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Finally, we can observe a spherolite of the hexahydrate with a

radial structure which now grows centrifugally to the large well-

known semi-spheroidal spherolites of ferric chloride (fig. 3c).

§ J 3. This experiment proves that the abrogation of the metastable

condition, or at all events of a liquid condition which is possible

under the influence of phenomena of retardation may happen owing to

the formation of spherolites which are preceded by the differentiation

of the fusion into an aggregate of liquid (/lobules. True, the latter

are here isotropous in contrast with the phytosterol esters just

described, but the anisotropism of the latter licpiids may be caused

also by factors which are of secondary importance for the apparently

existing connection between : metastability of liquid conditions, their

abrogation by spherolite formation and the possible appearance of

liquid globules as an intermediate phenomenon. I will just call atten-

tion to the fact that if we set aside a solution to crystallise with

addition of a substance which retards the crystallisation, this will

commence witli the separation of originally isotropous liquid globules,

so-called globulites, which Behrends and Vogelsang commenced to

study long time ago.

All this leads to the presumption that the formation of the aniso-

tropous liquid phases as aggregates of doubly-refracting liquid globules

may have its origin in a kind of phenomena of retardation, the nature

of which is still unknown to us at the present. Before long, I hope

to revert again to this question.

Zaandam, 21 Nov. 1906.

Physics. — "Some additional remarks on the quantity Hand Maxwell's

distribution of velocities." By Dr. 0. Postma. (Communicated

by Prof. H. A. Lorentzj.

§ 1. In these proceedings of -Jan. 27 th J 906 occur some remarks

by me under the title of: "Some remarks on the quantity H in

Boltzmann's Vorlesungen über Gastheorie".

My intention is now to add something to these remarks, more

particularly in connection with Gibbs' book on Statistical Mechanics l

),

and a paper by Dr. C. H. Wind : "Zur Gastheorie" s
).

In my above-mentioned paper I specially criticised the proofs given

!) J. Willard (tibbs "Elementary Principles in Statistical Mechanics"', New-York,

1902.

2
) Wien. Sitzungsber. Bd. 106, p. 21, Jan. 1897.
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by Boltzmann and Jeans that Maxwell's distribution of velocities in

a gas should give the most probable state, and demonstrated that tin \

wrongly assume an equality of' the probabilities a priori that the point

of velocity of an arbitrary molecule would fall into an arbitrary

element of the space.

The question, however, may be raised whether it would nol be

possible to interpret the analysis given by Boltzmann and Jeans in

a somewhat different way, so that avoiding the incorrect fundamental

assumption, the result could all the same be retained. And I hen this

proves really to be the case. When the most probable distribution

of' velocities is sought from the ensemble of equally possible combi-

nations of' velocities with equal total energy, we make only use

of the fact that the different combinations of velocities are equally

possible, how they have got to be so is after all of no consequence

Or else, it had not been necessary to occupy ourselves with the

separate velocities of the molecules and make an assumption as to them.

This way of looking upon the matter is of exactly the same nature

as that constantly followed by Gibbs in his above-mentioned work.

Gibbs treats in his book all the time instead of a definite system,

an ensemble of systems of the same nature and determined mostly

by the same number of' general coordinates and momenta (p x
. . . pn ,

ql
. . . q„), which he follows in their general course. Such an ensemble

will best illustrate the behaviour of a. system (e.g. a gas-mass), of

which only a few data are known and of which the others can assume

all kinds of values. He calls such an ensemble micro-canonical when

all systems, belonging to it, have an energy lying between E and

E-\-dE and for the rest the systems are uniformly distributed over

all possibilities of' phase or uniformly distributed over the whole

extension-in-phase the energy of which lies between E and E -\- dE.

When the energy of a gas-mass is given (naturally only up to a

certain degree of accuracy) we should have reason according to Gibbs

to study the microcanonical ensemble determined by this energy, and

to consider the gas-mass as taken at random from such an ensemble.

The extension-in-phase considered is thought to be determined by

I dp, . . . dqn , but in the case of a gas-mass with simple equal

molecules this is proportional to

dx
x
dy

1
dz., . . . dxn dyn dzn , dx\ dy

x
dz

x
. . . dxn dyn dzn ,

so that we may say that every combination of velocities and con-

figuration is of equally frequent occurrence in the ensemble.

It is now easy to see that when the energv is purely kinetic the
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same cases occur in such an ensemble, with regard to the distribu-

tion of velocities, as are considered as equally possible cases by

Boi.tzmann and Jeans. The difference in the way of treatment of

Gibbs on one side, and that of Boltzmann and Jeans on the other

consists besides in the fact that the one occupies himself with separate

velocities and the other not, in this that Gibbs treats the configuration

and the distribution of velocities at the same time (both belong to the

idea phase), whereas Jeans treats the latter separately, and Boltz-

mann does not occupy himself with the configuration in this connection.

Every phase of Boltzmann (combination of velocities) corresponds

with as many phases of Gibbs (combination of velocities and con-

figuration) as the molecules can be placed in different ways with

that special combination of velocities. This number being the same

for every combination of velocities according to the independence of

the distribution of velocities and configuration following from the

fundamental assumption, it will be of no consequence, comparing

the different combinations of velocities inter se, whether we also take

the configuration of the molecules into account or not. So when

seeking the most probable distribution of velocities (that, with which

the most combinations of velocities coincide), we must arrive at the

same result whether we follow Gibbs or Boltzmann.

It is obvious that the phases of the microcanonical ensemble meant

here are what Gibbs calls the specific phases. Gibbs distinguishes

namely between specific and generic phases : in the former we con-

sider as different cases those where we find at the same place and

with the same velocity, other, even though quite equal molecules,

in the latter we do not. In other words : in the former we consider

also the individual molecules, in the second only the number of the

molecules. So we may now say that in such a microcanonical

ensemble the most probable distribution of velocities and that which

will also occur in the great majority of cases (compare Jeans'

analysis discussed in the first paper) will be that of Maxwell.

When therefore an arbitrary mass of gas in stationary state may be

considered as taken at random out of such a microcanonic ensemble,

Maxwell's distribution of velocities or one closely resembling it will

most probably occur in it. In this way a derivation of' the law

has been obtained to which the original objection no longer applies,

though, of course, the assumption of the microcanonical ensemble

remains somewhat arbitrary *).

]

) With the more general assumption of a canonical ensemble Maxwell's law is

derived by Lorentz: "Abhandlungen über Theoretische Physik", Lpzg. 1906 I,

p. 295.
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Finally the question might be raised, when we want to consider

the separate velocities, whether it is possible to arrive at the

equally possible combinations under discussion on another suppo-

sition a priori about the chances of every value for the velocity than

the one indicated by Boltzmann and JBANS. The supposition must of

course be such, that the chance is independent of the direction of

the velocity, so that the chance of a velocity c, at which the point

of velocity falls into a certain element of volume dzd^dZ, may be repre-

sented by f(r)dlJ>
t
dl. When we moreover assume that the probabilities

for .the different molecules are independent of each other, the probability

of a certain combination of velocities is proportional tof(t\)f(i\) . •/(<-'„),

and this must remain the same when the kinetic energy L, or

because the molecules are assumed to be equal, Se1 remains the

same. For every change of c/: and c/ into c'k and c'i, so that

c'jfc + c% l == c'
8
fc -j- c

'%

h nmst f(ck)-f(ci)=f(c'k).f{c'i). This is an

equation which frequently occurs in the theory of gases, from which

follows f(c) = aebc*. As a special case follows from this: /(c)= a,

i. e. the assumption of Boltzmann and Jeans, that the probability a

priori would be equal for every value of the velocity.

§ 2. In the second place I wish to make some remarks in con-

nection with the proof that Boltzmann gives in his "Gastheorv*,

that for an "ungeordnetes" gas with simple suppositions on the nature

of the molecules in the stationary state Maxwell's distribution of

velocities is found. Dr. C. H. Wind shows in his above-mentioned

paper that in this Boltzmann makes a mistake in the calculation of

the number of collisions of opposite kind. Boltzmann, namely, assumes,

that when molecules whose points of velocity lie in an element

of volume da, collide with others whose points of velocity lie in

du>lf so that after the collision the former points lie in <ho' and the

latter in ito/, now the elements of volume day and dio', dto
l
and «2co

x

'

wTould be equal, so that now dto' do>\ = dw dio
1

. He further assumes

that when molecules collide whose points of velocity lie in dta'

and t/to/. they will be found in dm and dio
l

after the collision.

These last collisions he calls collisions of opposite kind. Wind now
shows that this assumption is untrue

;
dm is not =r dto' , do>

l
not

= d€t>\, nor even dtodto^ = doj'doj^', except when the masses of the

two colliding molecules are equal J

).

Further the points of velocity of colliding molecules which lay

in du>' and da>/, do not always get to doj and <ho
x

after collision,

*) I point out here that even then it is not universally true, but only when the

elements of volume du and du\ have the shape of rectangular prisms or cylindres

whose side or axis ha? the direction of the normal of collision.

33*
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so thiil another definition is necessary for collisions of opposite

kind, viz. such for which the points of velocity get in du> and dat^

after the collision. Wind proves further that the number of collisions

of opposite kind is all the same represented by the expression which

Boltzmann had found for it.

It is then easy to change (what Wind does not do) the proof

given by Boltzmann in § 5 of his "Gastheory", that Maxwell's

distribution of velocities is the only one possible, in such a way that

it is perfectly correct. But the error in question makes itself felt all

through Boltzmann's book. Already with the proof of the i/-theorem

given in more analytical form in a footnote to § 5 we have some

difficulty in getting rid of this error.

We meet the same thing when the molecules are treated as centres

of force, and when they are treated as compound molecules. At the

appearance of the second volume of his work, Boltzmann had taken

notice of Wind's views, but the inaccurate definition for collisions

of opposite kind has been retained ').

In connection with this error, made by Boltzmann in a geometrical

treatment of the phenomena of collision, is another error of more

analytical nature, so that also Jeans, who treats the matter more

analytically, gives a derivation which in my opinion is not altogether

correct. Though preferring the geometrical method, Boltzmann repeat-

edly refers to the other 2

). The method would then consist in this,

that the components of the velocities after the collision êVS'IWiS'i

are expressed by /i^^ï^C,) and then by means of Jacobi's func-

tional determinant d§'dri'd^d9 1 dri' ld^ l
is expressed in d^dtid^d'^di^d^ .

We find then that here this determinant is = 1 and so

d^drld^d^\drl x
d1S l
= dgdrid^d^d^d^ or du>'do>\ = doidto

l
.

The number of collisions of opposite kind =f'F\du)'do}'
1
o*c/ cos dd)dt

according to Boltzmann, and so also = /'F'^dtodto^ij cos 9-dXdt. In

this the mistake is made, however, that d^d^d^d^
l
d'rl

l
d^\ the

volume in the space of 6 dimensions that would correspond with the

volume d^drid^d^d^d^ before the collision, is thought as bounded

by planes such as $,' = c, which is not the case. Jeans too equates'

the products of the differentials, in which according to him, <$;'... d$\

being arbitrary, the d§ . . . c?S must be chosen in such a way,

that the values of §'
. . . 5\ calculated by the aid of the functions

§'=ƒ(§...£,) etc. fall within the limits fixed by dg etc *\ This,

however, is impossible.

!) Gf. § 78, 2nd paragraph.

~) Gf. among others volume I, p. 25 and 27.

3
) Gf. 'The dynamical Theory of Gases" p. 18.
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In my opinion the correct principle that the calculation of the

extension occupied by the combinations of the points of velocity

after the collision when that before the collision is known and vice

versa, would come to the same thing- as a transition to other vari-

ables in an integration, has not boon applied in exactly the correct

way. The property in question says that in an integral with transi-

tion from the variables SVSëWiin to (j^SS^S, the product of the

differentials d^dtydSttg'^dg', may be replaced by ^^-~—
d$dridSd$

}
d7i 1

d£
1 , if we integrate every time with respect to the corre-

sponding regions, but these expressions are not equal for <tll that.

The first expression may be said to represent the elementary volume

in the space of 6 dimensions, bounded with regard to § . . . S\ , the

second the elementary volume bounded with regard to £ . • • 5,
1

).

We have a simple example when in the space of three dimen-

sions we replace Ipdxdydz, which e.g. represents the weight of a

body, by Ipr* sin i)<lrJd<hf , which represents the same thing, without

<le dy dz having to be equal to r
%
sin & dr d& d<p.

So we have here

:

Cd§ dr( d$' dg, dn\ dC,\ = ( \

d
j:s
~

']] di d n d$ dg, ,hh <£,,

J J I
d (§ — SJ

which two expresssions represent the "extension" in the space of 6 dimen-

sions after the collision. That before the collision is ld$drid$dg
1 dTil

d$
i i

so that, when the determinant = 1, the extension remains un-

changed by the collision. This proves really to be the case, as

Jeans shows. We may, however also consider this property as a

special case of the theorem of Liouville, and derive it from this '').

This theorem says, that with an ensemble of identical, mutually inde-

pendent, mechanic systems, to which Hamilton's equations of motion

apply, \dpv ..dqn = ldI\...dQn , when p x >--qn represent the coordinates

and momenta of the systems at an arbitrary point, of time, P
x

. . . Qn

those at the beginning. Gibbs calls this law: the principle of conser-

vation of extension-in-phase, which extension we must now think

extended over a space of 2// dimensions. When now the two collid-

ing molecules are considered as a system which does not experience

any influence of other systems, and it is assumed that during the

b Cf. Lorentz, 1. c. Abhandlung VII.

2
) As Boltzmann cursorily remarks: volume II p. '225.
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collisions forces acl which only depend on the place of the particles

and not on (he velocities, we may apply the formula I dp\ . . ,dq n ~

tdp
l
...dqn lo an ensemble of such pairs of molecules, the former

representing the extension-in-phase after, the latter that before the

collision. In the case discussed by Bot/tzmann the masses of these

molecules arc /// and m, so that we get

:

dx' dy' '/:' m* </£,' '/»/ >/C dx\ dy\ dz\ m
x

<l$\ dr(
x

</£', =
J

r=
f

'/.'• dy dz m' </$ <h\ </£ d.r' d;/' dz' m
x

3
dS,' <h

t

'

dC,'

As we may consider the coordinates during the collision as inva-

riable, it follows from this that

:

Cd§ drf <K' <iz\ </>/, dg\ = i<J* d H d: d$
x
d Hx d;.

§ 3. However as has been referred to above, we may, without

assuming anything about the mechanism of the collision, prove the

property by means of the formulae for the final velocities with

elastic collision, making use of the functional determinant. Another

method is followed by Wind in his above-mentioned paper (the

second proof) and by Boltzmanx (vol. II p. 225 and 226); this

method differs in so far from the preceding one, that the changing

Of the variables takes place by parts (by means of the components

of velocity of the centre of gravity), which simplifies the calcu-

lation '). A third more geometrical method is given by Wind in his

first proof. This last method seems best adapted to me to convey

an idea of the significance of the principle of conservation of exten-

sion-in-phase in this special case. I shall, however, make free to

apply a modification which seems an abridgment to me, by also

making use of the functional determinant. So it might now also be

called a somewhat modified first method.

In the first place I will call attention to the fact that with these

phenomena of collision it is necessary to compare infinitely small

volumes; if we, therefore, want to use the formula:

Jdg'
dr[ d% dg', dr^ d$'

1
= I —-1- -M dj; d)^ d$ d§

x
dt

ix
d^

J |

d (| . . . 6)
|

l
) It seems to me that in this proof Boltzmann does not abide by what he

himself has observed before (§ 27 and § 28, vol. 11), viz. that the equality

of the differential products means that they may be substituted for each other in

integrals. The beginning of § 77 and the assumption of du dv dw, and dUdV
d W, as reciprocal elements of volume, is, in my opinion, inconsistent with this
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we must take infinitesimals of th« 2 n1 - order. We can, however, also

proceed in a somewhat different way. For how is the above formula

derived? By making use of the fact, that with a volume d$ di\ d$ d§,

d}^
l
d^

l
in the region of the §.. 5

X
corresponds a volume

rf| rf?i d$ d$
x
dt]

x
d$

x

d (§ . . .6,)

in the region of the §' . . . gls or also that the first mentioned exten-

sion, occupied by the representing points in the space of 6 dimensions

before the collision, will give rise to the second extension after the

collision. We can, therefore very well compare these expressions

inter se, without integration, if only the second expression is not

interchanged with d§ drf d$ ig*, dr\
x
dgv i. e. the volume element obtained

by dividing the extension after the collision in another way.

We now suppose the points of velocity before the collision to be

situated in two cylindres, the axes of which are parallel to the

normal of collision. The bases of the cylindres are dOdO
x
and the

heights d<f and dff
x

. The extension occupied by the combinations of

the points of velocity is evidently equal to the product of the con-

tents of the cylindres: dOdO
x
dódó

x
, In case of collision the compo-

nents of the velocities perpendicular to the normal remain unchanged,

so the points of velocity are shifted in the cylindres in the direction

of the axis, so that d becomes d', and d
x
becomes 6\. Between

iese quantities e

m
x
<f

x -f- ra(2d— d
x )

me 4- m
x (2^— d)

these quantities exist the relations : d = and d

,

m -\- m
x

, when m and m
x
denote the masses of the colliding

m -j- m
1

molecules (i.e. the same relations as between the normal initial and

final velocities with elastic collision.

If we now wish to calculate the extension after impact we maj

make use of the fact that dO and dO
x
have not changed, so that

we need only examine what happens to dódó
x
or what extension in

the region of the ö'ó\ corresponds to the extension dddJ^ in the

region of the <fd
x

.

According to the above this is: —-

—

-\ ddd<f
x , and as it follows

!

d (d(f
x ) |

from the formulae for d' and ó\ that the absolute value of the

determinant = 1, the extensions before and after impact are equal.

The extension after the collision is, however, not equal lo the

product of the cylindres in which the points of velocity will be found

after the collision. This will be easily seen with the aid of the

geometrical representation given by Wind. The extension before

impact may be thought as the product of the extension in the space
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of four dimensions dOd0
1
and the extension dódó

x
, which we may

imagine as a rectangle in the region of the dd^, when we project them

as two mutually normal coordinates in a plane.

Everj point in the rectangle represents therefore a number of

combinations of velocities with equal J and 6
l

. The sides of the

rectangle with equations d=c and 6
l =.c l , correspond in the region

of the ó'ó\ with the right lines wó' -\- m
l (2ó\ — d) =(pi -f- wij c

and m^'j -J- m ('2d' — d\) = (m -|~ ? ' ? i) cls so that from the combina-

lions represented by points within the rectangle after the impact

others follow represented by points within an oblique parallelogram.

The formula --—-(= 1 expresses that the two figures have the

same area. Now the extension after impact is equal to this paralel-

v

d$

dl

J

a

j
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logram y^<KklO
x
or the product o! the two cylindres in which points

of velocity were found before impact. The product of the cylindres,

in which points of velocity are found after impact is equal to the

producl of dOdO
}

and the area of the rectangle with sides parallel

to the axes 06* and o'd\ described round the parallellogram under
investigation. In this rectangle lie a number of points which have
no corresponding points in the first rectangle. Only when m= m
rectangle and paralellogram coincide.

Collisions of opposite kind, now, are such for which the combina-
tions of velocity before impact arc represented by points of the

paralellogram in the plane d'Od\ and after impact by points of the

rectangle in the plane dOd
1

.

Physics. — "Contribution* to the knowledge of the ^-surface of
van der Waals. XII. On the gas phase sinking in t/w liquid

pha.se for binary mixtures." By Prof. II. Kamerlingh Onnes
and Dr. W. H. Keesom. Communication N°. 96'' from the

Physical Laboratory at Leiden.

§ 1. Introduction. In what follows we have examined tlie etj ui-

librium of the gas phase with the liquid phase for binary system-,

with which the sinking of the gas phase in the liquid phase may
occur.

It lies to hand to treat this problem by the aid of if; (free

energy)-surfaces for the unity of mass of the mixture (van der Waals.

Continuitat II p. 27) for different temperatures construed on the

coordinates v (volume of the unity of mass of the mixture) and x

(quantity of mass of Ihe second component contained in the unity

of mass of the mixture).

As van der Waals (loc. cit.) has already observed, the laws refer-

ring to the stability and the coexistence of the phases are the same

for these ^-surfaces as for the more generally used ^-surfaces for

the molecular quantity : in particular also the coexisting phases are

indicated by the points of contact of the i|'-surface with a plane

which rolls with double contact over the plait in the if?-surfaee. In

what follows we have chiefly to consider the projections of the con-

nodal curve and of the connodal tangent-chords on the rr-plane.

More particular cases as the occurrence of minimum or maximum
critical temperature or minimum or maximum pressure of coexistence

we shall leave out of account ; we shall further contine ourselves

to the case that retrograde condensation of the first kind occurs.

Moreover we shall restrict ourselves to temperatures, at which the




