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Geophysics. — “On the analysis of frequency curves according 1o
@ general method.” By Dr. J. P. VAN DER SToX,

§ 1. In working out meteorological data statistically (climatology),
frequencies of all descriptions are found. No doubt the majority are
between indefinite limits as most other frequencies of different origin,
but it also happens that the limits are sharply defined as in the case
of observations upon the degree of cloudiness, where they lie between
0 and 10. )

An intermediate form is found in the frequencies of rain showers
arranged according to duration or quantity; on the one hand they
are rigidly limited by the zero value, on the other hand the heavy
showers are without definite limits, so that the curve gradually
approaches the axis of abscissae.

The elaboration of wind-observations requires the treatment of
frequencies in two dimensions, and produces curves, which differ in
character from other frequency curves according to the nature of
their origin.

The development in series according to the formula of Bruxs')
and CHARLIER, appears to be the method indicated for frequencies
with indefinite limnits; but the deduction of this formula is based
upon a generalisation in the use of definite integrals as already
pointed out by Brmsser and therefore not quite free from premises,
which may be applicable to the theory of probability but have no
connection with the problem in question which may be defined as
the analysis of an arbitrary function between given limits. Besides,
this method of deduction can hardly be applied in the case of detinite
limitation.

The formulae of PrarsoN, as also those of CHARLIER, are entirely
based upon the premises of the theory of probability and, as they
are not given in series form, they only contain a definite number
of constants which, in some cases, is too limited to allow a complete
characterisation of the curve, particularly in the working out of
frequencies of the cloudiness, as will be shown in an example in
another communication.

Besides, the constants, which partly appear in exponential form,

1y II. Bruns. Wahrscheinlichkeitsrechnung und Kollektivmasslehre, Berlin, 1906.

Idem. Beilrage zur Quotenrechuung. Kon. Sachs. Gesellsch. d. Wiss. Bnd. 58.
Leipmg, 1908.

C. V. L. Cuaguer, Rescarches into the thcory of probability. Meddel. Lunds
astr. observ. Ser. 1. n% 4. [906.

Idem, Ueber das Fellergesetz. Ark. for Matem. Astron. och. Fys. Bnd. 2. n?, §, 1905.
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give no clear indicalion of the part they play in the construction of
the curve, and it is not well possible to describe their function ina
simple manner either verbally or graphically.

The object of this communication is to propose a general and
simple method by which a curve may be found, which being inte-
grated between certain limits, defined by the distribution of the data,
will give the sums characteristic of this distribution, and that for
frequencies of different kinds, as far as this is possible owing to the
elements of uncertainty proceeding from the imperfection of the data
which, of course, always remain.

This curve, representing the law which the phenomenon follows,
should be called the frequency-curve; the curve of the aggregate
values, obtained by grouping the original data within definite limits,
may then be called the curve of distribution according to Bruws. Its
form depends upon the degree of condensation of the original data
(Abrundung after Bruxs), but approximates more to that of the
frequency curve as the condensation becomes less extensive and
consequently the number of observations is greater.

Such a development of an arbitrary function can evidently be
made in an infinite number of ways; it is therefore necessary to
postulate some general principles.

The following premises apply to the method of development selected :

1. That the development takes place according to polynomia of
an ascending degree.

2. that for the determination of the constants, the calculation of
means of different orders is used, in relation to an origin favourably
selected according to the requirements of the various cases.

The expression “moments” which is frequently employed, has been
avoided as an unnecessary analogy with mechanical problems.

§ 2. DEVELOPMENT BETWEEN DEFINITE LIMITS.

a. No given values of the function at the limits.

The polynomia, the degree of which is indicated by a suffix, are
vepresented by @, and the series by:
w=A,Q + 4,Q + 4,0, + . . . oebe . . . .. (1)
The simplest form which can be given to the polynomia is:
Qu=1a" + a,an1 L+ agan2 4. . . a,
In this case the most practical choice for the origin of coordinates
is evidently the mean between the limits as then, on integrating
between the limits, all odd terms vanish; hence a separation between
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even and odd polynomia becomes necessary, and the general expres-
sion is:
Qn=ar -+ aa2 fagan—t 4+ . ... a 7 even
= a® 4 a2 L qan—t 4 ... a0 n odd
A simplification of the formulae can then be obtained by altering
the scale value in such a way that the limits become == 1, which
is always possible; for the sake of convenience these limits have been

omitted in the following expressions.
The means of different order are indicated by :

Ua :fua}"da; .

In order to enable us to calculate from the infinite series (1) the
A-coeff. in a finite form, the unique and sufficient condition is that
the a-coeff. be determined so that the condition :

me’vmd{U = O . . . . . . . . (2)

is satisfied for all values of m < n as then all integrals beyond the
m -4 1'h term vanish and, at the same time, the a-coeff. are entirvely
fixed, but for an arbitrary constant factor.

If this operation has been performed, it is at once evident from

(2) that:
meQnd""’ =0

for all values of m different from #» and, further, that:

A,,:aj;oQ,ldm N )

a”! —_anQnd'b —ana,"da

The »/s (n even) or /s (n odd) constants of the polynomium
Q. are calculated from the "/» or "/, equations:

and(v =0 f Quedz = 0

anﬂ«"dw‘ =0 (n even) Quede =0 (n odd)

th{U"—?dﬂ) = O fQu:’l}”_éd&' = 0

where :
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or, for n even, from :

1 a, a, y
e =0
n—}—l+7z—1+n—3+_ 1
1 a, a, tn
e =0
n -+ 3 1z+l+n——1+ 3
1 n a, + a, n @, 0
2n—1 " 2n—38 ' 22—5 o n—1
for n odd, from :
1 a, ay an—2
R =0
7l+2+ n +n—-2+ 3
1 a, [ ap—2
e =0
7z+4+7z+2+ n + 5
1 a, @y Gy—9
C e =0
2n—1 + 2n—3 + 2n—5 - 7
On climinating snccessively from these equations a,,a, . . . . or
a,,a, - ... we find for the general expression of the polynomium:
n(n—1) . o #n—1) (n—2) (n—3)
== ('" —_— e t'n_" ¢ 1 _ f 3e
Q== o) T T L ) @n3) ele. ()

i.,e., bui for a constant factor, that of zonal harmonies, which
we shall call P-functions.

This might have been expecled as the condition (2), from which (4)
arises, holds good also for the P-functions.

The Q-functions may, therefore, be considered as generalized
P-functions, the latler presenting a special case of the former; if
we wrile (2):

ky § Quamde = 0,

then :
EGn=PF . . . . . . . . . (5
if L, be defined so that:
ke Qu =1 for a=1.

The use of this constant no doubt offers advaniages in treating
problems relating to the potential theory, but for our purpose it
would be of no importance and, in practice, entail snperfluous work;
some cxpressions cerlainly take a simpler form by its use, bul what
is thereby gained on the one hand is largely lost on the other as
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in calculating u@, in (3), we have to deal with the unnecessary
factor £, .

However the relation (5), where:

(2n)!
2n , nlnl

n ==

so that:
2n .l nd
= ——— P . . . . .. 6
=g P (©
is useful in deriving from the well known properties of the
P-functions those of the Q-functions.
They satisfy LeeENDRE’s equation as well as the zonal harmonics:

daQn dQn
a? — 1) —= 4+ 2
& ) dzt T 2 da

—nn +1)Q,=0.

The recurrent formula becomes:

nﬂ
Qupr — aQu + W:T) Q—1 =0,
and
nl dv(z*—1)n

_n 6
@y da (6)

Qn

Hence, we find:

1 2 2204t l ml !
a—! = f QuQude=— | P, P,dv = = el
K k* (2n4-1) (2n4-1)! (2n)!

and for 4,:

4 _om (n—_l)_ Lt (n—1) (n—2) (n—3)
P T ) M T 8 L (@n—1) (2n—8)

l.l'n-....j. - ect-] (7)

b. Given u=0 for a==1.

The case discussed sub @, where nothing is supposed to be known
concerning the function to be developed, will seldom occur in practice
and, as all adaptation is due to the accomodating power of the
A-constants the application would, in such a case, necessitate the
calculation of many terms and, therefore, hardly be profitable.

Now, in dealing with observations of the degree of cloudiness,
the case presents itself, that a curve has to be found, which is
chavacterized by the limiting values mentioned above.

The observations of serene sky {cloudiness zero) and of an entirely

|
1l
»l 4
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‘overcast sky (cloudiness ten) ought to be considered separately from
the other observations as they constitute climatological. factors of
peculiar importance for the description of the climate (principally in
northerly latitudes). Moreover they _are to be regarded rather as
discrete quantities, which do not show any continuous transition to
a cloudiness resp. of degree 1 or 9.

The other degrees of cloudiness may then be regarded as obser-
vations of continuous quantities subject to the above mentioned
conditions.

In this case we may easily cause all terms of the series (1) to
suit these conditions by simply multiplying the series by a factor
that vanishes for 2= =1 e.g. 2> —1, and then applying to the
new functions, which we shall call 2, the same reasonings as sub a.

The degree of the polynomia is then increased by two, so that
we have to start with R,.

The general expression becomes :

RBipo = (@@ —1) Ry = (a*—1) [a" Fa, a2 + ... a,], n even
= (2’—1) [2" + a, a2 4 .. ap-2], 7 odd.

The resuli of this operation is evidently that the surface enclosed
by the curve, as determined by the first term of the series, is not
represented by a rectangle of base 2 and height 0.5 as in the case
of the @-functions, but by a parabola of base 2 and height 0.75,
which makes again the surface equal to unity.

By alternately asymmetrical and symmetrical deformations the shape
of this parabola is then altered by means of the next terms in such
a manner as to make it approach more and more to the frequency
curve corresponding to the given data.

It may De noticed here that in the case of fixed limits, there is
no reason to choose for the origin of coordinates the point corre-
sponding to the arithmetical mean ; for logical and practical reasons
the point intermediate between the limits is then indicated.

The condition, which has {o be satisfied by the a-coeff. of the
R-function, and by which they are fully determined, is now that:

f Bijoamde = | Ryan(s* — 1)de =0, mn
or

[mm-{-QR'nda;: me'nd‘a. e e e e (8\

The a-coeff. are calculated from the equations:
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1 a, a, ay

1 “ ) a,

\
FT LD eI =) e e=5 31"
1 even

G198 @9 et D) T eFDe—1 |
D
(292—}—1)(2%—1)+(27z—1)(29z—3)+(2n-3)(272—5)+m(n—}—l)(n-—l):o
and
1 a, @, p—a
o2 =0
CrDETD T wrom T we—n 53
1 a a s
! 2 m =0
(n+6) (71—}—4:)+(n+4) (71—}—2) (n+9) (n) + 7.5
.1....a.1.l ; e

(2n+1)(271-1)+(2n-1)(2n*3)7’(2n. 8)(2n-5) T @+2)n)

By successive elimination of a,, a, ... a, a, ... we find from these

equations for the general form of the A functions:

(n42) (n+-1) - (n4+2) (n4+1) (n) (n—1) it

2.(2n+1) 2.4.(2n+1)(2n—1) "

and from this expression by dividing it by 2° —1:

n(n—1) . n(n—1) (n—2) n—3)

2.8n -}—1) 2.4.0@Cn+1) 2n-1)

The recurrent formula for both B and R' is:
n(n-42) .

(2n4-83) @n+1)

and the functions are solulions of the diff. equations

d _Rn_i_o

Byyo = ant? —

R’n = " —

n~1=10

R’n-}-l —a R, -+
(=1 ~————(n+2) 2+ ) Ry =0

iyl !
an + 4a @——(11—{—3)11 R,=0.

(@' —1)—

a4 — ete.

ete. (9)

(10)

On comparing the expression for R', with that for @, it is readily
seen {hat the R' functions may be found by differentiation of the

Quy1 ~function, so that:

R = 1 dQn—}-l
o n+1 " de

This might have been expecled as the value:

(11)




satisfies the condition (8)

f'om-l"’ Qn_Hd __f ﬁ'ﬁ-—ldt, m n

which is easily proved by partial integration.
Therefore the series discussed here :

w= = Ap Byto n=0.1.2
might also (but for a coustant factor) be written thus:

d Qn—{-l
da

The calculation of the 4-constants is based upon the evident
property of the R functions that:

v=(a*—1) 2 4, n=20.1.2

f Rpyo By da = 0, m different from =

hence

Apy=p |u Ry ds

where :

g1 :fR,l+2 R, da :fR,,+2 arde= jan (2 — 1) Ry do =0

or, by (11)
dQn—l—l

B =y o e =)

From the diff. equation of the R-function follows:

d 10y
[(% —1)— 1 +1} =@+ 2) @4 1) Qu

dz d
thence:
2
1 = : j_— 1]:7;71-{—1 Qn—{—l da
or by (8):

2241 (n -+ 2)! »! nl n!
(2n + 8) (2n + 1)/ (2n 4 1)/
and A4, is calculated by the expression:

_ ., me—=1) n{n—1) w2 n(n—1) (n —2) (n—3)
A”—{'[“ st DY T oL @t @)

The negative sign of g is due to our having chosen as gencral

1= —

pr—4— ... etc.] (12)
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factor #® —1, a quantity which, by the definition of the limits, is
always negative.

As well as the Q-functions, the R-functions might be multiplied
by an arbitrary, constant factor, such that any peculiar development
becomes possible or also with a view of simplifying some expressions.
In our case e.g. %, might be chosen so that g =1; practically
however this would hardly afford any advantage.

c. Given u_—_Z’ Jor e = =*1.
0

As has been remarked above, in working out observations of
cloudiness the case presents itself that the frequencies for the ex{reme
limits vanish; if, however, we have to deal, not with the original
observations, but with average values as, e.g. daily means, the fre-
quencies of serene and overcast sky, although slill of peculiar interest
for the knowledge of the climate, cannot be regarded as discrete
values because, owing to the operation of {aking the 1neans, a
continuous transition of these extreme values into the intermediate
values must be assumed.

In this case, when the curves assume peculiar forms quite different
from the well known curves generally met with, we can take
care that the conditions for the exireme limits are bound to the first
term of the series whilst all other lerms remain as they are in the
case discussed sub b.

Now the first term must coniain three constants, two for the
exireme values and one for the fixing of the area.

In the expression

@+ b e, . . . . . . . (18)

the constants must satisfy the three conditions

u1:a0+b0+cﬂ

u, = a, — b, + ¢,
2

2a, Do
3

hence:
da, =3 — (v, + u,)

2b, == u,—u,
4oy =3 (u, + 2,) — 8.
The reasoning as well as the application then remain the same
as sub b; again

f Rygo Ry de =0, m different from n
</

-10 -
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with the exception however of the first term of the series which
now assumes the form (13). In calculating 4, we have therefore to
apply "a correction to the expression for 4, which is easily found
by remarking that : -
Wt g,

dz

41
o (.?,'7" Qn‘f‘l) —_ mffb-m—l Q”_}_[ do .
—t

Yor m<n -+ 2 the last integral vanishes and, R, being of the
second degree, we have to consider this case only.
We have, therefore :

41
(n - ].)fﬂ}m R, dy = (mm Q7z+l) s m < 3

(n+1) Jom Ryde = |am

By (6) we find :

0 2 o 9)/al
) = @7 (n even)
whilst for n» odd the expression vanishes.
Hence also :
0 +1 2
M Qy = m -~ N even
( +l)—l Futt ( + )

and equal to zero for m—-n odd; in calculaling the constant 4, we
have, therefore, only to apply a correclion such that, instead of
(12), now is used, for n odd :

2n 1 n! n!
@n + 1)1

2n(u,—un!n!

@n + 1)/ (14)

Ap =8 | uRydz — = B|uR do —

and for n even:

Ay =8 |ul), ds —

2Il+1 (a0+00) n_/ n ! — [jj;LR'n da; _ 277(161+160)n.,72.l(15)
(2n41)! (2n+1)/

This example of adaplation, of which many variants might be
given, will suffice to demonstrate the applicability of the method to

special cases.

§ 3. DEVELOPMENT BETWEEN DEFINITE LIMITS ON THE ONE SIDE

AND INDEFINITE LIMITS ON THE OTHER.

a. No given value jfor the limit.

As has been noticed above, frequencies of duration and quantities

-11 -
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of rainshowers lie between the asymmetrical limits: zero for the
smallest and « for the largest values.

Frequencies of this kind, therefore, offer an example of a transition
between the case of fixed limits and infinite limits on both sides.
As here there exists no symmetry in the limits, the zero-point cannot
be chosen so that, on integrating, the odd functions vanish, hence a
separation between even and odd functions would have no sense,
and we are obliged to employ complete polynomia of ascending
degree.

Here, as in the case discussed in § 2, there is no advantage in
making the origin of coordinates coincide with the arithmetical mean
and, from a logical as well as a practical slandpoint, the zero-limit
is indicated.

In order to develop the function between the limits o and zero,
the only thing to do is to multiply the series of polynomia with a
suitable factor e.g. ¢—®, so that the equation of the frequency curve
becomes :

w=e"*%(4,8, + 4,8, 4 .... elc.)
=4, + 4P, +.... et.

where :
Sp=a*+ae+aan2+....a

The conditions to be satisfied by the a coeff. are then:

ﬁ—x Spde =0 ,ﬁ"« &8,da =0... .‘F—x a1 8, de =0

0 0 0

and as:
w0
J;—” arde =mnl,

0
the general conditional equations are :

n! 4+ @m—1)0a, +®—2)a, +.... ey 1 +0la, =0
(n—{—l)’—|—-n’a —{—(n——)’a —|— 2layy+11a, =0

(2n —1) / + (2n—-—2) !a, -{- (2%—3) lag+....nlapy 4+ (n—-1)!a, =0
Hence we find for the general expression:

"(n —_

8y = an — 711”" A G S S (16)

The method of calculating 4, is the same as in the former cases
as here t0o0 :

-12 -
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j;—x Sy Sy doe = WP Syda =10, m < n

0 0
and
A, = yﬁt S, da
0
where:
oW o
Y—-l == e IS” Sn dl?/' :fq)n an d,v
0 0
but:
© ®dS,
Py Spde = (lpn n) + 2 'lpn—,v dx
0 0

or, as the last integral vanishes according {o the conditions:
vl = — (P, S\ =nln!

because, by (16), only the last term has to be taken into account.
The expression for 4, then becomes:

R n(r—1) ga-o (=1 (17
T alal U oal (a—1)! 2/ al(—2) T w7

by which the problem is solved.

The application to special cases will be simplified by a brief sum-
mary of the relations existing between the different quantities intro-
duced which are analogous to those bholding for zonal harmonics.

We remark that for .5, and ¥, we can also write

S, = (__.'_[)n i —1 ("),vn — (_.]_)n _di (e—x wn) (18)
n — dz é y Yn= don .

hence:
dS" dSn—-l

S - — ’IZS,]__ + — — and ‘Sn = (7' 72) ‘Sn—-l -
n da

do
from which the recurrent formula:

Skt @+ 1 —=2) S +n28a=0, . . . (19)
can be derived, wherein for .S, as well vy, may be written.
Further the functions satisfy the diff. equ.:

dars, ds,
& ———n + (1—a) T 4- 08, =0

+a) —y—n + (n+1) P = 0.

d'lpn
&
dl 1

-13 -
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b. Given u=0 for x=0.

In the same manner as the Q-series has been made to suit the
zero-condition of the function at the limits, the -series can be made
fit for the case that the function assumes the zero value for the lowest
limit by multiplication with 2. This case presents itself e.g. for
frequencies of wind-velocity, the curve of which originates at the
zero-point as absolute calms do not occur.

By this operation the degree of the polynomia is increased by one
and we can write down at once the new 7' function from (16) by
multiplication with « and, at the same time, substituting n - 1 for n
except in the binomial factors which remain the same.

The condition for the determination of the a-coeff. is now:

fe—x am Tyyyde =0, m < n
' 0
and the general expression:

. n (n-+1)/ nn—1) (n+1)/
Tppr =t — T '(_—;1,7_ an ( 57 ) En——l;/ =1 (—1) (n4-1)/z (20)

From this evidently :

1 dlup
nd-1" de

a similar relation as is shown by (11) between the @ and R functions.
Hence, if we put:

S/; =

(21)

Tn—l—l = a1,

[+ o]
Ay = 'y"jvu T, da

0
where :

-] 0
y—1 = f e=% Tog1 T’y da :fe—-f et Tyqq do =
0 0

© ar n-1 %
/ | eman = (n+1) | evar S, do = (nd-1)/ !
0 ‘ 0

so that:

— Yn . Hn—1 fln—s _ (=1
TRl Unl (1) 0 =2y

If we call the series discussed here, the ', 11 series, so that:

An

(22)

Yopr=e2 Ty =e—>al,

-14 -
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we find the following relations : y
-1 dlpn

(e—x mn) —_ ey —

d
(g——-r :t,"+1) — ( 1)71—]—1 &
da

dant1

Wap1 = (~ 1)" T

d"T,, ar,
+@-a)— +2l% =0

2 a Tn—]—l dTﬁ—}-l

i

(72 "I‘ 1) .['n+1 —_— 0

da® da
a*y, d
P ;’;lf‘ + o ‘Z;*’l + (1) Wapa = 0.

In exactly the same manner as the E-series could be expressed
in diff. quot. of the @ series:

dQn
up = (@' —1) 3 4, =" Q+l

so the ' series might be expressed in diff. quot. of the ¢ series:

za¢l:—m2A,1.%in.

In dealing with this kind of frequency curves an alteration of the
scale value offers great advantages as well as i the case of fixed
limits.

In the case discussed in § 2 it was possible by this artifice to
simplify the limits; here such an alteration has no influence upon
the limits which remain O and o if we write Az for 2, but we are
able by this means to accomodate the first term of the series, by
which the area is determined, according to the form of the curve,
so that the task of the A-coefficients is lightened.

By the factor A, which by its nature is a positive quantity, no
complication in the calculation of the constants is introduced: the
series is now: _ -

w=-c¢"h [A S (ha) 4+ A4,8,(ha) + . . . . ete]. . . (23)

and, because:

y—1 —f e~ Sy(ha) Sy(ha) dow = lj;“t Su(t) Su(e) de

0

TR R s TR (—1)
Ay=h|————r— ... N ¢
n=" l:n!n! 1/ nln—1)! + n! ] @)

We might also omit the coeff. 4 in (24) and write (23):
u = he—h A, Sy(he) + A,8,(ha) 4+ . . . . ete] . . (289)

-15-
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The scale value 2 may, of course, be chosen quile arbitvarily;
" it is however desirable to do (his in accordance with the nature of
the curve and, therefore, to calculate it methodically from the given dala.
This can be done by suppressing onc of the A-constants m (23a)
s0 that the mean value corresponding with this constant can be
made use of to define A.
If then we put:

A4, =0
we find, as 4, =1,
® 1
n, = th‘ﬁ—’” & do=~—.
h
0

§ 4. DuviLOPMENT BETWEEN THE INDEFINITE LIMITS == .

By rcasons of symumetry, in ihis case it is logical to take ¢ for
the factor by which the hmifs are delermined and when, for the
same reason, the arithmetical mean is chosen as the origin, the poly-
nomium can, as in the case of tixed limits, be separated into even
and odd functions, because then, on inlegrating belween the limits,
the odd functions vanish.

The series becomes then:

n=re¢2 4,0, + 4,0, + 4,0, + . ... ele.
=d.p, + A0, + 4,0, + . . . . ete
as, by the choice of the ovigin, the .I-tcrm has to be omitted.
The conditional equation for the determination of the « constantsis:

f'{;’"(p;,d.u:O m< . ... (25)

or, generally. for n even:
[(n—1) (n—=38)..1] -} 2a, [(n—3) (n =5)...1] 4 2%, [(n— b) (n—T7)...1] +
4 202, = 0
[(n+1) (n—=1)..1] + 2a, [(n—1) (n—3) . 1] + 2%, |(n—38) (n—5)...1] +
+ . 2n-22q, =0

[(2r—3) 2n—"5)...1] + 2a, [(2n—35) 2n—T)...1] +
+ 2%, |(2n—T7) 2n=9)..17 + ... { 26, [(n—38) (n —5)...1] = 0
and, for n odd -
95
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[2(n—2).. 1] + 2a, [(n —2) (2—4)...1] + 2%a, [(n— 4) (»—6) ..1] +
+ 2"_]/')a,l._9_ =0
[(n42) (1).. 1] + 2¢, [(n) (0 —=2) .1] + 2%, [(n - 2) (n—4) = ..1] 4-
] + 2n=3%,_p = 0

[(2n -3) 2n—b5)...1] + 2a, [(2rn—5) 2n—T) ..1] 4~
+ 2%, [(2n—7) (2n—9)...1] + 2049 [(n—2) (n—4). .1] = 0.
From this it follows that:
l:glﬂl_—fll—) an—2 L n(n—l)g:.—-;!) (n—3) an—t — .., ele. (26)
from which we derive that {, and ¢, are solutions of the
equations :

Uy = a" —

i, U
9wl ol =0

dz? da
aa(Pn d(ﬁn
P + 2z T +2n4+1) ¢, =0

and the recurrent formula becomes:
QU — 28Uy 4+ nlUy 1 =0
The -coefficients are determmined in the same manner as in all

+e
f e Uy Uy de =0
—»

former cases:

for all values of m different from n so that:

4o
A, =10 w U, da

—0

+» o n!
g1 :f e U, U, do .—__—j g de = — V'
—mw —»

where:

2)1

e

and

2” n n— N
A, l:” f—? -+ fn—t ),——etc.]. 2m

T Valn! T 2. 1—2) " 2. (n—4

From the nuwmerical values calculated by (26) and from the
diff. equation it appears thal, but for an arbitrary constant factor,
the ¢,-functions ate equal to the devivatives of the nth order of ¢,
or ¢*; we might, therefore, write :

anp,

Pn = kpy ~——

dan

-17 -
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this might have been expected as this value satisfies the condition (25),
which can be easily proved by successive partial integration. 1If we
put: &y =1,

dﬂe-"ﬂg

Pp == —— = {— 2)" U, e
dan

and the expression for the A-coefficients becomes equal {o that given
by Bruxs.

",

d"¢ . )
Therefore ; > may be substituted for ¢, for the same reasons as,
da™ !

instcad of the (Q-functions, zonal harmonics might be employed; in
practice however no labour is saved by this substitution as then
the polynomia ave charged with superfluous cocfticients. After whal
has Dbeen said in § 3 about a change ol the scale value, it will be
sufficient to remark that in this case also the great advaniage which can
be derived from the introduction of a scale factor is the adapiation
by means of the first term of the scries {o the shape of the curve,
the surface remaining cqual to unity.
The equation of the curve then becomes :

u=e "4 0, (k) + A, U, (k) +ete. . . (28)

and:

A, =

297 [ gy h =2,
—_ — ) 1. . . . (2
1/:1:[7:/ 2’.1!(n—2)!+ eo)— (29)

The choice of the scale factor is of course quiie arbitravy, but,
in order to determine it in accordance with the nature of the curve,
it is desirable o put 4, =:0, then the average of the second order
can be used for the definition of /4 and it is easily seen that :

1
un—'ﬁ;'

The coeff. of (29) in so far as they are independent of #n may further
be omitted and written before (28), then the equation of the curve
becomes :

h
= —‘;l—’—va—/‘m[‘/iﬁU0 4 4,U, + 4,0, + ete.

If we take into consideration only the firs! term in the deve-
lopment, we find the ecxponential law in its simplest form as
4, =1,

u = ‘7-;; G_hzxq .
55+
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§ 5. INDEFINITE LIMITS, TWO VARIABLES.

The treatment of wind observations now offers no difficuliies as,
in calculating the means of different-order, the two variables (pro-
jections upon two axes arbitrarvily chosen) can always Le separated
and the method remains in all other respects quite the same. Only,
instead of one mean of cach order, we can now dispose of p -1

means of order p.
If by V, be denoted the same function of y as U, is of , the equ.

of the curve assumes, as U, =V, =1, the form:
w(tyy) = e %=1 [Ag + Ao UL + doa Vit Aso U+ A1y U1 Vi 4 Aga V,
+ Ao Us + Aot Ua Vi 4 412 Ui Vo + doa Vs +ete] . (30)
The general expression for the polynomia is:
Uy Vin

and as, evidently :

4o 4w .
f f e~ 1 (U, Vi) (U, V) dasdy = 0

for all values of p different from n and of ¢ different from m, we
find fov the A-coeff. :

o
A = E‘J f gV ‘lt( UiV ) dmd.”/

where :

+o "t . nlm/!
s—1 :f f e (U V)t dudy = T (31)

From the considerations ol § 4 it [ollows that the function :
D,y = == U, V,,
may as well be given the form :
dw m efntm

— By = kypy——— W

um da? d]/ m 0 deeh dym

Dy =

as this satisfics the premised condition; then the series (30) assumes
the form of a sum of diff. quot. like the series of Bruxs and

Dy = (__2)‘1—}—711 U, Vipe—v*—¢*
in accordance (o which (31) has to be modified. If it is possible to
remove the origin of coordinates fo the avithinetical mean by a correction
of the projections for their average value, then the terms with the

coefl. Ay and Apy vanish from (30):
If we wish to alter the scale values according to the nature of the
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data, we have to write everywhere, A and Iy, instead of x and y,
whence

_,__nlml x
= ontm jj)

The scale factors & and 2" can then be determined Ly putting
Aop en Apa =0

and the {wo unmixed means of the second order can be disposed
of for the determination of these constants:

1 1
o) = 5 en () = 5

If, further, we make the axes rotate about the origin so that they
coincide with the principal axes of inertia, then also 4;1 has to be
put equal to zero and the corresponding mean

fty (‘T’ y)
enables us to calculate the direction of the principal axes.
The series (30) then becomes :

+ AgoUs + A3 U3V + A2aUnVo + 4,30,V +
+ :’10_4 V4 —|— ENZ.

where all terms except the first represent the deviations from the
normal exponential law, the terms of odd degrece being a measure
of the differeni kinds of skewness, the terms of even degree of the
different kinds of symmeirical deviations.

Chemistry. — ‘“Liquilibric in quaternary systems.” By Prof. K. A, H,
SCHREINEMAKERS,

Let us first take the system with the componenis: water, eihyl
aleohol, methyl aleohol and  ammonium nitrate; we then have
al the ordinary femperafure one solid substance and three solvents
which are miscible in all proportions so that the resuliing equi-
libria avc very simple. The equilibria ocemring in this system
at 30° have been investigaled and are represented in the usnal
manner in Fig. 1; the angular points 1V, M, A and Z of the tétra-
hedron indicate the components: water, methyl alcohol, ethyl aleohol
and the salt: ammonium nitrate.

The curve we situated on the side plane [/4Z represents the
solutions consisling of water and ethyl aleohol and saturated with
solid salt; the curve wm represents the solutions of water and
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