | 0.5306 |0 2813 | 0.6251 | »70n7

002 | 50998 11997 | 0.552¢ [ 0, 0.0027 | 56928

o o o © o O
a &
2
[=r]

and moreover are indicated in it the coordinates §,, &, of the point
P, in which the curve OA belonging (o each value of 4 touches
the envelope of that system of curves.
By the equations
E,=Vdmu, A(u,) , & =View,mu,

we now find in connection with the condition

‘ Q) =0
that £, and §, are given as functions of ¢ only. We can deduce
out of it

dg 1 _
725“— g ~—~2 7 dnw, B (u,) [on u, dnw, + wu, ¢ sn®u,),
d 1
% = 5 dn wy B (w,) [en u, dnowg 4+ w, ¢ sn® w,],
dg, ¥
ag, k'

From this appears that for increasing £ or V¢ the coordinate §,
decreases regularly and the coordinate §, increases regularly. In
connection with the numbers inserted in the table it follows that the
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envelope of the curves O has aboul the shape of a quadrant of
ellipse B4 of which half of the greal axis 04 =1 and half of the
small axis O3 = 0.6627.

Moreover 1t is clear that the tangent to any curve £ = constant, in
the point / where the latter touches the envelope, is normal to the
tangent in the origin O drawn fo this same curve. The preceding
calculations now lead to the conclusion that through the two equal
circles with radius R =1 placed paralle]l and symmeirically with
respect to the origin two cyclic minimal surfaces will pass, when the
centre M (£,8) of the upper circle is situated inside the curve 54 of the
diagram, that the two surfaces coincide when A/ has arrived on the
carve BA and that the cuwcles cannot be connected by a minimal
surface when M falls outside the curve BA.

It M lies inside the curve DA two curves OA pass through M.
One of these touches the envelope in £, a point on curve 04 between
O and 3. So the argument w belonging to M is greater than the
critical argument wu, in £ and so the minmmal surface belonging to
it and extended between the circles ./ and M’ would contain the two
civeles along which this minimal surface is cut by a second minimal
surface with an infinitesimal slight difference. So this minimal surface
is unstable. For the second minimal surface laid through the circles
an argument u corresponds to J/ smaller than the critical argument
w,; this surface is therefore stable and can be realized in a proof
of PraTrAv.

If two surfaces can be laid (hrough the circles the most oblique
surface (the surface belonging to the smaller value of % and with
the greater value of the radins / of the mean seclion) is therefore
always stable, the other is unstable.

It is worth wentioning that whilst here the quantities g, o §
depend in rather an intricate way on k=ysin 8, we can find by
approximation out of simple formulae very accurate values for
these (uantities.

If we call the critital amplitude 56°28' of the catenoid 3, we shall
be able to assume with great accuracy the following relations :

4
¢os p, = cos [ sin® & (1 L g cos® Q)’

.. ¢os Py \*
R B
S (cosﬁ)

?
7

mens(22)

from which ensues for the equation of the envelope BA
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c 10
2L L
S (cot {3) =1 .

In the table the values of ¢, &, and § calculated in this way
are added in the three last columns, {o be compared.

To conclude with we give a computation of a part of a given
eyclic minimal surface with given parameters b and 1, situaled
beween two equally large circles corresponding to the arguments +
and — .

The coordinates «, ¥, ¢, of a point of the surface are again deter-
mined by the equations:

b b
g=0 A )+ —cosa, y=—sine, z="bku,
o w on u

out of which we can find for the line-element on the surface ihe
expression

ds’  Pdu—ienuda + 1k sin a du % Pdu -+ icnnuda — i ¥ sinadu

"l;',-——

o b
oen®u en® u

in which £ is determined by the equation
Pr= (K cos @ + snwdnn) 4+ & ent w.
We introduce for ¢ an imaginary argument v.

We substitute
tg 3 amov

tgda=—1
g2 Ztg{;am(u——K)

and we find
tsnvsn (u—K)
cnv— en (u—K)'
1—cnven (u—K)
env — en (u—K)'
da dnv dn (u—K)
sima v (v —K) “
en® udnvdn (u—K)
s (env—en (u—K)Y

sina=—

€08 &t ==

and finally
: ds* _ dn’vde® (u—K)
B B (ow—on (u—K) )
From this ensues that w4 v and w-—v are the parameters of
the lines of length zero, so that v is the paramelter of the greatest incline.
According to the general properties of the minimal surfaces we have
for the superficial element & the expression

(du— dv) (du+ dv).

-10 -
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a2 dntvde® (i—K) dv

b K (env—en (u—K))* T
and we find for that part of the surface limited by the two circles
with the arguments -4« and —u:

RITOG

u
K9 J‘ dv  dn®vdn® (u—K)
= | du | —
b v Kk
0 0

40° = onv—en (n—K))*

4

To perform the integration we start from the identily

2K’
) fdv sn (u—K) dn (n—K) 9K Z(u—K) + T
U= — | — = 7 (16— —_—=
( i env— en(u—K) * ) K

0
— 2u(E'—K) + 2" K' B (u),

which furnishes first

2K’
dv  dn*(u—K) K[
i mv—en(—K) oru
0

Moreover

PIT.

21K’

 ~do dnd v—dn® (u—K "[d

f vant v n® (w ):70“'f.vcrzv+2k2K'67l(7‘_If)'
e ()

i env—cn (u--K)

A dash before the integral sign indicates that the path of iniegra-

tion does not pass through point » = 1K’
Out of the two last equations follows by means of addition

\ 2K’ . ( ) | ok
do v o [
R = By —e UK on(u— K
i emv—oen(u—AK) enu )= onv Len (u )
0 0

an equation which, if we differentiate with regard to u and then
divide by %’ c¢nw, passes into

8K’
j‘dv dtvdn®(u—K) 1 d (f(u)) n 2K’

Tk (eno — en(u— K))? T eonudu\cnu dn® u

_1d(fw)) , 2BK | BE  E—K
T2 du\en® u '
Now integrating according to u between the limits 0 and w we
find finally

e n?
U (B — K 4 BAQ) + K== B).

e u

dn® v enPudn’u en®u

4 et
If the given circles have the radius E=1 then b is equal to
eny and we can write

-11 -




( 760 )

I__I(l

=ul + Ewmu — — an® uK'Q ),

o

k!

where £ again vepresents the .u-coordmate of the centre M of the
upper circle.

If this centre M moves on the envelope BA of the diagram, then
% becomes equal to the critical argument u,, Q(w) equal {0 zero
and we have obtained the greatest possible minimal surface £, for
the given value of £ So

L, - E —K'
7= T T S T T

We can now put the question where we have to put M on the
envelope /4, that is what value must be given to 4 for £, to
obtain the greatest possible value. To answer that question we sub-
shitite ¢ =4* and ¢, = amu,, then £, is a function of ¢, whilst
o, and g, arve connected with ¢ by means of the equations

K
d
Qu) =K —E— |—==0,
sn® w
to
&, = V¢ onuy A (u,).
By differentiation we find
d
—;‘Z%O =—3 sn® uy dn wy B (1),
du, 1 4
T g, ()
e B wg oo )
—_—= - w,) (cn u, dnow, 4 u, ¢ st w,),
= 2|/Z(nu°)(° nou, . o C 4,

and finally by means of these results

d /e K'—E'
% (—Z—°> = ———— cn u, dn uy B (u,) (cn w, dn o, + u, ¢ sn® ).
¢

4
As the right member of the last eqnation is always positive, £,
always increases with ¢ or with 4. The greatest possible surface
between the two circles is obtained by placing M in B; we have
then a part of the calenoid, of which half the height is equal to
cot B = 0.6627.

o
Now K':E'::E,

{2-“- =y, = 1.1997,
20t

-12 -



(761 ) ’

The smallest value £, obtains for £ =0. Then § =0, § =1;
the minimal surface consists only of the surface of the cireles A/ and
(' placed side by side in the X Y-plane. We have

2,

— =1,
2
So also the surface £, keeps moving between rather narrow hmits.
Although the value of £, depends again in rather an intricate way
on £ we can put pretty accurately, if once the citical argument
u, or the amplitude ¢, has been calculated,

2 1

2a  snu,

This is evident from the following table, in which have been

KL
mnserted for some values of £ the corresponding values of s— and
1

—i:T
of
sn u,

o

k

N
Q

SN,

S 07| L. |
15° {1 0002 1.0001
30° | 1.0111 1 0176
45° | 1 0550 1.0639
60° | 1.1241 11274
75° 1.1795 b 1795
00° | 1 1997 1 1997

As we have b =cn u,, where 0 reprcsents agan the radius of the
mean section we can in any case put with great approxumation

25
VI—p'
and in this way we obtamn for the greatest possible just stable part
of an arbitrary cyclic minimal surface that can be extended betwecn

two civcles with radins R =1 the same cxpression as for the
catenoid,

- ==
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