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Geophysics. - te On the analysis of f1'equency curves accol'din.q to 
a general method." By Dl'. J. P. VAN DER STOK. 

~ 1. In worldng out meteorological data statistically (climatology), 
fJ'equencies of all descl'iptions are fonnd. No doubt the majority are 
between inelefinite llmits as most othel' fl'equencies of different origin, 
bLlt it a1so happens that the limits are sharply defined as in the case 
of observations up on the degree of cloudiness, where they lie bet ween 
o anel 10. • 

An intel'lnedlate form is found in the freqnencles of rain showers 
al'ranged accorcling to cluration Ol' quantity; Oll the ol1e hanel they 
are rigidly limiteel by tIle zero value, on the other hand the heavy 
showel's are without definite limits, so that the curve gradually 
approaches the axis of abscissae. 

The elaboration of wind-observations requires the treatment of 
frequencies in two dlmen&ions, and produces curves, which diffel' in 
character from other fi'equency curves accol'ding to the nature of 
their origin. 

The development in series according to the formuJa of BRUNS 1) 
anel CHARLrER, appeartl to be the methoel indicated for frequencies 
with indefinite limits; but the deduction of this fOl'mula is basecl 
upon a genel'alisation in the use of definite integrals as already 
polntecl out by BESSEL and thel'efore not quite fi'ee from pl'emises, 
whirh may be applicabIe to the theory of probability but have na 
connection with the problem in question which may be defined as 
the allalysis of all al'bitrary function between given limits. Besides, 
th is method of eleduction can hardly be applied in the case of detinite 
limitation. 

The fOl'mulae of PEARSON, as also those of CHARLIER, are entirely 
based upon the pl'emises of the theol'y of probability and, as they 
are not glven in series form, they onIy contain a elefinite numbel' 
of constants which, in same cases, is too limited to allow a complete 
chal'acterisation of the cnrve, pal'ticularly in the working out of 
fl'equencies of the cloueliness, as will be shown in an example in 
anothel' communication. 

Besides, the constants, which partIy appeal' in exponential form, 

1) Il. BRUNS. Wahrscheillhchkeitsrechnung ulld Kollektivmasslehre, BerIin, 1906. 
Idem. Bellra,ge ZUl' Quotel1l'echl1ung. Kon. Sachs. Gesellsch. d. Wiss. Bnd. 58. 

LClpZlg, 1906. 
C. V. L. CHAHLIER. Resem'ches into the theory of probability. Meddel. Lunds 

astr. observ. Ser. 11. nO. 4. 1906. 
Idem. Veber das Fehlergesetz. Ark. for l\Iatem. Astron. och. Fys. Bnd. 2. nO. 8, 1905. 

54l!. 
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give no eleal' inclication of the part they play in the construction of 
the curve, alld it is not weil possible to descl'ibe their function in a 
simple malUlel' either verbally or gl'aphically. 

The object of this communication is to pl'opose a general and 
simple methocl by which ft eurve may be founcl, which being inte
gl'atecl between eel'tain limits, definecl by the dif,tl'ibntlOn of ths data, 
will give the sums characteristic of this disLribution, and that fol' 
frequencies of different kinds, as far as this is possible owing to the 
elements of uneertainty proeeeding from the irriperfection of the data 
which, of course, always l'emain. 

This curve, repl'esenting the law which the phenomenon follows, 
should be ealled the frequeney-curve; the curve of the aggregate 
vf1.lues, obtailled hy grouping the Ol'iginal data within definite limits, 
may then be called the curve of distriblltion according to BRUNS. lts 
form depends llpon the degl'ee of condensation of the ol'iginal data 
(Abrundllng aftel' BRUNS), but approximates more to that of the 
fi'equency curve as the condensation becomes less extensive and 
consequently the number of observations is greater. 

Such a development of an arbitrary function ean evidently be 
made in an infinite number of ways; it is therefore necessary to 
postulate some general principles. 

The following pre mises apply to the method of development selected : 
1. That the development takes place aecording to polynomia of 

all ascending degree. 
2. that for the deterlllination of the constants, the calculation of 

means of different orders is used, in relation to an origin favourably 
seleeted according to the requirements of 1he various cases. 

The expres sion "llloments" which is fi'equently employed, has been 
avoided as an unnecessary analogy with mechanical problems. 

~ 2. DEVELOPMENT BE'I'WEEN DEFINI'fE LlMITS. 

a. No given values of the function at the limits. 

The polynomia, the degree of which is inclicated by a suffix, are 
represented by Q'l> and the series by: 

u = AoQo + A1Ql + A2Q2 + .... etc. . . (1) 

The simplest form whieh cau be given to the polynornia is: 
Q - ",11 + a mn- 1 + a 0011-2 ~- a n - tv 1 2 W , • •• n 

In this case the most practical choice for the origin of coordinates 
is eYidently the meau bet ween the limits as then, on illlegrating 
between the limits, all odd terms vanish; hence a separation between 
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even and odd polynomia beeOlnes necessal'y, and the general expres
sion is: 

Qn = {V ll + a2mn- 2 + a4,vll-
4 + .... a/l neven 

= mll + a 1ilJ ll -
2 + aaxn- 4 + .... an-2 n odd 

A simplillcation of the fol'mulae ean then be obtained by altering 
the scale value in sueh a way that the limits become ± 1, which 
is always possible; fol' the sake of convenience these limits have been 
omitted in the following expressions. 

The means of different order are indieaLed by : 

(.til = f u,v11dm . 

In order to enable us to ealculate from the infinite series (1) 1ile 
A-eoeff. in a finite form, the unique and suffirient condition is that 
the a-eoetf. be determined so that the condition : 

f Q1I,vmd,v = 0 . (2) 

is satisfied fol' all values of 1n < 11, as then all integrals beyond the 
In + 1th term vanish and, at the same time, the a-coeff. are entirely 
fixed, but for an arbitrary constant factor. 

If this operation has been performed, it is at once evident from 
(2) that: 

fQmQndü! = 0 

for all values of 1n different f'l'om n and, fUl'thel', that: 

. . (3) 

where: 

a-I = fQnQndm = f Ql1 ,V11d.'V. 

The 11/2 (n even) or 11-1/2 (n odd) constants of the polj'l1omium 
QII are ealculated frol? the 11/2 or 11-1/2 equations : 

JQ/ld,V = 0 

JQlIX2dx = 0 

f Q1l'vd,v = 0 

(n even) JQnx3dm = 0 (n odd) 
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01', fol' neven, f'l'om: 

_1_+_a_2_+~_4 + 
n+l n-l n-3 

1 a2 a4 

~+~l+n-l + 

1 a2 a4 

2n-l + 2n-3 + 2n-5 + 
for n odd, from: 

1 al a~ -+--+-+ n+2 n n-2 

1 al a3 

~+n-t2+-n-+ 

1 al as --+-+--+ 2n-1 2n-3 2n-5 

~=o 
1 

all 
-=0 

3 

~=o 
n-1 

aJl-2 = 0 
5 

(tn-2 
.. -=0 

n 

On climinating snccessi vely from these equatioTIR a2 ,a4 • • • • Ol' 

al' as . . . . wc find for the genera I expression of tbe polynomillll1 : 

n(n-1) n(n-l) (n-2) (n-3) 
Qu = .'IJlI- ---- (/:11-2 + iCI/-J - etc. (4) 

2.(2n-l) 2.4.(2n-l)(2n-3) 

i. C., buL fol' a constant factor, that of zona1 hal'monies, whieIJ 
wc shall cal! P-fnnctions. 

TIJis migbt have been expecied as ihe condition ~2), from wllieb (4) 
al'lses, holds good also fol' the P-fnnctions. 

Tbe Q-funetions mar, thel'efore, be ronsiclerccl as generalized 
P-fllnetions, the latter presenting a special case of the former; if 
we wl'ite (2): 

then: 
(5) 

if 7';11 ue defined so that: 
kil QIl = 1 fol' IV = 1. 

Tbe use of this constant no doubt offers advanLages In trcating 
pl'oblems relating to the potential theol'Y, but fol' om pl1l'pose iL 
WQuld bc of no importance and, in pl'ariice, entfl;il Rllpel'fluons work; 
somc expressions cel'tainly' take a simp lel' form by its u::;o, bni \Vha! 
is thereby gained on the one hand is largely lost on [he other as 
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in calculating uQII in (3), we have to deal with the unnecessal'y 
factor kil . 

However the relation (5), wh ere : 

so that: 

(2n)! 
kn=---

2n • n! n! 

2'1 • nl nl 
Qn = (2n)1 Pn (6) 

is useful in deriving from the weU known properties of the 
P-functions those of the Q-funetions. 

They Ratisfy LEGENDRE'S eq nation as wen as the zonal harmonies: 

d2 Qn dQn 
(:u2 

- 1) d.v2 + 2iV d.'/) - n (n + 1) Q,! = O. 

Thc recurrent formula beeOll1es: 

and 

• • . . . . (Ga) 

Hence, we find: 

(2n+1)1 (2n)1 
a-1 =JQn QIl d,/) = ~JPll Pn d.'/} = 2 

P k2 (2n+l) 

22n+l nl nl nl n! 

and for An: 

A - a 11. - --- 11. .) + 'L • - eet. [ 
n (n-l) n (n-l) (n-2) (n-3) ] 

n - ril 2.t2n - 1) rll-- 2.4. (2n-l) (2n-3)~' 11-.., (7) 

b. Given U = 0 for m = ± 1. 

The case rliscussed sub a, where nothing is supposed to be lmown 
concerning the function to be developed, wilL seldom occur in practice 
and, as all adaptation is due to the accomodating power of the 
A-eonstants the application would, in such a case, necessitate the 
calculation of many terms and, therefore, hardly be profitable. 

Now, in dealing with observations of the degree of cloudiness, 
the case prcsents itself, that a curve has to be found, which is 
ehal'aetel'ized by the limiting values mentioned above. 

The obsel'\'ations of serene sley (cloudiness zero) and of an entirely 

1 ' 

i , 1 

, I 
I, 

"I ! 1 

11 
; 

i I 

lil' 
11 
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'overcast sky' (cloudiness 'ten) ougIlt to be èonsidered separatelj fl'orn 
the other observations as they constitute climatological. factors of 
peculiar importance for the description of the climate (principally in 
nOl'therly latitudes). Moreovel' tbey _ are 10 be l'egarded rathel' as 
discrete quantities, whiel! do not show any continuous transition to 
a cloudiness resp. of de~ree 1 or 9. 

The other degl'ees of cloudiness may then be regarded as obsel'
vatioIls of continuous quantities subject to the above mentioned 
conditions. 

In ihis case we may easily cause all terms of the series ('1) to 
suit these conditions by simply multipJying the series by a factor 
that vanishes for .'1] = ± 1 e. g. :v' - 1, and then applying to the 
new fnnctions, which we sha11 call R, (he same reasonings as sub a. 

The degree of the polynomia is then increased by t wo, so tbat 
we have to start with R2 • 

The general expression becomes: 

Rn+2 = (.v~ --1) Ru = (,v~ -1) [,V'I + a2 ,'1]'1-2 + ... anl , neven 

= (,v'-l) [X'I + al ,Vn-2 + .. an-2], nadel. 

The resnH of this operation is evidently tbat the surface enclosed 
by the CUl've, as determined by the first term of the series, is not 
l'epl'esented by a rectangle of base 2 and height 0.5 as in the caRe 
of the Q-functions, but bj a pal'abola of base 2 and height 0.75, 
wliich makes again the surface equal to unity. 

Ey altel'nately aElymmetrical and symmetrical deformations the shape 
of this parabola is then altered by means of the next terms in snch 
a mannel' as to make it approach more and more 10 the frequency 
curve corresponding to the given data. 

It may be noticed here that in the case of fixed limits, there is 
no reason to choose for the origin of coordinates tbe point COl're
spon ding to the arithmetical mean,;' foy logical alld practical reasons 
the point intermediate between the limits is then indicated. 

The condition, w hieh has 10 be satisfied by the a-coeff. of the 
\ 

R-function, aud by which they are fully determined, is 110W tbat: 

JRII+2 ,~lm a,v JRlI ,vlII (,v2 
- 1) d~ =~, m < n 

Ol' 

• • . • . (8\ 

The a-coeff. are calculated from the equations: 
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1 + (t 2 + a4 + .. , ~ = 0 \ 
(n+ 3) (n+ 1) (n+l)(n--l) (n-l)(n-3) 3.1 I 

1 ~ ~ ~ 
(11+5) (n+3) + (n+3)(n+l) +(n+ l)(n-l) + ... 5.3 = 0 n 

(2,,~f)(2~~1~ +'(2,,'~1;(2~~3; +;2,,'-3;(2~~5;+:'(~+;î(~~1; 0\ 

even 

and 

1 + al + __ a_3 _ + ... Ctn-2 = 0 
(n+4) (n+2) (n+2) (n) (n) (n-2) 5.3 

11 adel 

___ 1__ + al -+ a3 + ... ~-2 =0 
(2n+l)(2n-l) (2n-l)(2n-3) (2n- 3)(2n-5) (n+2)(n) 

By sl1ccessive elirnination of (t2' a4 ' •• al' as ... we find from these 
equations fol' the general form of the R fllnctions; 

+ (n+2) (n+l) (n+2) (n+l) (n) (n-l) 
Rn+g = mn 2 - ,'/]n + ,'/]11-2 - etc. (9) 

- 2. (2n+l) 2,4. (2n+l) (2n-l) 

anel from this expression by elividing it by al -1 ; 

1 n (n-l) 12 (n-l) (n-2) :n-3) 
Rn = ,'/]11 - ---- ,'/]1Hl + ','/]11-4 - etc. . (10) 

2.(2n +-1) 2.4. (2n+1) (2n-1) 

The recurrent fOl'JTIn]a for boll! B ano B' is: 

I _, R' 12 (n + 2) R' - 0 
Rn+l m 11 + (2n+3) (2n+l) 11-1-

anp the fundions are solutions of the dHf. equations 

d2R II+g 
(.v 2 -1) n - - (n+2) (n+1) Rn+2 = 0 

dllr 

d2R'n dE'n R' 
(,'/]2-1) -n- + 4.v - - (n+3) n n = O. 

dm" d,'/] 

On comparing the expl'ession fol' H/I ViTiLh that fol' Q/I it is readily 
seen that the B' functions may be found by differentiation of the 
Qn+l -fullction, so th at : 

R' = _1_ . dQn+1 
n+l d,'/] 

• . . (11) 

This might have been expecied as the value: 

I 

1 

I 

1

1, 

,1 ' 

11' 

I1 

II 

'( 
1

1 ,\ 
1'1 

'1 
I 

1 

\ I 

IJ,I 
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satisfies the condition (8) 

f + dQn+l f dQn+l .v1ll 2--dtv= .v7n --cl,v, 
cl,v cl,v 

which is easily proved by pal'tial integration. 
Therefore the series discl1ssed here: 

n=0.1.2 

might [l,lso (but for a COllstant factor) be written thns: 

2 ., clQ'+1 u=(.v -1)2. An-
d,1] 

n=0.1.2 

The calcula.tion of the A-constal1ts is based upon the evident 
property of the B fl1l1ctiol1s that: 

111 different fl'om 12 

hence 

whel'e: 

(1-1 = J Rn+2 R'n cl,v = fRn+ 2 ,'1]1I d,v = fvn (m 2 
- 1) R'n dtv = 0 

or, by (11) 

1 f 0 clQn+l (1-1 = -- ,'1]11 (,'I]- - 1)-- cl,v n+ 1 dtl] 

From the diff. equation of 1he R-fl1l1ction follows: 

d [ cl
Qn+1J dm (,'1]2 - 1) d;- = (n + 2) (n + 1) Qn+l 

thence: 

or by (8): 
22n+l (n + 2)1 nl nl nl [j-l = __________ _ 

(2n + 3) (2n + 1)1 (2n + 1)1 

and All is calcnlated by the expl'ession: 

[ 
n(n-l) n(n-l) (n -2) (n-3) ] 

An = (J ~tn_·2.(2n+1) (.t>l-2 + 2.4. (2n+1) (2n-1) (t
n- 4 

- ... etc. (12) 

The negative sign of [j is clue to our having cho~en as general 
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factor x~ -1, a quantity which, by the definition of the limits, is 
always negative. 

As weIl as the Q-functions, tlle R-functions might be multiplied 
hy an arbitrary, constant factor, sueh that any peeuliar deveIopment 
becomes possible Ol' also with a view of simplifying some expressions. 
In our case e. g. lell might be ehosen so that {j = 1; pl'actically 
however this would hardly affol'd any advantage. 

G
. 'Ill 

c. wen tt = f01' x=- ± 1. 
'Ilo 

As bas been l'emarked above, in wOl'king out observations of 
cloudiness the case presents itself that tlle frequeneies for the extreme 
limits vauish; if, however, we have to deal, not with the original 
observations, but with average values as, e. g. daily means, the fre
quencies of serene and overcast sky, alLhough still of peculiar interest 
for the knowledge of thc climate, Call110t be regarded as discrete 
values because, owing to the opet'ation of taking the means, a 
continuous transition of these extreme vaIues into the intermediate 
values must be assumed, 

In th is case, when the curves assume peculiar forms quite different 
from tlle weIl Imowl1 curves generally met with, we can take 
care that the conditions for the extreme limits are bOllnd to the first 
term of the series whilst all other terms remain as they are in the 
case discussed sub b. 

Now the fil'st term must contain thl'ee consrants, t wo for the 
extreme values aud one fol' the flxing of the area. 

In the expression 
ao + bo'v + cox~ • (13) 

the constants must satisf}' the three conditions 

hence: 

'Il l = ao + bo + Co 

'Ilo = ao - bo + Co 

2co 
2ao +"3 = 1 

4ao = 3 - (UI + uo) 

2bo = 1tl -1to 

4co = 3 (UI + ua) - 3. 

The l'easoning as well as the application then l'emain the same 
as sub b; again 

(RII+2 R'1/! cl.IJ = 0, 
v 

1n difrerent from n 
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with the exception howevel' of the first term of the series which 
now fiSSllmes the form (13). In calcnlating All we ha\'e thel'efore to 
apply = a correction to the expres si on fol' All which is easily found 
by l'emarking that: 

(n + 1)fV7l1 R'n dm JV1/! d~:+l d,v 

= (V1/! Qn+l)~: - m fV1/!-1 Q'l+l d,v. 

13'01' 111 < n + 2 tile last integral vanishes and, R, being of the 
second degree, we have to consider this case on1y. 
We have, therefore: 

(n + l)J xmR'1l drq = (v 11l Q'+l)~:' m < 3 

Ey (6) we find : 

( )
+1 __ 2 __ 2"(n + 2)!n! 

Qn+l _ - k - (2 + 1) , (n even) - n+l n . 

w hilst fol' n odd the expression yanishes. 
Hence also: 

( ,v1/! Qn+l)+l -= ~ (m + neven) 
-I kn+l 

and equal to zero fol' 1Il+n odd; in calcll1ating the constant An we 
have, therefore, 0111y to app1y a corl'ection sncb that, instead of 
(12), now is used, fol' n odd: 

J 2n+lbo n! n! :f' 211(u1-uO)n!n! 
An = fJ ïtR'n d,v - = {I ttR 11 d.v - ------

(2n + I)! (2n + I)! 
(14) 

and for neven: 

f ' 2n+l(ao+co)n!11! Qr:, 2"(lt1 +tto)n!n! 
Al!=8 uRnd.v- (2n+1)! =f.!.JuRn d•v - (2n+1)! (15) 

This example of adaptatjon, of which many variants might be 
given, will suffice to demonstrate the applicability of the method _to 
special cases. 

~ 3. DEVELOPMENT .BET WEEN DEFINITE LIl\IITS ON THE ONE SIDE 

AND INDEFINITE UMITS ON THE OTHER. 

a. _No given value fa?' the limit. 

As has -been noticed above, frequencies of dmation and qllantities 
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of rainshowers lie between the asymmet1'ical limits: zero for the 
smallest and 00 for the largest values. 

Frequencies of this kind, the1'efol'e, offer au example of a transition 
bet ween the case of fixed limits and infinite limits on both sides. 
As here there exists no symmetry in the limits, the zero-point cannot 
be chosen so that, on integrating, the odd functions vanish, hence a 
sepal'ation between even and odd functions would have no sense, 
and we al'e obliged to employ complete polynomia of asrending 
degree. 

Here, as in the case discussed in ~ 2, there is no advantage în 
making the ol'igin of coordinates coincide with the arithmetical mean 
and, from a logical as wen as a practical slandpoint, the zero-limit 
is indicated. 

In order to develop the function bet ween the limits 00 and zero, 
the only thing to do is to multiply the series of polynomia with a 
suitable factor e. g. r X , so that the equation of the fi'equenry curve 
becomes: 

u = e-X (AoSo + AlSl + .... etc.) 

= AotPo + Altpl + .... etc. 
where: 

S - .·n + a •. + a .. 11-2 + a n - tV l'V ,UI • • •• 11' 

The conditions to be satisfied by the a coeff. are then: 

f:'xS/ld,r; = 0 

o 
and as: 

, je:'3- {/JSn dl/J = 0 .... f:'x .1;n-1 Sn d,r; = 0 

o 0 

je:,; IIJII d.'/] = n I, 

o 

the general conditional equatiolls are: 

nl + (n-1)1 al + (n-2)1 a~ + .... 1 I an-l + 0 I an = 0 

(n + 1) 1+ n I al + (n-l) I a2 + .... 2 I all_1 + 11 an = 0 

(2n --1) 1+ (2n-2) I al + (2n-3) I a3 + .... nl all-l + (n--l) I all = 0 

Hence we find for the general expression : 

n~ n2(n-1)~ 
Sn = lVII - 1/ ;un- I + --u- .'/]11-2 - •••• (-l)n nl. (16) 

The method of calculating All is the same as in the former cases 
as here too: 
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m<n 
and 

whel'G: 

but: 

} 

LJ co fco d81l 

tplllSn d,v = - (11'11 8n) + 2 t1'11- d.); 
o daJ 

o 0 

or, as the last integral vanishes according to the conditiolls: 

1-1 = - (1./J1I 8/1);:= nl n! 

because, by (16), only the la&t term has to be taken into account. 
The expression for All then becOlues: 

(.tIl n (.tn-l n(n-1) (.t1l-2 (-l)n 
A/I=--- + ---, .. -- . (17) 

n! nl 1! nl (n-1)1 21 nl (n-2)' uI 

by which the problem is solveel. 
The application to special cases will be simplificd by a brief sum

mal'y of the relations existing between the different ql1antities intro
duced which are analogous to those holding fol'· zonal harmonics. 

We remark thaL for Sil anel 1./J1l we can also wl'ite 

8n = (-l)n (~_1)(1l)i!)1l , 1f'n = (-l)n!.:.... (e-x a;ll) • (18) 
d{/] d,v1l 

hence: 
{/] d8n d811- 1 

811 = - n8/1_1 + - - anel 8/1 = (:I;-n) 811- 1 - {/] --
n d,'IJ dOJ 

from which the recurrent formula: 

811+1 + (2n + 1 - ,'IJ) 8/1 + n~ 811 - 1 = 0 , (19) 

can be deri ved, w herein fol' 8n as weU 11'11 may be written. 
Furthel' the functions batisfy thc diff. equ.: 

d281l d81l 

,'IJ - + (l-,v) - + n8n = 0 
d,v 2 cl,'IJ 

d~1./J/l dl/'II 
,'IJ -d 2 + (1+,'1]) -d + (n+1) t1'11 = o. 

tV ,v 
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b. Given ~t = 0 f01' :1: = O. 

In the same manner as the Q-sel'ies has been made to suit tbe 
zero-condition of the function at the limits, the tr,-series can be made 
fit for the case th at the function aSSUlnes the zero value for the lowest 
limit by mllltiplication with x. This case presents itself e.g. for 
fl'equencies of wind-velocity, the curve of which originates at the 
zero-point as absolute calms do not occur. 

By this operation the degree of the polynomia is inereased by one 
and we ean write down at once the new T function from (16) by 
multiplication with [IJ and, at the same timo, 611bstJtuting?l + 1 for n 
except in the binomial factors which remain the same. 

The condition for tlle determination of the a-coeff. is now: 

f:-'x,vm T II+1 dtIJ = 0, 

o 
and the general expression : 

n (n+l)1 n(n-l) (n+l)1 
1'n+l =tlJlI+l __ • ___ tlJI1+ ,v1l- 1 ... (-I)ll(n+l)!tIJ (20) 

I! n! 2! (n-l)! 

From this evidently: 

1 dTn+t 
Sn = - . -- . . (21) 

n+l eb; 

a similal' relation as is shown by (11) between the Q and R functions. 
Rence, if we put: 

where: 

1'11+1 = (1)1\ 

All = 1'J~: 1"n d:c 
o 

1'-1 f:-x 1'11+1 T'n d,v = J:'-x 1)11 T 1I+1 d.v = 
o 0 

Joo dl' J"" 11+1 
" e-x .vll --= (n+l) e-1: ,VII S,l d,v = (n+l)1 nl 

d,v 
o 0 

so that: 

A _ [.tn [.tn-l + ftn-2 (-I)n 
Il - O! (n+ 1)/ n/ I! n! (n-l)! 2! (n-l)! (n-2)! - ... ----;:J' (22) 

If we eaU the series discussed here, the tp'1l+1 series, so that: 

tp'n+l = e-:l. Tn+1 = r X tG T'n 
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we find the following l'elations: 

, ~ ~l ~ 
tp,+1 = (-l)n - (rx a:1I+ 1) = (_1)11+1 IV -- (e--x mll) = - ,'1;-

dtIJ1I d,v1Z+1 dm 

d2 T' dT' ~ 
m __ 1! + (2 _llJ) __ 1! + nl"l1 = 0 

da;2 d,v 

d21'n+l d1'n+l 
m - IV -d- + (n + 1) 1'11+1 = 0 d,v 2 ,v 

In exactly the same manner as the R-series coulel be expresseel 
in diif. quot. of the Q series: 

2 '"' dQn+l 
ltR = (m -1).4 An--, 

clm 

so the tp' series might be expressed in diff. quot. of the ..p series: 

dt!'n 
1t'{/ = - ,v :E All . -, 

dm 

In dealing with this kin el of frequency curves au alteration of the 
scale value offers great aelvantages as weIl as 111 the case of fixeel 
limits. 

In the case discussed in § 2 it was possible by th is artifice to 
simplify the lirnits; here such an altel'ation has no intluence upon 
the limits which rernain 0 anel 00 if we write kv for x, but we are 
able by this means to accomodate the first term of the series, by 
which the area is determined, according to the form of the curve, 
so that the task of the A-coefficients is lightened. 

By the factor h, which by its nature is a positive quantity, no 
complication in the calculation of the constants is introduceel: the 
series is now: 

1t = e-1I", [AoSo(h.v) + A 1S1(h.v) + .... etc.]. 

allel, because: 

(00 1foo 
'Y-1 = J e- h SIl(ltm) SIl(7t,V) dm = Tt e- t SI.(t) Sn(t) dt 

o 0 

An=h ----. + ' ... --[

hn(L1! n 7tn- 1(Ln_l (-1)1IJ 
n!n! I! n!(n-l)! n! 

We might also ornit the coeff. h in (24) and write (23): 

lt = lte- lIx lAoSo{1I.V) + A]S1(h,v) + ' ... etc.] 

. (23) 

. (24) 
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Tbe s.cale value h may, of COUl'se, be clIosen qnile aL'bitl'aril,r; 
it is llOwcvel' de&imble (0 do IhiEl iu accol'clallce witlt l/te lltttlll'e of 
t he Clll've llnd, lIJel'cfol'c, to calclllnlc it lIletllUdically ft'OIIl t he gi veil clata. 

ThiEl call UC clone by sllppl'er,sing Olle of thc A-conslallt,> 111 (2:3a) 
ElO tlmt LIJe men.!1 vnlue COl'l'cspOlllling wiLh thi::; constn.nL can bc 
madc 116C of to tlefine lt. 

H thell we put: 

we finel, as Ao = 1, 

~ 4. DEVl',LOPl\IENT Bg'rWE1~N 'l'UE INDJt;]!'lNI'l'Jt: Ui'Ill'l'S ± 00. 

B,r renSOlJS of sy l111uet 1',)', in this case it is logical tu take e-:!.~ fol' 
t!Jc fadol' uy whieh the IUl1itEl arc dcLcl'll1illcd n.lJ(! \Vllen, fol' the 
sallIe l'caElOIJ, the n.l'itltllletical tllettl1 IS e/tosen as the origill, the po]y
nOmillll1 ('an, as in Ihe Cl1,Se of theel lilllits, be sepal'atecl Î1ltO even 
allel oeld fnncliolls, beCl1,USC then, Oll intcgl'ating belween the lilllits, 
the odd fUlIel ions vanis11. 

The serIes becomes Ihen: 

n = e--x2 LAo Uo + -,·1~ U~ + Aa U3 + . etc. 

= Ao(Po + A 2(P2 + A~(Pa + . . . . etc. 

n.s, by the cltoice of the oL'igin, the ~11-tcl'ln has to be omitted. 
The conditiol1ttl eqnalion tOl' UlO d~tel'lllinatiun of lhe ({ cOllc;tanls is: 

IV:1 
fJJlI cl.1J = 0 m<n. . (25) 

-en 

Ol', generally . fol' n e\'en: 

[(n-l) (n-3) ... 11 -I- 2a2 [(n-3) (n -5) ... 1] + 22a4 l(n- 5) (n-7) ... 1] + 
+ ... + 211/2an = 0 

r(n+I) (n-l) ... l] + 2(t2 L(n-J)(1l-3) ,I] + 22(tll(n-3)(n-5) ... 11 + 
+.. + 211 - 2/2 all = 0 

L(2n-3) (2n-5) ... 11 + 2a2 [(2n-5) (2n-7) ... 1] + 
+ 22a4 1(2n-7) (~1l-9) ... 1l + ." 1- 2((/1 [(n-3) (n -5) ... 11 = 0 

allll, fo I' 11 od cl . 
55 

Pl'oceedings Royal Acad, Amslcl uam. Vol. X, 
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[n(n-2) .. 1] + 2a l [(n-2) (2-4) ... 1] + 2'aa r(n- 4) (n-6) .. 1] + 
+ 2n-l/1an_2 = 0 

r(n+2)(n) .. 1] +- ::!ct l [(n) (n -2) .. 11 + 2'a~ r(u - 2) (n-4) = ... 1] -I-
+ 2n- 3/2(t1l_2,= 0 

[(2n -3) (2n-5) ... I] -I- 2a l r(2n-5) (2n-7) .. 11 +-
+ 2'aal(2n -7) (2n-9) ... I] + 2Ctu_2 [(n-2) (n-4) . . 1] = O. 

Fl'om this iL follows th at : 

/l(n-l) 2 n(n-I) (n-2) (n-3) 
ij, - VU - ---- /:,,- +- '1)11-4 - de 

n - • 2' I!" 24 • 2! ' . . . . (26) 

from which we del'ive lhn,t ~I anti (j)71 [l,1'C solutions of the 
equalions: 

dl Uu (UJn 
-- - 2.'V- + 2nU/I = 0 
cl,v 2 cl,v 

a,<pu clCfJ'1 
- -I- 2,'1: - + 2(n+l) CfJlI = 0 
d:/]' dm 

and the reclU'l'ent fOl'lllUla, becomes: 
20;+1 - 2,vo;l + nUn- 1 = 0 

ThR A-coeffieiellls al'e c1etel'minecl in the same manner as in all 
former cases: 

-00 

fol' all va,[ues of 1n different fl'om n so tlmt: 

-00 

where: 

and 

A'I=- -- + -etc. 
2/1 [(t'l (t ll-2 ((/1_4, J 

V:r n! 2'. 1!(n-2)! 21 .2!(n-/!)! 
(27) 

Fl'om tbe lllllllel'ieal va,lucs caknla(cd by (26) allli 1'l'O-O1 the 
diff. eq nat ion it appen,l'& t hal, bilt fol' all :lJl'UiLl'èl.l'y cOllslu,ll t facl Ql', 

the CfJn-fnnctions ale cqun.l 10 t11C dCl'ivatives of llte n th ol'cler of q)u 

or 0 12
; we might, thel'efol'e, \VI'iie: 
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this mig11t have been expeetecl as (hi8 val ue satisfie& (be condition (2.,), 
",hicl! can be easily pl'Ovecl IJ,)' Rllccessive pal'tial illtegnttion, lf we 
pul: lt:1i = 1, 

allel (he expl'eSSiOll fol' the A-coefficients becOInes equal ia tltat given 
by BRUNS, 

d"<p 
Thel'efo)'e __ 0 mav be snbslitnteel fol' <PIl for the &ame reasons a&, 

d,v" " 

insleacl of the Q-fUllctioIlS, zonal hal'monies miglJt be elllployee!; in 
practice 110we\'el' 110 labour is savet! by this sub::,litutioll as then 
the polynolllin, [l,l'e cltttl'gcü wit11 snpedluons coerticiellts. Aftel' wInd 
ha& been ~aid in ~ 3 about a change of the &eale value, it will he 
&lIfficiellt to I'cll1ark t1w,t in this case also the great allvêtntage whielt call 
be del'ived from the intl'OdueLion of a seale factor iE: Lhe aC!<tptation 
by means of the first term of the sedes to the sllttpe of the curve, 
the sud'aee l'emaiuing equaI 10 unit)'. 

The equatiou of the CUl've tllen becomes: 

(28) 
anel : 

An = -- - - + elc.) • 
2'lh [hn[tn hn- 2f1n_2 J 
V J't nl 2' . 1!(n -2)1 

(29) 

The choice of the scale factor is of course fJuite 11l'bi tml'y, but, 
in ordel' 10 detel'lI1ine iL in accorelanee with the natlll'e of the Clll've, 
it i& desil'able la put A, =: 0, Ihen Ihe avemge of the second order 
eau be used for the clefinition of /t allel it is easily seen that: 

1 
(J'=2h" 

The coelf. of (29) iJl ba far a& I bey arc illllepe 1Il1en t of n llIay fm'thee 
he Oll1ittecl aud ",ritten before (28), (hen the equatioll of tbe Clll've 
becomes: 

h 
1t = - e-h'.t

2 LAo Uo + Aa Ua + A4 U4 + etc. 
VJ't 

lf we take into cOll&iclemtion oul,)' lhe Jir&t term in the clen'l
lopment, wc fine! llle cxpouentinl lnw in its simplest fOl'1U as 

Ao = 1. 
h 

U - - e-!l2z' -V.1l' . 
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~ 5. INDE~'INITE LIi1IITS, TWO VARlABLES. 

The tl'eatment 0(' wi]](! ol>sel'vfttioJls JIOW ofrers 110 difficlIHies as, 
in calcnlatillg t he means ot' dill'el'ellt -ol'del', the two val'iables (pro
jectioJls upon two axes urbitmrily chosen) can always ue :,epam.tetl 
and the meUwd l'enmills in all othel' l'espects quito tho same. OllI.)', 
instead of one lllean of each order, we can now dispose of p + 1 
metll1S of order p. 
It' b'y V;/ be dcnoted the sallle fllnction of y as u" is of x, the oq 11. 

of tlle CUl've assumes, as ~I = Vo = 1, the forllJ : "-

n(:c,y) - e-x~-'1~ [.10 + A \,0 UI + AO.I v\ + A 2 0 U2 + A I •I UI VI + AO.2 V. 

+ A1.0 U3 + A2.1 U2 VI + A\.2 UI V2 + Ao:! V3 + eta.l (30) 

The general expression ('Ol' the polYllomia, IS : 

U1I V;II 
and as, evidently: 

J+OOJ+OO e-TL !12(U1I Vm ) (Uil Vq) d.vdy = 0 

_c» -:::0 

for all values of iJ different 1'1'0111 12 anel of q differellt frum 1/1" we 
fine! fol' the A-coefI'. : 

-/XI - 00 

wh ere : 

-Cf.) -00 

FrolU the considemtions of ~ 4: iL ('ollowb that lhe fllllCholl: 
(['7,111 = e -3

2
-,112 ~i 17;11 

may as weIl be gi ven the fQ1'l11 : 
dl/ 711 ,lli+m 

(PI/lil = kmn --- q,o = knl/t-- e-"~-!12 
d.Vlid'y711 d,Gli dy711 

(31) 

as lhis sa,tisfios the pL'emised l'onclition; [hen tIJe seL'ies (30) assnmes 
the fOl'1l1 of a, SlIlU of diJf. t[uot. like the set'ies of BIWNS aml 

in nccol'clanco to wllicll (31) has to be ll10tlifiecl. U' it iE> possible to 
l'emove the Ol'igin of cool'dinates to the aritlllneticDJ mean by a, COl'l'e~tioH 
of tbe pl'o,jectiolls fOl' tlleil' a\'emge m[nc, then the terms with lhc 
coeff. Au) a11l1 ilo.1 vn,nish fl'OIll (30): 

lf we wish to tl/hel' tbc sca,le vnl nes nccol'diug to tbo UtltUl'e of lhe 
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data, we have to wl'ite evel'ywhel'e, lt.'/} anel h'y, instead of x and y, 
whence 

nIm! :re 
s-l- ---- 2"+111 ltlt' . 

The scu,le faclors h anel h' cu,n tllen be determineel uy putting 

A:l.O cn AO•2 = 0 
H,nd the t wo nnmixeel means of the secOllel ol'cler eau be disposed 
of fOJ" the e1etel'minatioll of these constants : 

1 1 
tt~(,'I)) = - en tt2(V) = -/ 

271' 271 2 

If, fnrthe!', we make the tl,xes l'otate abont the Ol'lglll so that they 
coincide with the pl'incipal axes of inm·tja, tllen also Au lias to be 
put eqnal to l'.e1'O anel the cOl'l'esponding 111ean 

tt~ (,'1:', y) 

enables us to calclliate the djl'ection of the principal ax.es. 
The series (30) I hen becomes: 

u = e- tL?/2 [Ao + A 3.oU3 + A2•1 U2 V, + AJ.2 UI V2 + Ao.3 V3 + 
+ A 4.OU4 t A3•I U3 T'I + A2.2 U;lV2 + A I•3 U l V1 + 
+ Ao.4 V4 + enz. 

whel'c all tel'lTIS except the fil'st l'epresent tbe deviations from the 
llo1'mal expoJlential law, I he tel'lns of odd dcg('ce being a measUl'e 
of the difJ'el'ent. kinds of skewne5s, Ihe terms of even degl'ee of the 
different kinds of symmetrical cleviu,lions. 

Chemistry, - "Equilibria in qllft!eJ'lw1'Y systems," By Prof'. F. A. H. 
~CHRl~IKlmAKER&, 

Let llS fit'st take the system with thc components: water, ethyl 
a leolwl, methyl aleohol allel ammonium, nitmte; we Ihen have 
al Lbc Ol'diml,l'j" tcmpemlme OllC &olid substancc and tbl'ce solvcnts 
whieb are nüsciblc in u,1I pl'opOl'lion5 so that thc l'csulting equi
libria tu'e very simpIe. Tlte cqnilibriu, occlll'l'ing in this system 
u,t 80° have been investigu,t.ed anel m'c l'epl'escnted iu tbc usual 
mu,nncl' in Fig. J ; I he u,nguht!' points 1/T, M, A u,nd Z of the télm
hedroll indieaLe Ihe eomponcnls: wate!', methyl alcohol, ethyl alcohol 
nUtI the sa.lt: mllll10nium nitmte. 

The curvc /IJlt sitnu,led 011 thc side plane WAZ ('epresenls the 
t:iOllltÎOIlS eOllsisting of watel' anel ethyl alcohol u,nd satmu,teel with 
soliel balt; the CUl've 'lOm l'ctJl'cscnts lhe solutiollS of ,wtl,tel' and 


