Huygens Institute - Royal Netherlands Academy of Arts and Sciences (KNAW)

Citation:

Schuh, F., The locus of the pairs of common points of four pencils of surfaces, in: KNAW, Proceedings, 9 II, 1906-1907, Amsterdam, 1907, pp. 555-566

This PDF was made on 24 September 2010, from the 'Digital Library' of the Dutch History of Science Web Center (www.dwc.knaw.nl) > 'Digital Library > Proceedings of the Royal Netherlands Academy of Arts and Sciences (KNAW), http://www.digitallibrary.nl'
case, it is easy to reason that $P P^{\prime \prime}$ coincides with $A B, C D$ or $E F$ and so the locus proper consists of these three lines and there is no envelope proper. The part improper of the locus however consists of six conics $A B C D E, A B C D F, A B E F C, A B E F D, \quad C D E F A$ and $C D E F B$, the part improper of the envelope of the six points A, B, C, D, E and F. The total locus is thus of order fifteen, the total envelope of class six, so that for arbitrary position of the pencils of conics this sane holds for the locus proper and the envelope proper.

Sncek; Nov. 1906.

Mathematics. - "The locus of the pair"s of common points of four pencils of surfaces." By Dr. F. Schor. (Communicated by Prof. P. H. Schouts).
(Communicated in the meeting of December 29, 1906).

1. Given four pencils of surfaces $\left(F_{r}\right),\left(F_{s}\right),\left(F_{t}\right)$ and $\left(F_{n}\right)$ respectively of order r, s, t and u. The base-curves of those pencils can have common points or they can in part coincide, in consequence of which of three arbitrary surfaces of the pencils $\left(F_{s}\right),\left(F_{t}\right)$ and $\left(F_{u}\right)$ the number of points of intersection differing from the base-curves can become less than $\dot{s} t u$; we call this number a, calling it b for the pencils $\left(F_{2}\right),\left(F_{t}\right)$ and $\left(F_{u}\right), c$ for the pencils (F_{v}) $\left(\dot{F}_{s}\right)$ and $\left(F_{u}\right)$ and d for the pencils $\left(F_{1}\right),\left(F_{s}\right)$ and $\left(F_{1}\right)$. We now put the question:

What is the order of the surface formed by the pairs of points P and P^{\prime}, through which a surface of each of the four pencils is possible?

If the points P and P^{\prime} do not lie on the base-curves we call the locus formod by those points the locus proper L on which of course still curves of points P may lie for which the corresponding point P^{\prime} lies on one of the base-curves. If one triplet of pencils furnishes at least several points of intersection which are situated for all surfaces of those pencils on one of the base-curves, then there is a surface that cloes satisfy the question but in such a manner that if we assume P arbitrarily on this surface the point P^{\prime} belonging to it is to be found on one of the base-curves; this surface we call the part improper of the locus, whilst both surfaces together are called the total locus.
2. To determine the order n of the locus proper L we find the points of intersection with an arbitrary right line l. On l wo take
an arbitrary point $Q_{\text {vat }}$ and we bring through that point surfaces F_{s}, F_{t} and F_{u} of the pencils (F_{s}), (F_{t}) and (F_{u}). Through each of the $a-1$ points of intersection of those surfaces not situated on the base-curves of those surfaces we bring a surface F_{7}. These $a-1$ surfaces F_{3} intersect the right line l together in $(a-1) r$ points Q_{n}, which we make to correspond to the point $Q_{s t u}$. The coincidences of this correspondence are: $1^{\text {st }}$ the points $Q_{\text {rstu }}$ determining four surfaces which intersect one another once more in a point not lying on the base-curves, thus the n points of intersection with the surface $L, 2^{\text {nd }}$ the points of intersection with the surface $R_{\text {stu }}$ belonging to the pencils $\left(F_{s}\right),\left(F_{t}\right)$ and $\left(F_{u}\right)$, the locus of the points S determining three surfaces whose tangential planes in S pass through one line.

To find the number of coincidences we have to determine the number of points $Q_{\text {s }^{\prime} u}$ corresponding to an arbitrary point Q, of l. To this end we take on l a point $Q_{\text {tu }}$ arbitrarily and bring through it an F_{t} and an F_{u}. Through each of the b points of intersection of these surfaces with the surface F_{r} through Q, (not lying on the base-curves) we bring an F_{s}, which b surfaces F_{0} intersect together the line l in $b s$ points Q_{s} which we make to correspond to $Q_{|l|}$. To find the number of points $Q_{l u}$ corresponding to an arbitrary point Q_{s} of l we take Q_{a} arbitrarily on l, we bring through Q_{s} an $F_{\text {, }}$, and throngh Q_{u} an F_{u} and throngh each of the c points of intersection of those surfaces with F_{r} an F_{t}, which furnish c surfaces F_{l} cuting l in ct points Q_{l}; reversely to Q_{t} belong du points $Q_{u,}$, so that we find between the points Q_{u} and Q_{L} a (ct, du)-correspondence, of which the $c t+d u$ coincidences give the points $Q_{1 \prime}$ belonging to the point Q_{s}. So between the points $Q_{l u}$ and Q_{s} cexists a $(b s, c t+d u)$-correspondence, of which the coincidences consist of the r points of intersection of l with the surface l, through Q_{r} and of the points $Q_{s t u}$ corresponding to Q_{r}; the number of these thus amounts to $b s+c t+d u-r$.

So between the points $Q_{s t u}$ and $Q_{\text {. }}$. there is an (n - $r, b s+c t+(l u-r)$ correspondence with $a r+b s+c t+c l u-2 r$ coincidences. To find oul of this the number of points $Q_{\text {sth }}$ we must first determine the order of the surface $R_{\text {sta }}$.

This surface may be regarded as the surface of contact of the surfaces of the pencil (F_{s}) with the movable curves of intersections $C_{\text {al }}$ of the surfaces of the pencils $\left(F_{t}\right)$ and $\left.\left(F_{u}\right)^{1}\right)$. So the question is:

[^0]3. To determine the order of the surface of contact of a twofold infinite system of twisted curves and a singly infinite system of surfaces.

To this end we shall first suppose the two systems to be arbitrary.
To determine the order of the surface of contact we count its points of intersection with an arbitrary right line l. To this end we consider the envelope E_{1} of the \propto^{2} tangential planes of the curves of the system in their points of intersection with l and the envelope E_{3} of the ∞^{1} tangential planes of the surfaces of the system in their points of intersection with l.
The common tangential planes not passing through l of both envelopes indicate by means of their points of intersection with l the points of intersection of l with the surface of contact.

In order to find the class of the envelope E_{1} (formed by the tangential planes of a regulus with l as directrix) we determine the class of the cone enveloped by the tangential planes passing through an arbitrary point Q of l. If the system of curves is such that φ curves pass through an arbitrary point and ψ curves touch a given plane in a point of a given right line, the tangential planes of E_{1} through Q envelope the $\mathscr{\rho}$ tangents in Q of the curves of the system through Q, and the line l counting ψ times; for each plane through l is to be regarded ψ times as tangential plane, there being ψ curves of the system cutting l and having a tangent situated in this plane. The envelope E_{1} is thus of class $\varphi+\psi$ and has l as ψ-fold line ${ }^{1}$).

To find the class of the envelope E_{1} we determine the number of its tangential planes through an arbitrary point Q of l. If now the system has μ surfaces through a given point and \boldsymbol{v} surfaces touching a given right line, the tangential planes of the envelope passing throngh Q are the tangential planes in Q to the μ surfaces passing through Q and the tangential planes of the v surfaces touching l. So the envelope E_{2} is of class $\mu+v$ with v tangential plunes through l.

Hence both envelopes hare $(\varphi+\psi)(\mu+v)$ common tangential planes. Each of the v tangential planes of E_{3} passing through l is however: a ψ-fold tangential plane of E, and so it counts for ψ common tangential planes. So for the number of common tangential planes not passing through l, thus the number of points of intersection of l with the surface of contact we find:

$$
(\varphi+\psi)(\mu+v)-\psi v=\varphi v+\psi \mu+\varphi \mu,
$$

therefore:

[^1]The surface of contact of a system ((\mathcal{p}, ψ) of ∞^{2} twisted curves ${ }^{1}$) and a.system ($\mu, \nu)$ of ∞^{1} surfaces 2) is of order $\left.\varphi \nu+\psi \mu+\varphi \mu^{3}\right)$.
4. To determine the order of the surface of contact ${ }^{1}$) of the systems μ_{1}, v_{1}) , $\left(\mu_{2}, v_{2}\right)$ and (μ_{3}, v_{3}) each of ∞^{1} surfaces, we regard the system ($\boldsymbol{\varphi}, \psi)$ of the curves of intersection of the systems $\left(\mu_{1}, \nu_{1}\right)$ and $\left(\mu_{2}, r_{2}\right)$. Of these curves of intersection $\mu_{1} \mu_{2}$ pass through a given point, so $\varphi=\mu_{1} \mu_{2}$. The ψ points, where the curves of intersection touch a given plane in a point of a given right line, are the points of intersection of that given line with the curve of contact of the systems $\left.\left(\mu_{1}, v_{1}\right)^{5}\right)$ and $\left(\mu_{2}, v_{2}\right)$ of plane curves, according to which the giren plane intersects the systems of surfaces $\left(\mu_{1}, v_{1}\right)$ and $\left(\mu_{2}{ }^{-} v_{2}\right)$. This curve of contact is of order $\mu_{1} v_{2}+\mu_{2} v_{1}+\mu_{1} \mu_{2}$, thus:

$$
\psi=\mu_{1} v_{2}+\mu_{2} v_{1}+\mu_{1} \mu_{2} .
$$

The surface of contact to be found is thus the surface of contact of a system ($\mu_{1} \mu_{2}, \mu_{1} v_{2}+\mu_{2} v_{1}+\mu_{1} \mu_{2}$) of ∞^{2} twisted curves and a system (μ_{3}, ν_{3}) of ∞^{1} surfaces, so that we find:

The surface of contact of three systems $\left(\mu_{1}, v_{1}\right),\left(\mu_{2}, v_{2}\right)$ and $\left(\mu_{3}, v_{3}\right)$ of ∞^{1} surifaces is of order

$$
\mu_{2} \mu_{3} \nu_{1}+\mu_{3} \mu_{1} \nu_{2}+\mu_{1} \mu_{2} v_{3}+2 \mu_{1} \mu_{2} \mu_{3} .
$$

If the three systems are the pencils $\left(F_{s}^{\prime}\right),\left(F_{t}\right)$ and $\left(F_{u}\right)$ we have

$$
\begin{aligned}
& \mu_{1}=\mu_{2}=\mu_{3}=1, \\
& v_{1}=2(s-1) \quad, \quad v_{3}=2(t-1) \quad, \quad v_{3}=2(u-1) .
\end{aligned}
$$

So we find:
Thu surface of contact $F_{\text {stu }}$ of the three pencils of surfaces (F_{s}), $\left(F_{t}\right)$ and $\left(F_{u}\right)$ is of order

[^2]$$
2(s+t+u-2)
$$
5. To return to the question which gave rise to the preceding considerations we find for the number of points $Q_{\text {nstu }}$ on the arbitrary line l, which are the points of intersection of l with the locus proper L :
\[

$$
\begin{aligned}
& a r+b s+c t+d u-2 r-2(s+t+u-2)= \\
= & a r+b s+c t+d u-2(r+s+t+u)+4
\end{aligned}
$$
\]

So we find:
The locus L of the pairs consisting of two movable points common to a surface out of each of the pencils $\left(F_{1}\right),\left(F_{s}\right),\left(F_{t}\right)$ and $\left(F_{u}\right)$ of orders r, s, t and u, and not lying on the base-curves, is a surface of order.

$$
a r+b s+c t+d u-2(r+s+t+u)+4
$$

Here a is the number of points of intersection not necessarily situated on the base-curves of the pencils $\left(F_{s}\right),\left(F_{1}\right)$ and $\left(F_{u}\right) ; b$ the analogous number for the pencils $\left(F_{1}\right),\left(F_{t}\right)$ and $\left(F_{u}\right)$, etc.
6. It the penculs have an arbitrary situation with respect to each other, then $a=s t u$, etc., so that then the order of the locus becomes

$$
4(r s t u+1)-2(r+s+t+u)
$$

That order is lowered when three of the base-curves have a common point or two of the base-curves have a common part, which lowering of the order can be explained by separation as Inng as the total locus is definite, i. e. as long as the four base-curves have no common point and no triplet of base-curves have a common part. For, if $A_{\text {stu }}$ is a common point of four base-curves then the surfaces of the four pencils passing through an enturely arbitrary point P have another second point in common, namely $A_{\text {stu }}$; if $B_{s t u}$ is a curve forming part of the base-curves B_{s}, B_{l} and B_{l} of the pencils $\left(F_{s}\right),\left(F_{l}\right)$ and $\left(F_{u}\right)$, then the surfaces of the penculs passing through an arbitrary point P have moreover the points of intersection in common of $\mathcal{B}_{\text {stu }}$ with the surface $F_{\text {, through }} P$; so in both cases the arbitrary point P belongs 10 the total locus.

If the basecurves B_{s}, B_{t} and B_{u} have a common point $A_{\text {stu }}$ then on account of that point the number a is diminished by unity without having any influence on b, c and d. The order of L is thus lowered by r on account of it, which is immediately explained by the fact that the surface $F_{\text {, passing }}$ through $A_{\text {sta }}$ separates itself from the locus.

If the base-curves B_{t} and B_{u} have a curve $B_{t u}$ in common of ${ }^{-}$ which for convenience we suppose that 'it does not intersect the base-curves B_{1} and B_{s}, this $B_{t t}$ has no influence on c and d, whilst a is lowered with $s m$ and b with $r m$, where m represents the order of the curve $B_{l u}$; for, when F_{s}, F_{t} and F_{u} are three arbitrary surfaces always $s m$ points of intersection lie on $B_{u l}$. The order of L is thus lowered with $2 r s m$ by $B_{l u}$. This can be explained by the fact, that the locus of the curves of intersection $C_{\text {s }}$ of surffaces F_{r} and F_{s} passing throught a selfssome point of $B_{\text {tu }}{ }^{1}$) separates itself from the locus of P and P^{\prime}. That the locus of those curves of intersection is really of order $2 r s m$ is easily evident from the points of intersection with an arbitrary line l. We can bring through an arbitrary point Q, of l an F, cutting $B_{t u}$ in $r m$ points, through each of those points of intersection we bring an F_{s}, which rm surfaces F_{s} cat the right line l in rsm points Q_{s}. To $Q_{\text {, correspond }}$ $r s m$ points Q_{s} and reversely. The $2 r s m$ concidences are the points' of intersection of l with the locus of the curves of intersection $C_{/ s}$.
7. The base-curves B_{r}, B_{s}, B_{l} and B_{u} of the pencils are morefold curves of the surface L. If A, is a point of B_{1} but not of the other base-curves, then A_{2} is an ($a-1$)-fold point of L. For, the surfaces F_{s}, F_{l} and F_{u} through A_{r} intersect one another in $a-1$ points, not lying on the base-curves, each of which points furnishes together with A, a pair of points satisfying the question. Each point of B_{1} is thus an $(a-1)$-fold point, i.o. w. B_{r} is $(a-1)$-fold curve of the surface L.

Let $A_{r s}$ be a point of intersection of the base-curves B, and D_{s}, but not a point of B_{i} and B_{u}. An arbitrary point P of the curve of intersection $C_{l u}$ of the surfaces F_{t} and $-F_{u}$ throngh $A_{1 s}$ furnishes now together with $A_{l s}$ a pair of points $P P^{\prime}$ satisfying the question properly, as $A_{r s}$ is for each triplet of pencils a movable point of intersection not lying on the base-curves. If we let P describe the curve $C_{l u}$, then the tangent $l_{r s}$ in $A_{2 s}$ to the curve of intersection of the surfaces F_{r} and F_{s} through P describes the cone of contact of L in the conic point $A_{s s}$. The tangents m_{r} and m_{s} in $A_{1 s}$ to B, and B_{s} are ($a-1$) resp. ($b-1$)-fold edges of the cone. This cone is cut by the plane through m_{2} and m_{s} only according to the line m_{r} counting ($a-1$)-times and the line m_{s} counting ($b-1$)-times, as another line $l_{\text {rs }}$ lying in this plane would determine two surfaces

[^3]F_{1} and F_{s} touching each other in A_{25}, whose curve of intersection, However, does not cut the curve $C_{t u}$. The tanyential cone of L in $A_{1 s}$ is thus of order $a+b-2^{1}$).

Let $A_{1 s}^{(1)}$ be a point of a common part $B_{1 s}$ of the base-curves B_{r} and B_{s} but not a point of B_{i} and B_{u}. We get a pair of points $P P^{\prime}$ with a point P^{\prime} coinciding with $A_{i s}^{(1)}$ when the surfaces F_{r} and \dot{F}_{s} have in $A_{i s}^{(1)}$ a common tangential plane $V_{i s}$ and pass through a selfsame point P of the curve of intersection $C_{t u}$ of the surfaces F_{t} and F_{u} through $A_{i s}^{(1)}$. If we let P describe the curve $C_{u u}$, then on account of that between the planes V_{r} and V_{s}, touching in $A_{r s}^{(1)}$ the surfaces F_{r} and F_{s} through P, a correspondence is arranged, where to V_{r} correspond $b-1$ planes V_{s} and to V_{s} correspond $a-1$ planes V, . One of the $a+b-2$ planes of coincidences is the plane through the tangents in $A_{1 s}^{(1)}$ to $B_{1 s}$ and $C_{t u}$; this plane furnishes no plane $V_{1 s}$. The remaining $a+b-\mathbf{3}$ planes of coincidence are planes $V_{r s}$ and indicate the tangential planes in $A_{r s}^{(1)}$ to the surface L. So $B_{r s}$ is an $(a+b-3)$-fold curve of L.
8. Let us then consider a common point $A_{r s t}$ of the base-curves B_{r}, B_{s} and B_{t}. We get a pair of points $P P^{\prime}$ with a point P^{\prime} coinciding with $A_{1 s t}$, when the tangential planes in $A_{1 s t}$ to $F_{1,} F_{s}$ and F_{t} pass through one line $l_{1 s t}$ and these surfaces intersect one another again in a point P of the surface F_{u} @assing through $A_{2 s t}$. There are ∞^{1} such lines $l_{1, t}$, forming the tangential cone of \mathbb{L} in point $A_{1 s t}$. The tangents m_{1}, m_{s} and m_{t} in $A_{1 s t}$ to \mathcal{B}_{1}, B_{s} and B_{t} are $(a-1)$-, $(b-1)$ - and $(c-1)$-fold edges of that cone. So the plane through m_{r} and m_{s} furnisbes $a+b-2$ lines of intersection with the cone coinciding with m_{r} and m_{s}. Moreover $c-2$ other lines $l_{r s t}$ lie in this plane. For, the surfaces F_{r} and F_{s} touching this plane intersect F_{u} in $c-2$ points not lying on the base-curves; the surfaces F_{t} through those points intersect the plane through m_{r} and m_{s} according to curves whose tangents in $A_{r s t}$ are the mentioned

[^4]Proceedings Royal Acad. Amsterdam. Vol. IX.
lines $l_{\text {rst }}$. So the tangentral cone of L in $A_{\text {rst }}$ is of order $a+b+c-4^{1}$).
A point of intersection $A_{r s t}^{(1)}$ of B_{r} with a common part $B_{s t}$ of the base-curves B_{s} and B_{t} is a conic point of L, the tangential cone of which is formed as in the previous case by ∞^{1} lines $l_{r s t}$. The tangents m_{r} and $m_{s t}$ in $A_{r s t}^{(1)}$ to B_{r} and $B_{s t}$ are $(a-1)$ and $(b+c-3)$-fold edges of that cone. As no other lines $l_{\text {st }}$ lie in the plane through m_{r} and $m_{s t}$, it is evident that the tangential cone of L in $A_{r s t}^{(1)}$ is likiewise of order $a+b+c-4^{1}$).

Let $A_{r s t}^{(2)}$ be a point of a common part $B_{r s t}$ of the base-curves B_{r}, B_{s} and B_{l}. The point P^{\prime} of the pair of points $P P^{\prime}$ coincides with $A_{r s t}^{(2)}$ when the surfaces F_{r}, F_{s} and F_{t} have in $\Lambda_{r s t}^{(2)}$ the same tangential plane $\Gamma_{r s t}$ and cut one another in another point P of the surface F_{u} through $A_{r s t}^{(2)}$. If we now consider an F_{r} and an F_{s} having in $A_{r s t}^{(2)}$ the same tangential plane $V_{r s}$ and if we consider through each of the $c-1$ points of intersection of F_{r}, F_{s} and F_{u} not lying on the base-curves an F_{t} of which we indicate the tangential plane in $A_{r s t}^{(2)}$ by V_{t} then to $V_{r s}$ correspond $c-1$ planes V_{t} and to V_{t} correspond $a+b-1$ planes $V_{1 s}$ (as for given $V_{t} a(b, a)$-correspondence exists between V_{r} and V_{s} of which V_{t} is one of the planes of coincidence). Among the $a+b+c-2$ planes of coincidence $V_{r s} V_{t}$ there are however three which give no plane $V_{r s t}$, namely the planes $V_{1 s}$, for which the corresponding surfaces F_{r} and F_{s} furnish with F_{u} three points of intersection coinciding with $A_{r s}^{(2)}$. For this is necessary that F_{u} touches in $A_{r s t}^{(2)}$ the movable intersection of F_{r} and F_{s}. Now the tangents of those intersections for all surfaces F_{r} and F_{s} touching each other in $A_{1 s t}^{(2)}$ form a cubic cone having for double edge the tangent $m_{r s t}$ to $\mathcal{B}_{r s t}$ in point $\left.A_{i s t}^{(2)}{ }^{2}\right)$. This cone is cut by the tangential plane in $A_{r s t}^{(2)}$ to F_{u} according to three lines, furnishing with $m_{r s t}$ planes $V_{r s}$ which are planes of coincidence
${ }^{\text {}}$) This order can also be determined out of the number of lines $l_{\text {rst }}$ in a plane E passing through $A_{1 s t}$. In this plane we find a ($c-1, a+b-2$)-correspondence between lines $l_{\text {Is }}$ and .lines l_{l} of which however the line of intersection of $:$ with the tangential plane in $A_{r s t}$ to F_{u} is a line of coincidence, but no line $l_{s t}$.
2) This is immediately evident if we take for $\left(F_{r}\right)$ a pencil of planes and for $\left(F_{s}\right)$ a pencil of quadratic surfaces all passing through the axis B_{r} of the pencil of planes. The cone under consideration then becomes the cone of the generatrices of the quadratic surfaces passing through a given point of B_{r}. We can easily convince ourselves that the same result holds for arbitrary pencils of surfaces.
of $V_{r s}$ and V_{1}, but not planes $V_{r s t}$. So there are $a+b+c-5$ planes $V_{\text {st }}$, which are the tangential planes of L in the point $A_{i s t}^{(9)}$, i. o. w. $B_{1 s t}$ is $(a+b+c-5)$-fold curve of surface L.
9. We then consider a common point $A_{\text {rstu }}$ of the four base-curves. We get a pair of points $P P^{\prime}$ with point P^{\prime} coinciding with A_{1} stu when $F_{1}, F_{s,}, F_{t}$ and F_{u} have in $A_{v s t u}$ a common langent $l_{r s t u}$ and all pass once again through a selfsame point P. The ∞^{1} lines $l_{\text {rstu }}$ form the tangential cone of L in $A_{\text {rstu }}$. To determine the number of lines $l_{\text {rstu }}$ in an arbitrary plane ε through $A_{r \text { siu }}$ we take in this plane an arbitrary line $l_{\text {rst }}$ through $\Lambda_{\text {rslu }}$ and we bring through the $d-1$ points of intersection (not lying on the base-curves) of the surfaces F_{r}, F_{s} and F_{t} touching $l_{r s t}$ the surfaces F_{u}, whose tangential planes in $\left\langle l_{\text {rstu }}\right.$ cut the plane ε according to lives, which we shall call l_{u}. To $l_{\text {rst }}$ now correspond $d-1$ lines l_{u} and to l_{u} correspond $a+b+c-2$ lines $l_{r s t}$, as there exists between $l_{r s}$ and l_{t} when l_{u} is given a $(c, a+b)$-correspondence, of which l_{u} and the line of intersection of ε with the plane through the tangents in $\Lambda_{2 \text { ctu }}$ to B_{r} and B_{s} are lines of coincidence, but not lines $l_{s t}$. So there are $a+b+c+d-3$ lines of coincidence $l_{r s t} l_{u}$ of which however three are not lines $l_{r s t u}$. The common tangents in $A_{r s t u}$ of the surfaces F_{r}, F_{s} and F_{t} possessing three points of intersection coinciding with $A_{r \text { stu }}$ and where therefore the intersection of two of those surfaces shows a contact of order two to the third, form namely a cubic cone ${ }^{1}$) of which the lines of intersection with ε are lines of coincidence but not lines $l_{\text {rstu }}$. So in ε lie $a+b+c+d-6$ lines $l_{\text {rstu }}$, i. o. w. the tangential cone of L in $A_{\text {sttu }}$ is of order $a+b+c+d-6^{2}$).

[^5]The preceding considerations hold invariably for a point $A_{r v u}^{(1, u}$ lying on the base-curves B_{r} and B_{s} and the common part $B_{l u}$ of the base-curves B_{t} and $B_{u}{ }^{1}$).
In a point of intersection $A_{r s t u}^{(2)}$ of $B_{r s}$ and $B_{t u}$ the tangential cone is likewise of order $a+b+c+d-6$ as that cone has the tangents $m_{r s}$ and $m_{t u}$ to $B_{1 s}$ and $B_{t u}$ as $(a+b-3)$ and $(c+d-3)$ fold edges, whilst in the plane through $m_{2 s}$ and $m_{\text {lu }}$ no other right lines $l_{\text {ssiu }}$ are lying.
A point of intersection $A_{r o t u}^{(3)}$ of B_{r} and $B_{s t u}$ is also $a(a+b+c+c-6)$ fold point of L as m_{1} and $m_{\text {stu }}$ are $(a-1)$ - and $(b+c+d-5)$ fold edges of the tangential cone and the only lines of intersertion of that cone with the plane through m_{1} and $m_{\text {stu }}$.
If finally $A_{\text {rstu }}^{(4)}$ is a point of a common part $B_{r s t u}$ of the four basecurves, then the point P^{\prime} of the pair of points $P P^{\prime \prime}$ coincides with $A_{i s t u}^{(4)}$ when the surfaces F_{n}, F_{s}, F_{t} and F_{u} have in $\Lambda_{r s t u}^{(4)}$ the same tangential plane $V_{\text {stu }}$ and all pass through a same point P. Let us now assume an arbitrary plane $V_{\text {st }}$ passing through the tangent $m_{r s t u}$ in $A_{1 s l u}^{(4)}$ to $B_{1 s t u}$. The surfaces F_{i}, F_{s} and F_{t} touching this plane in $A_{r s t u}^{(4)}$ cut one another in $d-1$ points P, through which we bring surfaces F_{u}, of which we call the tangential planes in $A_{r s t u}^{(4)} V_{u}$. Thus we obtain a correspondence, where to $V_{r s t}$ correspond $d-1$ planes V_{u} and reversely to V_{u} correspond $a+b+c-1$ planes $V_{1 s t} ;$ for when V_{u} is given there is between $V_{1 s}$ and V_{t} a $(c, a+b)$ correspondence, of which V_{u} is plane of coincidence, but not a plane $V_{1 s t}$. So there are $a+b+c+d-2$ planes of coincidence $V_{1 s t} V_{u}$, of which however five are not planes $V_{1 \text { stu }}$. These are namely the tangential planes of the surfaces F_{r}, F_{s} and F_{t} of which one more point of intersection coincides with $A_{\text {sstu }}^{(4)}$ which

[^6]occurs five times ${ }^{1}$). So there remain $a+b+c+d-7$ planes $V_{\text {sta }}$ which are the tangential planes of L in the point $A_{\text {stu }}^{(4)}$, so that $B_{\text {rstu }}$ is a $(a+b+c+d-7)$ fold curve of L.
10. So we find:

Of the locus proper L of the pairs of points P and P^{\prime} the base-curve B, of the pencil (F_{r}) is (a-1)-fold curve, the common part $B_{1 s}$ of the base-curves B_{1} and B_{s} is $(a+b-3)$-fold curve, the common part $B_{1 \text { st }}$ of the base-curves B_{r}, B_{s} and B_{t} is $(a+b+c-5)$ fold curve and the common part $B_{1 s t}$ of the four base-curves is $(a+b+c+d-7)$-fold curve. The points of intersection of the base-curves are conic points of L, namely a point of intersection of B_{r} and B_{s} is $(a+b-2)$-fold point, a point of intersection of B_{r}, B_{s} and B_{t} or of B_{1} and $B_{s t}$ is $(a+b+c-t)$-fold point and a point of intersection of B_{r}, B_{s}, B_{t} and B_{u} or of B_{r}, B_{s} and $B_{t u}$ or of $B_{2 s}$ and $B_{t u}$ or of B_{1} and $B_{s t u}$ is $(a+b+c+d-6)$ fold point. ${ }^{\text {a }}$)
11. The base-curves of the pencils are not the only singular curves of the surface L. There are namely ∞^{1} triplets of points lying on a surface of each of the pencils. These triplets of points form a double curve of L. If $P, P^{\prime}, P^{\prime \prime}$ is such a triplet and if $P 1$ and $P 2$ are the sheets through P of the surface, then the sheets $P^{\prime} 1$ and $P^{\prime \prime} 2$ correspond to them. Through P^{\prime} passes another sheet $P^{\prime} 3$ and through $P^{\prime \prime}$ a sheet $P^{\prime \prime} 3$ which sheets correspond mutually. The pair of points not lying on the base-curves is movable along the sheets $P 1, P^{\prime} 1$, along the sheets $P 2, P^{\prime \prime} 2$ and along the sheets $P^{\prime} 3, P^{\prime \prime} 3$, on the basc-curve a third point then joins the pair.

Further there is still a finte number of quadruples of points,

[^7]intersections of surfices F_{s} and F_{t} touching each other in $A_{1 s t u}^{(1)}$ form a cubsc cone having the tangent $m m_{s t u}$ to $B_{r \text { rt }}$ as double line. Such an intersection shows to the surface F, a contact of order two when it touches the movable intersection of F_{r} and F_{l}, so if its tangent in $A_{i s t u}^{(t)}$ lies on the cubic cone belonging to the pencils (F_{1}) and (F_{l}). As this last cone has also $m_{\text {rsta }}$ as double edge, both cones have $9-4=5$ lines of intersection differing from $m_{1 s i n}$ whech connected with $m_{1 \text { stu }}$ furnish the five planes under consideration.
${ }^{2}$) If the total locus is not indefinite, i. o. w. if there is no point common to the four base-curves then B_{1} is a (stu - 1) fold curve and $B_{r s}$ a (stut +rtut - 2) fold curve of the total locus whilst a point of intersection of B_{r} and B_{s} is a (stu $+r t u-2$)-fold point and a point of intersection of B_{1}, B_{s} and B_{t} or of B_{r} and $B_{a l}$ a $(s t u+r t u+r s u-3)$ fold point of it.
through which passes a surface out of each of the pencils. Through the points $P, P^{\prime \prime}, P^{\prime \prime}$ and $P^{\prime \prime \prime}$ of such a quadruple pass three sheets of the surface L and three branches of the double curve. The 12 branches of the double curve through those four points we can call $P_{1}, P^{2}, P^{\prime}, P^{\prime} 1, P^{\prime} 2, P^{\prime} 4, P^{\prime \prime} 1, P^{\prime \prime} 3, P^{\prime \prime} 4, P^{\prime \prime \prime} 2, P^{\prime \prime \prime} 3, P^{\prime \prime \prime} 4$, in such a way that the triplet of points is movable along the branches $P 1, P^{\prime} 1, P^{\prime \prime} 1$, along $P 2, P^{\prime} 2, P^{\prime \prime \prime} 2$, along $P 3, P^{\prime \prime} 3, P^{\prime \prime \prime} 3$ and along $P^{\prime} 4, P^{\prime \prime} 4, P^{\prime \prime \prime} 4$. If the sheet of L passing through $P 1$ and $P 2$ is called $P 12$, then the corresponding sheets (i. e. sheets along which the pair of points not lying on the double curve is movable) are $P 12$ and $P^{\prime} 12, P 13$ and $P^{\prime \prime} 13$, etc.

- Geophysics. - "Current-meusurements at various depths in the

North Sea." (First communication). By Prof. C. H. Wind, Let. A. F. H. Dalbuisen and Dr. W. E. Ringer.

In the year 1904 accurate measurements of the currents in the North Sea ${ }^{1}$) were started by the naval leutenant A. M. van RoosendaAL, at the time detached to the "Rijksinstituut voor het Onderzoek der Zee", having been proposed and guided by the Dutch delegates to the International Council for the Study of the Sea.

By him four apparatus were put to the test, viz. 2 specimens of the current-meter of Pettersson ${ }^{2}$), one of that of Nansen ${ }^{3}$) and one of that of Erman ${ }^{4}$), all destined to determine the direction and the velocity of the current at every depth.

The experiments were partly made on the light-ship "Haaks", where `Dr. J. P. yan der Stok, the Marine Superintendent of the Kon. Nederl. Meteorologisch Instituut, also took part in them. Other experiments were made in the harbour of Nieuwediep and further, from the research-steamer "Wodan", in the open North Sea at a station (H2) of the Dutch seasonal cruises ${ }^{5}$), situated at Lat. $53^{\circ} 44^{\prime} \mathrm{N}$. and Long. $4^{\circ} 28^{\prime} \mathrm{E}$.

[^8]
[^0]: り) We shall call this surface the surface of contact of the three pencils meaning by this that in a point of this "surface of contact" the surfaces of the pencils, thongh not touching one another, admit of a common langent.

[^1]: ${ }^{1}$) The regulus as locus of points has however line l as φ-fold line.

[^2]: ${ }^{1}$) System with φ curves through a given point and ψ curves cutting a given line and touchng in the point of intersection a given plane through that linc.
 ${ }^{2}$) System with μ surfaces through a given point and ν surfaces touching a given right line.
 ${ }^{3}$) This result is also mmediately deducble from the Schubert formula

 $$
 x p^{2}=p^{\prime 3} \cdot G+p^{\prime} g_{e}^{\prime} \cdot p^{9} g_{e}+p^{\prime 3} \cdot p^{2} g_{e}
 $$

 (Kalkul der abzahlenden Geometrie, formula 13, page 292) for the number of common elements with a point lying on a given line of a system Σ^{\prime} of ∞^{3} and a system Σ of $\cos ^{1}$ right lines with a point on it. If we take for Σ^{\prime} the tangents with point of contact of the system of curves (p, ψ) and for Σ the tangents with point of contact of the system of surfaces (μ, ν), then

 $$
 p^{\prime s}=\varphi, p^{\prime} g_{\epsilon}^{\prime}=\downarrow, G=v, p^{2} g_{e}=\mu,
 $$

 whilst $x p^{2}$ is the order of the surface of contact.
 ${ }^{4}$) Locus of the points, where the surfaces of the thrce systems have a common tangent.
 ${ }^{\text {j }}$) System of ∞^{1} curves of which μ_{1} pass through a given pont and ν_{1} touch a given tight line.

[^3]: ${ }^{1}$) If $B_{t u}$ cuts the curve B_{s} in a point $A_{s t u}$, then the surface F_{r} passing through Artu separates itself from the locus of the cuives of intersection Crs.

[^4]: ${ }^{1}$) The order of this cone can also be found out of the number of lines of intersection with an arbitrary plane ε through $A_{r s}$. If l_{r} and l_{s} are the lines of intersection of ε with the tangential planes in $A_{r s}$ to the surfaces F_{r} and F_{s} through P, then to l_{r} correspond $b-1$ lines l_{s} and to l_{s} correspond $a-1$ lines l_{r}, so that in the plane. lie $a+b-2$ lincs $l_{r s}$.

[^5]: ${ }^{1}$) This is again evident when taking for (F_{1}) and (F_{0}) pencils of planes with coplanar axes B_{r} and B_{s} and for (F_{t}) a pencil of quadratic surfaces passing through a line containing the point of intersection S of B_{r} and B_{r}. The line of intersection of the planes F_{1} and F_{s} shows only then a contact of order two to F_{t} when that line of intersection lies entirely on F, so that the cone under consideration becomes again the cone of the generatrices of the quadratic surfaces passing through S.
 ${ }^{2}$) That order can also be found out of the lines of intersection with the plane $V_{r s}$ through the tangents m_{r} and m in $A_{s i t}$ to B_{r} and B_{s}. Those lines of intersection are: the line m_{r}, counting ($a-1$)-times, the line m_{s} counting ($b-1$)times and $c+d-4$ other lines. This last amount we find by drawing in plane $V_{r s}$ an arbitrary line l_{l} through $A_{r s i u}$. The surface F_{l} touching l_{l} cuts the surfaces F_{r} and F_{s} touching $V_{r s}$ in $d-1$ points (not lying on the base-curves) through which points we bring surfaces F_{u} whose tangential planes in $A_{r s k}$ cut the plane $V_{r s}$ according to lines to be called l_{u}. Between the lines l_{t} and l_{u} we now have a $(d-1, c-1)$-correspondence of which the nodal tangents in $A_{\text {retu }}$ of the intersection of the surfaces F_{r} and F_{s} touching $V_{r s}$ are lines of coincidence. The remaining $c+d-4$ lines of coincidence are lines $l_{\text {rstu }}$.

[^6]: 1) It is also casy to see from the lines of intersection with the plane V.tu through the tangents m_{s} and $m_{t u}$ to B_{s} and $B_{t / n}$ that the tangential cone in $A_{r s h n}^{(1)}$ is of order $a+b+c+a-6$. The line m_{s} counts for $b-1$ lines of intersection, the line $m_{t u}$ for $c+d-3$. Further, the surfaces F_{s}, F_{l} and F_{n} touching $\nabla_{\text {stu }}$ cut one another in $a-2$ points not lying on the base-curves; through those points we bring surfaces F_{r}, whose tangential planes in $A_{r s t u}^{(1)}$ cut the plane $V_{\mathrm{s} \text { tu }}$ along to lines which lie on the tangential cone.
[^7]: 1) The number five is found in the following way. The tangents of the movable
[^8]: ${ }^{1}$) Cons. Perm. Intern. p. l'expl. de la mer, Publications de circonstance No. 26 : A. M. van Roosendaal und G. H. Wind, Prüfung von Strommessern und Strommessungsversuche in der Nordsee. Copenhague, 1905.
 ${ }^{2}$) Publ. de circ. No. 25.
 ${ }^{3}$), " " No. 34.
 $\left.{ }^{4}\right)$, ," " No. 24.
 ${ }^{5}$) Quarterly cruises of the countries taking part in the international study of the sea, along fixed routes, observations being made at definite points or "stations".

