Astromony. - "On the wstromomical refiractions correspondin! to "distribution "it the temperature in the atmospherer dorived from balloon ascemts." Preliminary paper by H. (x. vis de sande Bakiectex.

1. The varions theories of the astronomical refraction in onr atmosphere comsider the atmophere as composed of an intinite mmber of concentric sherical strata, each of miform density, whose centre is the centre of the earth and whose densities or temperatures and refractive powers vary in a definte way.

The varions relatins between the temperature of the air and the height above the surfice of the earth, assmed in the existing theories, are chosen so, that let they do not deviate 100 far from the smpositions on the distribution of the temperature in our amosphere, mate at the time when the theny was estathisherl, $2^{\text {nd }}$ that the formmat derised from this relation for the refraction in an infinitesimal thin layer at any altitude cond be easily integrated.

At the time when the varions theories were developed, only little wats known about the variations of the temperature for increasing heights, and this little was derived from the results of a small nomber of bathoon asoents and from the observations at a few momatanstations. In the lats decalle. howerer, arenents of mamed ats well as of mmanned balloms with selfergisering instrmments have greatly increased in mmber, and omr knowledge of the distribntion of the atmospheric temperature hat widened ronsiderably, and has become mond more accorate. Now l wish to investigate, whether by means of the data ohtamed, we can derive a better heory of refraction, or if it will be possible to correct the results of the existing theories.
2. The temperatures in our atmosphere at different heights have been derived from the following publications:

1. Ergebnise der Arbeiten an ä̈ronantischen Observatorimm Tegel $1900-1902$, Band I. II and III.
II. Travanx de la station Franco-scandinave de somages aëriens a Hade par Tei-serenc de Bord. 1902--1903.
III. Veräfentlichmgen der internationalen Kommission für wissenschaftliche Luftschiflfahort.

From the last work I have only used the observations from December 1900 till the end of 1903.

I wished to investigate the distribution of the temperature up to the greatest heights, and therefore 1 used for my researches only the halloon ascents which reached at least an eleration of 5000 meters;
and, following Herimalle's advice, I have nsed onl! the temperatures observed during the ascents, as dming the descents aymeons vaponr may condense on the instrmments.

It is evident that for the determination of the reframion, as a correction to the results of the astromomical observations, we must know the variations of the temperature at different heights with a clear sky. For the temperatures, especially of the layers nearest to the surface of the earth, will not he the same with cloudy and unclondy weather, as in the tirst case the radiation of the earth will lower the temperature of those layers, and so cause an abnomal distribution of temperature. It is even possible that in the lower strata the temperatme rises with increasing height, instead of lowering, as is usual.

For this reason I have divided the batloon ascents into two groups, $1^{\text {nt }}$ those with a cloudy sky, $2^{\text {nd }}$ those with a clear or a partly clouded sky.

In working out the observations, I have supposed that for each successive kilometer's height the temperature varies proportionally to the height, and after the example of meteorologists, I have determined the changes of temperature from kilometer to kilometer. For this purpose, I have selected from the observations, made during each ascent, the temperature-readings on those heights, which corresponded as nearly as possible with a round number of kilometers, and I have derived the variations of temperature per kilometer through division.

The arailable differences of height were often less than a kilometer, especially at the greatest clevations; in those cases I adopted for the weight of the gradient a number proportional to the difference of heights. Sometimes on the same day, at short, intervals several ascents have been made at the same station, on at neighbouring stations, from which the variations of temperature at the same heights could be dednced. In these cases I have nsed the mean of the results obtained, but I assumed for that mean result the same weight as for a single observation, as the deviations of the daily results from the normal distribution of temperature are only for a small part due to the instrumental errors, and for the greater part to meteorological influences.
3. The observations which I have used, were the following: from publication. I, 31 ascents of which 12 had been made in pairs on the same day, so that 25 results were obtained f from publication 1I, 38 ascents all on different days: and from pmblication III, 170
ascents distributed over 119 different days:-I have disregarded the observations marked as uncertain in this work. On the whole I have obtained the results on 182 different days, of which 58 with unclouded and 124 with clouded sky.

The temperature gradients for each month were derived from this material, and to ohtain a greater precision, I have combined them in four groups, each of three successive months, December, January and February (winter), March, April and May, (spring), Jume, July and August, (summer), September, October', November, (antumn).

$$
\mathrm{T} A \mathrm{~B} \mathrm{~L} \mathrm{E} \mathrm{I} .
$$

Variations of temperatures per kilometer.
(V.T. Variation of temperature per kilometer; N. Number of observations).
A. Clear sky.

	Winter.		Spring.		Summer.		Autumı		Mean.	
Kil	V.T.	N.	V.'T.		V.T.		V.T.	N.	V.T.	N.
0-1	$+1.2$	10	-3.6	15	-		$+0.6$	15	- 0.6	58
1-2	- 4.2	10	-31		-4.3	18	- 3.2	15	-4.3	58
2-3	i. 9	10	- 4.9	15	-4.4	18	- 4.6	15	-4.7	58
3-1	- \quad. 1	10	- i. S	15	- 2.1	18	- 5.3	15	- 5.5	58
i- is	- 5.3	10	-6.7	14.3	- 3.9	18	- 5.7	14.9	- 5.9	57.2
5-1i	- S .1 i	8.9	-7.1	13.6	- 1.0	18	-73	13.8	- 6..	54.3
i- 7	- 5.8	S	$-7 \mathrm{i}$	12.7	- 6.6	17.3	-6.7	10.1	- 6.7	48.1
$7-8$	- (i.s	7	-7.x	10.8	- 7.5	14.6	-8.11	8	-7.5	40.4
S-9	- 7.6	5	-6.4	7.8	7.4	13.3	-8.1	8	7.3	34.1
$9-10$	-5.9	4	- 4.'A'		- 7.2	13	-1.9	7	- 6.4	29.7
$10-11$	-3.8	2.9	- 2.5	5	- 6.8	10.4	- 6.1	6.8	- 5.4	25.1
11-12	-6-1	2	-2.4	2.6	- 5.9	5.2	-2	5.9	-3. 5	15.7
12-13	-1.6	2	+ 2.0	1	-1.1	2	-1.0	4.9	-0.7	9.9
13-14			$+7.0$	1	+1.0	2	- 4.0	1.6	-0.8	4.6
1.1-15					$+0.7$	1.6	$-\therefore .1$	1	- 1.5	2.6
15-16					$+0.8$	1			$+0.8$	1

B. Cloudy sky.

	Winter.		Spring.		Summer.		Autumin.		Mean.	
Kil.	V.T.	N.	V.T.	N.	V.T.	N	V.T.		V.'T.	N.
$0-1$	1.8	27	5.5	33	-3.7	24	- 3.9	40	-3.3	124
1-9	-3.0	27	- 5.6	32.5	- -1.1	24	- 3.7	49	-4.3	123.5
2-3	4.5	27	-4.8	33	-. 1	24	-4.3	40	- i.i	124
3-3	5.8	27	-5.5	33	- 5. 1	23.8	- -.8	39.5	- $\quad .6$	123.3
4-5	6.8	27	-6.7	33	6.1	23	- 6.1 .1	39	- li.í	12.2
5-6	-6.9	26	-6.7	30.7	- 6.7	21.5	-- $6 . . \underline{ }$	36.5	- 6.6	114.7
(i-7	-6.8	25.4	-6.7	25	- 6.6	17.7	-7.3	27.8	- 6.9	95.9
$7-8$	-6.9	19.7	- 7.2	20.3	-7.2	16.8	-5.9	21.6	- 6.8	78.4
8-9	-6.1	14.2	- 0.0	16.2	- 7.9	14.1	-7.9	13	- 6.9	57.5
$9-10$	-. 6.2	12.3	-3.9	12.9	--8.1	12.1	- 7.5	11.4	- 6, i	48.7
10-11	-5.4	9.4	- 1.8	9.6	- -.9	8.1	-5. 4	8.5	- 4.5	35.6
11-12	- 2.5	7.6	$+1.0$	8.3	-2.1	5.1	-1.9	6.8	-1.2	27.8
$12-13$	-1.3	5	$+1.2$	6.7	$+0.2$	1.9	-0.5	4.1	$+0.1$	17.7
13-14	- 0.9	2.7	-3.9	1			$+1.7$	1.4	-0.8	5.1
11-15	$+1.9$	1.9	- 3.2	1					$+1.2$	2.9
15-16	- 0.6	1	-3.2						- 1.3	1.5
16-17	$+0.1$	0.8							$+0.1$	0.8

We may derive from these tables that the mean rariation of temperature with clear and with clondy weather only ditters in the lower strata, but is nearly the same in the higher ones.

In order to deduce from the numbers in this table the temperatures themselves from kilometer to kilometer, I have also derived from the data the following mean temperatures at the surface of the earth:

	clouded sky	clear sky
Winter	$+0^{\circ} .1$	$-0^{\circ} .9$
Spring	+6.4	+5.1
Summer	+14.4	+14.7
Autumin	+9.0	+7.9

By means of these initial temperatures and the gradients of talle I
C. Clondy and muclondy sky.

	Winter.			Spring.			Summer.			Autumn.			Mean.		
Kil.	V.T.	N.	Hann.												
0-1	-10	37	0.	- $\because 8$	48	-3.1	3	42	$-4 .$	-ㄴ․․ 7	55	-2.1	-2.8	182	-2.9
1-2	-3.3	37	-2.8	--5.6	47.5	--.			-.6	-3.6	55	-4.1	-4.3	181.5	-4.4
$\mathfrak{2}$	-4.7	37	$\therefore .0$	-4.9	48	-5.1	-'4.		$\therefore 1$	- 4.1	55	-6. ${ }^{\text {en }}$	- 4.7	182	-5.0
3-4	-5. 7	37	$\bigcirc .8$	--. 6		- \therefore. ${ }^{\text {c }}$	5.	41.8	- -6	- 5.6	54.5	-i.	5.5	181.3	-5.7
4-5	-6.4	37	-6.7	-6.7	47.3	-6.7	-6.0	41	$\therefore .9$	-6.0	53.9	-5.9	--6.2	179.2	-6.3
$\therefore-6$	-6.7	34.9	-6.7	-6.8		-7.3	-6.		(i.'	-6.i)	50.3	-6. ${ }^{\text {S }}$	-6.6	169	-6.8
$6-7$	-6.6	33.4	-6.7	7.11	37.7	-7.2	-6.		. 2	-7.1	37.9	-7.1	-69	144	-7.0
7-	-6.9		-7.9	7.1	31.1	--13.3	-7.	31.4	7.7	ii.'	29.6	-7.3	--7.3	118.8	-7.1
$8-1$	-6.5		-6.9	6.1	24	-1i.	-7.	27.4	7.19	-7.9	21	7.6	71	91.6	-7.1
9-10	-6.2	16.3	-6.1	- 4.0	18.6	-i.x	-7	25.1	-6.9	-7.4	18.4	-6.1i	(6.)	78.4	-6.3
10-11	-5.0	12.3	-3.9	-2.0	14.6	-0.9	-i.	18.5	-5.11	-i.i	15.3	-6.1	-4.9	60.7	-4.0
11-12	-2. ${ }^{\text {i }}$		0.0	-0.2		+0. 2	-4.1	10.3	-2. 4	-1.9	12.7	$\because .7$	-2.11	43.5	-1.2
$19-13$	-1.2	7		+1.3	7.7		-11. 5	3.9		-10.8	9		- 0.2	27.6	
13-14	-0 9			-1.6	2		$+1.0$			- 1.3	3		-1)	9.7	
14-1:	$+1.9$	1.9		-3.2	1		+ ${ }^{6}$. 7	1.6		-i. 1	1		-06	5.5	
$15-16$	-0.6			-3.2			+0.						-06	2.5	
16-17	$+0.1$	0.8											+0.1	0.8	

which in a few rases have been slighty altered, I have derived the following list of temperatitres for clear weather from kilometer to kilometer.

Althongh the adopted values for the temperature of the air above 1:3) kilometer are not very certain, yet the observations indicate that at these heights the temperature decreases slowly with increasing height. The refraction in those higher strata being only a small part of the computed refraction, nearly ${ }^{1}{ }_{10}$, an error in the adopted distribution of temperature will have only a slight influence on my results.

1 must remarl that almost all the observations have been made during the dar, generally in the morning. It is evident that the variation of temperature, especially near the surface of the earth, is not the same during the day and during the night, but the number of

> T A B L E H.

Temperatures at heights from 0 to 16 kilometer for elear weather.

	Winter.		Spring.		Summer.		Autumn.		lean.	
Height.	Temp.	Diff.	Temp.	Diff.	Temp.	I)ill.	Tent.	Dilli.	T'mp.	1 Ifll.
0	-1.9	+1.2	$+5.1$	-3.6	$+14.7$		+ 7.9	+06		
	-0.7		$+1.5$		+119	-4.3	+85		+ +3.3	-1.1
2		-4.2		-5.4				-3.2		
	- 4.9	-5.2	-3.9		+ 74	$\begin{aligned} & -4.3 \\ & -4.4 \end{aligned}$	+5.3	-4.6	$+10$	
	-10.1	--5.4	-8.8	--5.8	$+3.2$	-4.4				
	-15.5		146			$-\therefore 4$		- S .6		$\left\lvert\, \begin{aligned} & \text {-in } \\ & -6 ; 1\end{aligned}\right.$
		-5.8		-6.7	$\begin{array}{r} -2.2 \\ -8.1 \end{array}$	--. 9		-1.1		
	-21.3	-6.0	-21.3	$\begin{array}{r} -6.7 \\ -6.7 \end{array}$	-8.1	-6.0				
	-27.3	$\begin{aligned} & -6.0 \\ & -6.2 \end{aligned}$	$\mid-28.0$		-14.1	-1i.6	$\|-17.9\|$		-21.8	
1	-335	$\begin{aligned} & -6.2 \\ & -6.8 \end{aligned}$	-34.9	-(i) 9	-20.7			$\begin{aligned} & -7.2 \\ & -7.7 \end{aligned}$		
						$\begin{array}{r} -16.6 \\ -7.3 \end{array}$	$-2.1-$		$1-28.5$	$\begin{aligned} & -13.7 \\ & -7.3 \end{aligned}$
	-40.3	$\begin{aligned} & -6.8 \\ & -7.3 \end{aligned}$	\|-42.	-6.9	-28.0	-7.6	$1-32.8$	-7.6	-35.8	\|l $\left\lvert\, \begin{aligned} & -7 . \\ & -7 . \\ & -6.4\end{aligned}\right.$
9	-47.6	$\begin{aligned} & -7.3 \\ & -6.4 \end{aligned}$	-49.1		-35.6)		$-40 \text {. }$	-	43.2	
10	-54.0	$\begin{aligned} & -6.4 \\ & -1.9 \end{aligned}$		-25	-428	$l_{-7.2}^{-7.8}$	$\text { - } 17.3$	$\begin{aligned} & -(i .9) \\ & -(i .1 \end{aligned}$		
1									-49	$\left\{_{-5.4}^{-6.1}\right.$
11	$\left[\left.\begin{array}{l} -58.9 \\ -61.0 \end{array} \right\rvert\,\right.$	$\begin{aligned} & -2.1 \\ & -1.0 \end{aligned}$	$\left.\right\|_{-58.0} ^{-57.0}-$	$\begin{aligned} & -10 \\ & -1.0 \end{aligned}$	-49.6		$-53 .$	$-i$		$7-2.3$
12					$-3 .$	1.0			--8.0	
13	-62.0	$\left\lvert\, \begin{aligned} & -0.6 \\ & -0.4 \\ & -0.2 \end{aligned}\right.$	-59.-59-60.$-6 i 0$.	$\begin{aligned} & -0.6 \\ & -0.4 \\ & -0.2 \end{aligned}$	-. 54		$-364-1.0$			
	-62.6					1.6		-0.6		-0.6-0.4-0.2
						0.4		-1		
1.)	$\begin{aligned} & -63.0 \\ & -639 \end{aligned}$									
16					--5.5				-	

observations was not great enough for a relindle determmation of this difference. Lastly I remark that the varions balloon aseents have been made from different stations, IIalde (in Danemark), Berlin, Paris, Strasbonrg and Viema and consequently the given values do mon hold for one definite place, but for the mean of the rete enclosed by those stations.

After I had derived the temperatures given in table II, I got notice of two papers, treating of abont the same smbject, mamely: J. Il w, Ueber die Temperatmrabnahme mit der Höhe bis zn 10 Km . nath den Ergebnissen der internationalen Ballonanfstiege. Sitzumgstrerichte der mathematisch-mathwissensehaftichen Klasse der K. K. Akademio der Wissenschaften Wien. Band 93, Abth. Ha, S. 571; and S.

Grenander. Les gradients verticamx de la température dans les mmima et les maxima harométriques. Arkir för Matematik, Astronomi och Fysik. Band 2. Hefte 1-2 Upsala, Stockholm.

Of the results which Haxs has given, up to a height of 12 kil., I have taken the means of gromps of 3 months, which are printed in table I by the side of the valnes I had obtained : the agreement of the two results, which for the greater part have been deduced from different observations, is very satisfactory.

Grenander in his paper chietly ronsiders the relation between the changes of temperature and the barometer readings: his results camot therefore be compared with mine directly, but probably we are most justified in comparing the variations of temperature at barometer maxima, with those which l have romputed for clear weather. For great elevations, till nearly 16 kil. Graxivor also obtains with increasing height a small decrease of temperature.

It is difficult to state with what degree of precision the temperatures of table II represent the mean values for the different seasons; the deviations, especially at great heights, may perhaps amomet to some degrees, but certainly they represent the mean distribution of temperature better than the valnes athpted in the varions theories of refration, and we can therefore derive from them more accomate values for the refiaction.
4. It is hardly possible to represent the relation hetween the temperatures in talhe II and the heights by a simple formma, and to form a differential equation between the refraction, the zenith distance and the density of the atmospliere at a given height, which can be easily integrated.

Therefore I have followed another method to determine the refraction corresponding to the distribution of temperatime I had assumed.

According to Ridac's notations Essai sme les réfractions astronomigues. Amales de loobservatoire de Paris. Mémoires Tome XIX), the differential equation of the refraction, neglecting small quantities, is :

$$
\begin{equation*}
d x=\iota^{\prime \prime} \frac{\left(1-\frac{l_{0}}{R}(y-3 \varepsilon \omega)\right) d \omega}{\left.\sqrt{y} \cot ^{2} z+2{ }_{R}^{l_{0}}(y-\varepsilon \omega)-\left(\frac{l_{0}}{R} y-2 \frac{l_{0}}{R} \varepsilon \omega\right)^{2}\right\}} \tag{I}
\end{equation*}
$$

Here is:
R radius of the earth for 45° latitude, r_{0} radins of the earth for a given point, h height above the surface of the earth,
$r=r_{0}+h$,
f_{0} index of refiation at the surfare of the batith,
$\mu \quad, \quad, \quad, \quad, \quad$, height h,
ρ_{0} density of the air at the surface of the carth,
? density at the height $/ h$,
t_{0} temperature at the surfine of the earth,
I_{0} height of a rohmm of ain of miform density at 45° latithdr, of a temperature t_{0}, which will he in equilibimm with the pressure of one atmosphere, the gravity being the same at difterent heights. Acoording to Rmandut's comstants, we have $l_{0}=79993\left(1+\quad 1 f_{0}\right)$ meter, if a represents the coefticient of expansion of the air.
between these pantities exist the following relations:

$$
\begin{aligned}
& n^{2}=1+2 \text { co (} r \text { being a constiant), } \omega=1-\frac{\theta}{\theta_{n}}
\end{aligned}
$$

To determine the value of ds at each height, we regnite a relation between ω and !/ or between ω and h, which ean be ohtained when we assume that the temperature varies aceording to Wokr's theory, or that the temperature varies as represented in table II. For the same given values of z and ω, the two values of ds in formma (l) can be computed by means of the tirst and by means of the second supposition, and the differences of these two valnes of dis aan be fombl. By means of mechanical quadrature, we can then determine the differences $L s$ of the refractions is according to lyony's theory and according to table II.

The relations between ! and ω may be fomm in the following mamer.
5. If in a given horizontal initial plane, at a distance r_{0} firom the rentre of the earth, the pressme is μ_{0}, the temperatme t_{0} and the density of the air ϱ_{0}, and in another horizontal plane, h kil. above the former, the pressime is f, the temperature t, the distance from the centre of the earth r, and the density of the air o, then we have (see Radau):

$$
\begin{align*}
& \text { or, putting } \frac{\underline{o}}{\varrho_{0}}=y \text { and } \frac{R h}{\left(r_{0}+h\right) l_{0}}=y \text { : } \\
& r_{0}^{\prime \prime}\binom{p^{\prime}}{n_{0}}=-x^{\prime} d y ; \tag{II}
\end{align*}
$$

further is:

$$
\begin{equation*}
\frac{l^{\prime}}{\prime_{0}}=\frac{1+a t}{1+a t_{0}} \eta=\left(1-\frac{a\left(t_{0}-t\right)}{1+a t_{0}}\right){y_{3}}_{j}=(1-i) \eta_{1} \tag{III}
\end{equation*}
$$

if we put $\frac{a\left(t_{0}-t\right)}{1+a t_{0}}=\boldsymbol{v}$.
When dividing eppation (II) by (III), we get:

$$
\frac{r_{0}\left(\frac{l^{\prime}}{r_{0}}\right)}{R} \underset{l_{0}^{\prime}}{l_{0}^{\prime}}=-\frac{d y}{1-v},
$$

while by differentiating logarithmially we find:

$$
\left.\frac{d\left(\frac{p}{p}\right.}{p_{0}}\right)=-\frac{d y}{1-v}+\frac{d y}{1}
$$

From the two last equations follows:

$$
\begin{equation*}
d y=\frac{r_{0}}{R}\left\{d v-(1-v) \frac{d \eta}{\eta}\right\}=r_{n}^{r_{n}}\left\{d i+(1-i) \frac{d \omega}{1-\omega}\right\} \tag{IV}
\end{equation*}
$$

Acrording to Mons's theory $t=f(\theta)$ where f is a constant value (Radat assmmes 0,2) ; if we introduce this relation into the equation (III) we obtain alter integration:

$$
\begin{equation*}
y=0,4 \frac{r_{0}}{R} \omega-1, \delta 420681 \frac{r_{0}}{R} \text { Br. lim }(1-\omega) \quad . \tag{V}
\end{equation*}
$$

By substituting (V) in (l) we can therefore calculate for each value of (o) the value of ds according to I Mons's theory.
6. Now I proceed to determine the relation between w and y according to the temperature table I.

Of two horizontal planes, one above the other, the tirst is situated n kil. (n a whole number), the second n^{\prime} kil. ($n^{\prime}=$ or $<n+1$) above the surface of the earth; their distances from the centre of the earth are $i^{\prime}{ }^{\prime}$ and $r^{\prime} n^{\prime}$, their temperatures t_{n} and $t_{n^{\prime}}$ and the values of $y, y n$ and $y n^{\prime}$. The temperature between n and n^{\prime} varies regularly with the height and, to simplify the formnate, I suppose $t_{n}-t_{n}$ proportional to $y_{n^{\prime}}-y_{n}$, so that, if $\vartheta_{n}=\frac{a\left(t_{n}-t_{n^{\prime}}\right)}{1+a t_{n}}$:

$$
\begin{equation*}
\frac{R}{r_{n}}\left(y_{n^{\prime}}-y_{n}\right)=c_{n} \boldsymbol{\vartheta}_{n} \tag{VI}
\end{equation*}
$$

Hence follows $\frac{R}{r_{n}} d y=c_{n} d \theta$ and after substitution of $d y$ in (IV)
and integration

$$
\begin{equation*}
\left(c_{n}-1\right) l_{!}\left(1-\theta_{n}\right)=l_{!}(1-\omega) \tag{VHI}
\end{equation*}
$$

in which $1-\omega$ represents the ratio of the demsities in the fwo horizontal planes.

If we substitute $n+1$ for n, we can find in table II the temperature for the two planes and hence also \boldsymbol{o}_{n} : ans y_{n} and y_{n+1} wre also known, we can derive from (VI) the valne of c_{n} and we can deduce from (VlI) the ratio of the densities in those planes. By putting for n successively $0,1,2$, etc. we can constimet a table containing the densities of the air, D_{1}, D_{2}, D_{3} ete. at the hoight of 1, 2,3 , ete. kil. above the surface of the earth, the density at the surface being mity.

It is easy to derive from this table the height of a layer of a given density d. If $d<I_{n}$ and $>D_{n+1}$, the layer must be sitmated between n and $n+1$ kil., and we oniy want to know in which manner, within this kil., the density varies with the height h above the lower plane.

We may assmme:

$$
\frac{d}{D_{n}}=10-a h
$$

For $\quad \iota=1$ kil., $\quad l=D_{n+1}$, hence $\quad a=-1, \frac{D_{n+1}}{D_{n}}$.
a heing known, we may determine for each valne of d, h and also y. By substitution in (I) we tind then for each value of ω the value of $d s$.
7. Now we are able to form the differences of d.s after the theory of Ivory and after the table of temperatures $1 I$, for valnes of ω which increase with equal amomets, and then determine the whole difference of the refraction for both cases.

For great values of z and small valnes of !/ and ω the coefticients of dw in (I) will become rather large, which derogates from the precision of the results.

This will also be the case when the differences of the smeresime values of ω are large; small differences are therefore to be preferred, but they render the compmation longer.

Both these difficulties can be partly aroded if, aroording to Ramat's remark, we introduce V obs a variable quantity insteal of 0 : the ralne of d.s thas beromes:

$$
\begin{equation*}
d s=\frac{e^{\prime \prime}}{\left|\frac{l_{0}}{2 R}\right| / \left\lvert\, \frac{\frac{R}{2 l_{0}} \cot ^{2} z+y}{\omega}-\varepsilon-\frac{l_{0}}{2}(y-3 \varepsilon(\omega)) d V \omega\right.} \tag{VIII}
\end{equation*}
$$

or approximately:

$$
\left.d s=\frac{a^{\prime \prime}}{\left|\frac{l_{0}}{2 R}\right| / \left\lvert\, \frac{R}{\left\{\frac{R}{2 \sigma_{0}} \cot ^{2} z+!\right.}\right.} \frac{d V}{\omega}\right\}
$$

It is evident that for small values of σ the coefticiont of $d l^{\prime} \omega$ in
 in the lower strata will be fomm mone aremately by means of the formola (Y / HI) than by means of (I). For if we increase $I^{\prime} \omega$ in formula (VIII) and ω in formmat (I) with equal quantitien, hegimning with zero, we fint, that, from $0=0$ to $\omega=0,2$, the nomber of
 the integration by means of fradratme will give more aromate results in the first case.

Therefore 1 have used the formula (VIll) amb computed the coefficient of d/o for values of $1 \quad(0,0,0,05,0,10,10,15 \ldots 100,95$.

The density of the air which comerponts to $1^{\prime}(0=0,95$, occurs at the height of about 18 kil. From the ohservations at my disposal I could not dedure reliable values for the temperatme at heights above 16 kil.; fet it is probable that the gradients at those heights are smatl and 1 have assumed the temperature at heights of 17 and 18 kil. to be equal to that at a height of 16 kilometers.

In this way I have determined by means of mechanic ymadrature, and an approximate computation of the refraction between $\mathbf{t}^{\prime} \omega=0.925$ and $10=0.95$, the differences L se of the two values of the refraction corresponding to Jons's theory and correponding to the table of temperature 11 in the part of the atmosphere between the earth's surface and a layer at a height of about 18 kil. where $V \omega$ is 0.95 . I have worked out this comptuation for the zenith distances 85°, $86^{\circ}, 87^{\circ}, 88^{\circ}, 88^{\circ} 30^{\prime}, 89^{\circ}, 89^{\circ} 20^{\prime}, 89^{\circ} 40^{\prime}$ and 90°.

An investigation, made for the purpose, showed me that in formula (VIII) the terms $\frac{l o}{R}(y-3 \varepsilon \omega)$ in the numerator and $\frac{l o}{2 R \omega}(y-2 \varepsilon \omega)^{2}$ in the denominator may be neglected for all zenith distances except $z=90^{\circ}$; therefore I have taken them into account in the computation of the horizontal refraction only.

The results which I have obtained for the differences：

$$
\angle s=\text { Irory-table of temperatures }
$$

are the following：

$$
\mathrm{T} A \mathrm{~B} \mathrm{~L} \mathrm{E} \quad \mathrm{ll} \text {. }
$$

Refration after loor－Refractions after the tahle of temperathen 11 ．

Zenith listance	Winter	spring	Summer	Antmm	$\begin{aligned} & \text { Innual } \\ & \text { me:inn } \end{aligned}$				$\begin{aligned} & \hline \text { Anmual } \\ & \text { mean } \\ & \text { Autumn } \end{aligned}$
85°	$+0^{\prime \prime 21}$	＋ $0^{\prime \prime} 78$	＋ $0^{\prime \prime} 66$	＋ $0^{\prime \prime} 31$	＋ $0^{\prime \prime} 49$	＋01＂28	$-0^{\prime \prime} 9$	$-0^{\prime \prime} 17$	$+11^{\prime \prime} 18$
86°	$+0.13$	＋ 1.26	＋ 0.95	＋ 0.30	＋0．6i6	＋ 0×3	－－ 0.610	－093	＋ 0.36
870	－ 0.47	＋ 2.08	$+1.31$	-0.20	＋ 0 isi	$+113$	－ 1 位		＋ 0 ．si
880	－393	＋ 3.40	$+0.95$	-3.29	－－ 0.83	$+311$	-3.93	－1．78	＋号化
$88030{ }^{\prime}$	－ 9.64	$+3.06$	-0.67	-8.51	－ 3.9	＋5．69	-7.01	－3．28	＋ 4.80
89°	－23．69	$+1.08$	－5．45	－21．15	－12．31	＋11．3x	-13.39	－ 18.810	＋8．si
89020^{\prime}	－43．80	-3.1	-1268	-38.77	－24 51	＋19．99	－21：34	$-11 . x: 3$	＋14 9
$89 \bigcirc \frac{10}{}$	－1＇24＂97	-13.07	2%	－1＇11＂16i	－27．74	＋34．23	－34．6i7	－22．49	＋23．12
90°	－2 32.4	-33.1	－52．9	－2 9.6	$-1^{\prime} 30^{\prime \prime} 9$	＋1＇1＂：	－．i7．8	－38．0	＋38．7

To test the computations，we may compare the mean of the vatues of Δs for the forr seasons，and the values of $\angle . s$ in colmm ${ }^{6}$ which have been computed，independently the former，for the mean yearly temperatures，which are almost equal to the mean of the temperatmes in the fomr seasons．Only for $:=89^{\circ} 40^{\prime}$ and $:=90^{\circ}$ do these values show deviations exceeding $0^{\prime \prime} .1$ ．

From table III follows， 1 that for a distribution of temperature， as derived by me from observations，the refraction deviates percep－ tibly from that deduced from Ivory＇s theory， 2 that the differences in the refraction in the different seasons are abont of the same order as the deviations themselves．I want it to he distinctly unterstood， 1 that the adopted distribution of temperatme above $1: 3$ kil．and especially from 16 to 18 kil．is mectain，and 2 that I have not taken into account the refraction in the layers which are lying more than 18 kil．above the surface of the earth，in other words those layers where the density，as compared to that of the surface of the earth，is less than $1-0,95^{2}$ ，or less than 0,0975 ．

