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Physics. — “Contribution to the theory of binary miztures.” By
Prof. J. D. vAN DER WaALS.

The theory of binary mixtures, as developed in the “Théorie
moléculaire”, has given rise to numerous experimental and theoretical
investigations, which have undoubtedly greatly contributed to obtain
a clearer insight into the phenomena which present themselves for
the mixtures. Still, many questions have remained unanswered, and
among them very important ones. Among these still unanswered
questions I count that bearing on a classification of the different
groups of -surfaces. For some binary systems the plait of the
P-surface has a simple shape. For others it is complex, or there
exists a second plait. And nobody has as yet succeeded in pointing
out the cause for those different forms, not even in bringing them in
connection with other properties of the special groups of mixtures.
It is true that in theory the equation of the spinodal curve which
bounds the plait, has been given, and when this is known with perfect
accuracy, it must be possible to analysis to make the classification.
But the equation appears to be very complicated, and it is, especially
for small volumes, only correct by approximation, on account of
our imperfect knowledge of the equation of state. Led by this consi-
deration I have tried to find a method of treatment of the theory
which is easier to follow than the analytical one, and which, as the
result proved, enables us to point out a cause for the different shape
of the plaits, and which in general throws new light upon other
already more or less known phenomena.

Theory teaches that for coexisting phases at given temperature

.. ) dw diy dy dw
three quantities viz. —(%-)ﬂ,, (ZOE)”Tand P—v (:Z; xT——a, @ )or

must be equal. The first of these quantities is the pressure, which
we represent by p; the second is the difference of the molecular
potentials or M, u,—M, u,, which we shall by analogy represent
by g. The third of these quantities is the molecular potential of the
first component, which we shall represent by M, u,. Now the points
for equal value of p lie on a curve which is continuously trans-
formed with change of the value of p, so that, if we think all the
p-curves to be drawn, the whole v,2-diagram is taken up by them.
In the same way the points for given value of g lie on a curve
which continuously changes its shape with change of the value of ¢;
and again when all the g-lines have been drawn, the whole v,z-
diagram is taken up. Both the p-lines and the g-lines have the
property, that through a given point only one p-line, or only one
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g-line can be drawn. Onc single p-line, however, intersects an infinite
number of lines of the ¢-system, and every g-line an infinite number
of lines of the p-system. One and the same p-line intersects a given
g-line even in several points. However, it will, of course, be neces-
sary, that if two points indicate coexisting-phases, both the p-line
and the g¢-line which passes through the first point, passes also
through the second point. If we choose a p-line for two coexisting
phases, not every arbitrarily chosen value for a ¢-liné will satisfy the
condition of coexistence in its intersections with the p-line, because
a third condition must be satisfied, viz. that M, u, must have the
same value. The result comes to this: when all the p-lines and all
the g-lines have been drawn and provided with their indices there
is one more rule required to determine the points which belong
together as indicating coexisting points So in the following pages
I shall have to show, when this method for the determination of
coexisting phases is followed: 1. What the shape of the p-lines is,
and how this shape depends on the choice of the components.
2. What the shape of the g-lines is, and how this shape depends
on the choice of the components. 3. What rule exists to find the
pair or pairs of points representing coexisting phases from the infinite
number of pairs of points which have the same value of ¢, when p
has been given — or when on the other hand the value of - is
chosen beforehand, to find the value of p required for coexistence.

But for the determination of the shape of the spinodal curve the
application of the rule in question is not necessary. For this the
drawing of the p- and the g-lines suffices. There is viz. a point of
the spinodal curve wherever a p-line touches a g¢-line. We have viz.

dy(dv d*y d*y (dv d*y dv
from e (ﬂ)p—{— W dw_.O, and from e q—{— e =0 for i),
&y

d*y
dadv dv da?
the value — —— and for | — | the value — , and so we may
d*y dz /g &'y
dv? dady

write the equation of the spinodal curve:

dv _ dv X
da:,,_ c_l-.;q'

* So if we are able to derive from the properties of the components
of a mixture what the course of the p- and of the g-lines is, we
can derive much, if not everything, about the shape of the spinodal
curve. And even when the course of these lines can only be predicted
qualitatively, and the quantitatively accurate knowledge is wanting,
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the qnantitatively accurate shape of the spinodal curve will, indeed,
not be known, but yet in large trails the reasons may be stated,
why in many cases the shape of the plat is so simple as we are
used to consider as the normal course, whereas in other cases the
plait is more complex, and there are even cases that there is a
second plail.

Particularly with regard to the p-lines, it is possible to forecast
the course of these lines from the properties of the components.
With regard to the g-lines this is not possible to the same extent,
but if there 1s some uncertainty about them, we shall generally have
to choose between but few possibilities.

THE cOURSE OF THE p-LINES.
In fact the most essential features of the course of the p-lines

were already published by me in “Ternary Systems” -— and only
little need be added to enable us to determine this course in any
dip

given case of two arbitrarily chosen components. As p —=——

dvyp
dp
s J»T

dv
and [ — | = —
(d") » (d]’>
xT

, it 15 required for indicating the course of

dv

d:
these p-lines to know the course of the curves (7;3) =0 and
xT

v
) «
da LT— . .

The former curve has a continuous liquid branch, and a continuous
gas branch, at least when 7 lies below every possible 7%, when we
denote by 7% the critical temperature for every mixture taken as
homogeneous that occurs in the diagram. If there should be a minimum
value of 77 for certain value of x, and 7' is higher than this mini-

d

mum 7%, the curve (g = 0 has split up into two separate curves.
T

In either of them the gas and the liquid branch have joined at a

value of v=w; In this case a tangent may then be traced // to

d
the v-axis to each of these two parts of the curve (;ZI—Z) =0.
27

d

The second curve (—f) “=10 is one which has two asymptotes,
2] el

and which may be roughly compared to one half of a hyperbola.

The shape of this curve derived from the equation of state follows

from the equation:
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MRT-@ da
da da .
O

If we now always take as second component that with the greatest

db .
value of b, so that = is always positive, it appears from the given

d,
equation that the curve (—i):O cannot possess points for these
/0T

d
values of z, for which Zg is negative. Only at that value of a for
d
which d—Z:O, this possibility begins, but then only if 77 = 0. If
da
T has a definite value - must he positive, for points of this curve
oy

d db
to be possible. For v = oo, d—“ must be = MRTd—. And the value
"

&
of @ which satisfies this equation, indicates one asymptote of the
discussed curve by a line // to the v-axis. If this asymptote has
been drawn, we may think the mixtures with decreasing critical
temperature to be placed on its left side. And on the right the
mixtures with increasing critical temperature do not yet immediately
follow. For a separation between the mixtures with decreasing and

d db a
those with increasing 7%, d—a must be :% o only when MRT =7
A &

i

T would immediately ascend again on the right of this asymptote;
but then 7' would have to be chosen so high, that it was **/; T,
and for the present at least we shall choose 7' far below that limit.

That the line @ = ¢, where ¢ has the value which follows from

d Ldb . . .
f = MR1 7, 1s an asymptote, is seen when we think the equation
T /]
da

d : da
of the curve (d%) =0 written as follows: C i b)’: ? 7 As

(. v__.

or MRT —

do

d v
the value of g(—l becomes larger from left to right, ——l;mustincrease
& P—

from left to right, or % decrease. For the value of @, following

da b v
p — =MRT —, —
from y ] T

.. . R 7
. A is infinite; for larger values of «, 7 decreases
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v da
more and more, and as 0 can never become = 1, because T
llll‘
cannot become infinite, the curve » =10 is the second asymptote.
So if # is made to increase more and more, also beyond the values
which for a given pair of componenls are possible in order to
examine the circumstances which may’ occur with all possible systems

db . . N
for which with positive value of — increasing value of 77 is always
o

d
found, a minimum volume must occur on the curve (f =0. So
Y/ pl
. . . a
for this point (—i:) = 0.
da? J,T x

Now that we have described in general outlines the two curves
which control the course of the p-lines, we shall have to show in
what way they do so. -

. From

dp
dv . (Em)v:ﬂ
(Zl;)pT B dp
(%)zfl’

follows thal to a p-line a tangent may be drawn // a-axis when it

d .
passes through the enrve (c—lﬁ , and a tangent // v-axis, when it
oT

&
i

d
passes through the curve (_p) But though these are important
V /2T

properties they would be inadequate for a determination of the course
of the isobars, if not in general ounilines the shape of one of these

d
lines could be given. The line (l’) =0 viz. intersects the line
. /T

(% =0 in two points, and it is these two points which are of
2T

fundamental significance for the course of the p-lines. The point
of intersection with the liquid branch is viz. for a definite p-line a
double point, the second point of intersection being such an isolated
point that it may be considered as a p-curve that has contracted to
a single point: The surface p = f(»,v) is namely convex-concave
in the neighhourhood of the first mentioned point. Seen from below
a section // v-axis is convex, and a section // ax-axis is concave. A
plane, parallel to the w,ax-plane touching the p-surface intersects,
therefore, this surface in two real lines, according to which p has
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the same value. But for {he second point of intersection the two
sections are concave seen from below — and there are no real lines
of intersection. This second point is a real point of maximum pressure.

With all these properties, and also with those mentioned before or
2

a
still to be mentioned,z—g is assumed to be positive. *)
&L
Now the curve p=-constant passing through the first point of
d d
intersection which the curves PY—0 and (Z)=0 have in
dv Jyr da ),1
common, is the isobar whose shape we can give, which shape
at the same time is decisive for all those following, either for

larger or smaller value of p. In the adjoined figure 1 its course is
represented. Coming from the left it retains its direction to the

d
right also in the point of intersection with the curve (_p) =0,
’ T /g
the convex side all the time turned to the a-axis till it is directed

straight downward in the point where it meets the vapour
d .

branch of the curve (f) = 0. There it has a tangent //v-axis, and
V/xT

from there it has turned its concave side to the a-axis. When it

7 d
meets the curve (2 =0, ) is equal to O for this as for all
da J,p aw /)

dv dz
nitely large, and pursuing its course, it passes for the second time

through the double point, and further moves to the right, always
passing to smaller values of v, till it has again a tangent // to the

g dv . o
isobars. Passing again through the curve (_p) ; (—) is again infi-
2T P

da
it proceeds to larger value of w. It is clear that in the path it describes
from the double point till it passes through this point for the second
time, it has passed round the point we have called the second point

d .
axis of &, when it meets the curve (—f—) — (0 once more, after which

d]
) That the characters of the two points of intersection of the curve ({—Zg)=0
@ Sl

d .
with the curve (d_p) =0 are different appears among others from this that when
v /2T b

these points of intersection coincide as is the case when these curves touch each

. ﬁp dﬁp dﬂz} 2 . ° .
other, the quantltya——.‘-g—a ol = 0. The character of the points of inter-
v* da 2 dv

section depends on this quantity being positive or negative.
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dv Jur
sure is found. In fig. 1 some more isobars have now been drawn
besides this one. We obtain the course of the isobars for lower value
of p by drawing a cuarve starting from the left at higher value of
v, bearing in mind that two p-lines of different value of p can
never intersect, because the p is univalent for given value of #

- : g .
of intersection with the curve (—}3 =0, and where maximum pres-

d
and v. Such an isobar cuts the curve (d—f;) =0 on the left of the
zT

dv
isobar with the double point in two points, where (&;) = o, then
p
dp dy
a8 thr h 1l y —}=0 i int wher — 31 =0,
passes through the curve (dx)uz’ mn a poimnt where (da:),,T
and has then also on the right of the said isobar again two points

d
* of intersection with the curve (_p)

dv
agam [ — | = ¢oo.
& dz/,r

An isobar of somewhat higher value of p has split up into two
isolated branches. One of them starts on the right at somewhat smaller
value of v; further this branch follows the course of the isobar with
the loop, but must not cut it. Arrived in the neighbourhood of the
double point it is always obliged to remain at small volumes; there

d dv .
it meets the curve | = ) = 0, and it bas | — } = 0. From this point
de /, dz )
it proceeds to smaller volumes, till a new meeting-point with the same

curve causes this branch again to turn to larger volumes. But the

second branch of this isobar of higher value of p is entirely inclosed

within the loop of the loop-isobar. Such a hranch forms a closed

curve surrounding the point which we have called the second point
d d

of intersection of the curves ;;3):0 and (_p) = 0. Such a

-

0 ) de

= 0, in which points of intersection
=T

7

: dp .
closed branch passes twice through )= 0, and also twice through
- )/,

q dv .
i =0, and has again in the first cases | — ) =20, in the second
dv /, ‘ da J,

points of intersection (@) =
da/,

With ascending value of p the detached portion of the p-line

contracts more and more, till il has contracled to a single poini. So

al still higher value of p only one single branch of the p-line remuins.




( 628 ) w

A similar remark must be made for the curves of lower value of p. _
The smallest value of p for gas volumes is of course p = 0; but
this limit does not exist for the minimum pressure of the mixtures
with given value of . For this we know that also values of p may
occur which are strongly negative. For values of p which are negative,
the p-line has again divided into {wo disjointed portions, viz. a
portion lying on the left in the diagram, which is restricted to
volumes somewhat larger and somewhat smaller than that of the

1/ .
liguid branch of the curve (%) =0, and a similar portion lying

on the right in the diagram.
Also on the locus of the points of inflection of the isobars the

given diagram can throw light. So it is evident in the tirst place,

d -
thal between the two branches of the curve (d—p) = 0 starting

Vg
from the double point, both on the left and on the right a connected

2

v d
series of points is found where (W) = 0. If the curve (d_p) =0
v e

V) x
itself should possess a double point, which is the case when 7' has
exactly the value of 77 minimum, this locus of the points of inflec-
tion of the p-lines passes through this double point, and when the

d
curve (_p) =0 has split up into two separate portions, as is the
v/ 2

case for still higher value of 7, then those points of the two portions
d .

where d—v:: o belong to this locus. It is also apparent from the
&

diagram that two more series of points start from the double point,
one on the right and one on the Ieft, as locus of the points of
inflection, and that these run to smaller volumes.
An isobar with somewhat larger value of p than that of the loop-
shaped isobar has a tangent // to the a2-axis where it passes through
d
the curve (f) = 0. On the right and on the left of that point it
/v
turns its concave side to the a-axis, whereas at larger distance it
must again turn its convex side to it on both sides. So there start
: d*v :
from the double point four branches on which Ez_’—) =0. It is
v Ip
also easy to see that the branch which moves to the right towards

d
smaller volumes, must pass through that point of the curve (c_l%) =0
v

where the tangent is // x-axis. For an isobar which passes through
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the curve (3—];) =0 on the left of this point, turns its concave side
v

to the z-axis, but when it passes for the second time through the
said curve on the right of the point, its convex side. Hence an isobar
where these two intersections have coincided, has its point of inflec-
tion in the point itself. If we wish to divide all the va-diagram into
d*v

3

da

regions where ( ) is either positive or negative, it must be
. P

d
borne in mind that also the two branches of line (d_p> = 0 them-
V/)z

selves form the boundaries for these regions, because on that line
dv\
dz p_ ®-
2

. . d'a
In all this e

is supposed to be positive. For on the contrary

dz
an existence on the right of the asymptote which is given by

b da
MR1 =

d
the course of the line (2) =0, to which we could now assign
v

, would be directed to the Ieft of this asymptote,

2

when % should be negative, so if 2a,, could be > a, - a,. Foras

da?
da
v \? da » da
= , the value of — decreases only, when — increases.
v—b db b dz
MRTE-
&

di
If we put a =4 + 2 Bz 4 C2*, and so 3%: 2(B + Cw), it appears

, . . da
that with C negative & must decrease in order to make 7 increase.
L

For the points of this line p would then possess a minimum for given

d
value of », and so 3;{ would be positive. From this follows then that
- v

the two points of intersection of this line with the curve (ﬂg): 0
V) x

have interchanged rles. The point of intersection with the smallest

volume represents then a real minimum of p, and will have the

same significance for the course of the p-lines as the second point
2

. ) da . "
of intersection has, when ps 1s positive. And the point of intersection

-10 -
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with the smallest volume has now become doublé point. I have,
however, omitted the drawing of this case 1. because most likely
the case does not really occur, and 2. because the drawing may
easily be found by reversing the preceding one. There are e.g. with

the solution of salts in waler cases which on a cursory examination

za B . .

’ T negative, but

which yet are brought about by influences perfectly different from
\ .

the . fact of a negative value for et

present some resemblance with the assumption

3q . \ .
Such a diagram for the case T negative, though, would quite
v N

fall in with the right side of fig. 1. As in the given figure T}

increases with «# on the right side, and there is a maximum value
3

of T}, ou the supposition ;l—“ fig. 1 might be still extended to the right
&£

till such a maximum 7% was reached. But then we should also have
to suppose that a value of # could exist or rather a mixture for

which at a certain value of x the quantity 702 Yeverses its “sign.
! T !

Every region of fig. 1 of cervtain width which is taken parallel to
the v-axis can now be cut out for @, + @, — 2a,, positive, to denote
the course of the isobars. Regions on the left side indicate the course
of the isobars for mixtures for which with increasing value of 6 the
critical teinperature decreases — regions on the right side for mixtures
for which with increasing value of b the critical temperature increases —
the middle region with the complicated course of the isobars when
there is a mjnimum TL The left region would be compressed to an

)

d
exceedingly small one 1f we wished to exclude the case;i negatwe

or %: 0. We do so when putting a,, = ¢/a,6,. On such a suppo-
sition a minimum T} is still possible, but the left region musi then
have an exceedingly narrow width. The1e is, however, no reasonable
.ground for the supposition @,a, = a,,°. There would be, if the quantity
a for the different substances depended only on the molecular weights,
cand so a=em® held for'constant value of & If the attraction, just
as with NEwroN’s attraction, is made to depend on the mass of the
molecules, and so if we put ¢, = &m,?, and also a, = &;m,*, it appears
that & and & are not equal. If we now put a,, = Vaa, we put
4y, = mym, /5.6, Whal' reasouable glound is there now for the sup-

-11 -
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position that if there is a specific factor # for the mutual atiraction
of the molecules of the first kind of which we do not know with
what property of these molecules it is in connection, and if there

“is also a perfectly different factor &, for the mutual attraction of the

second substance, we must not represent the specific factor for the
attraction of the different molecules inter se by &,,, but by Vss,.
It is true that this supposition renders the calculations simpler; I had
already drawn_attention to this in my Théorie Moléculaire (Cont. II,
p. 45). But whether the calculations are somewhat more or some-
what less easy does not seem a sufficient ground, after all, to intro-
duce a supposition which involves that naturally a great number of
possible cases, among others also for the course of the spinodal line,
are excluded. If we put all possibilities for the value of a,, then

da & a,~ a
— can also be =0, viz. for =" We need not go so far
dz l—2 a,—a,

however, to give sufficient width also to the left region.

THE COURSE OF THE G-LINES.

d
The value of (E;B) =gq is found from the value of ¢ :

4 o

z dp
—— | dv.
1—-.1;+f(dm Y

For # =0 this expression is negatively inflnite, for # =1 it is
positively infinite, so that we have ¢, = — o0 and ¢, = -} o0.
But it follows also from the equation of state that for all values

g = MRTI

7 d
of # the value of f (72%) dv is also positively infinite for the line v=0.

It is true that for such small volumes the equation of state

MRT a .
p=_—g — i I8 not accurate when b is not made to depend on

», and the quasi association in the liquid state is left out of account,

¥4
and that the conclusion: f (;5) dv is infinitely large for » equal to the

v
limiting volume, calls for further consideration before we may accept
this as an incontestable truth. But it seems to me that simple con-

siderations lead to this conclusion. For the limiting volume p is
-t ) - d
infinitely great, and if 6 increases with =, (%) is infinitely large
T Jy

43
Proceedings Royal Acad. Amsterdam, Vol. 1X.

-13 -
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L “d
of higher order, whereas f (_bl—]:—) dv can again diminish the order of
“ v

v
infinity by a unit, because the factor of dv has this higher order of
infinity only for an infinitesimal value of dv. But still the thesis

remains true that f (-%) dv is infinitely great for v = b.
“ v

v
So there is strong asymmeiry in the shape of the ¢-lines. Whereas

¢ = — o holds for =0 and every value of v > b,, ¢ = -+ o holds
all over the line of the limiting volumes, and for all volumes on the
line =1 which are larger than b,. We derive immediately from
this, that all the g¢-lines without exception start from the point & =0
and v ==5,. In this point the value of ¢ is indefinite, as also follows
from the value of ¢ as it is given by the approximate equation of
state, viz.:

db dv

do  dz

g=MRT1 = MR =2 _%°
l—a v— v

It «also follows from the approximate equation of state that at
their starting point all the ¢-lines touch the line » = b, of course

with the exception of the line ¢=—oo. For we derive from
@)=
v
(dmdv) ( da,

or

d’w

( d’w
dndv
2
For 7o the approximate equation of state yields:

d*b b\ d
MRT—  MRT =2
dw _ MRT do? (d@) da®

da* T a(l—a) v—b (v—0)* T

a: d; d
We already found the value of — Y = (2 above. For ( :
dadv dx dz /),

we find therefore:

-14 -



( 633)

db\? c’l“a

‘ MRT|{ — —
MRT MRT d* (dx) da?

v . a(l—a) v—0 da? (v—0)* ° Ty

dag MRT db da 1

(v—b)* do  da v’
If we multiply numerator and denominator by (v — b)* and,if we
db

d
put v=10, we find for the starting point of the g¢-lines (i&) ==

y—b)2

at least if we can prove that £—~ is equal to zero for # =0 and

v=2"0,. To show this, we put b =10, 4 B + y2*, and so v — b=

—b
= (v — b,) — af — va®, and then we find for (v — b) bl the value:
&

v—2b,

(v — b) —B—ye

&

—b
The term e is indefinite, but nevertheless the given value
&

multiplied by v— b is really equal to zero. This result, too, is still
to be subjected to further consideration, because it has been obtained
by the aid of the equation of state, which is only known by approxi-
mation. And then I must confess that I cannot give a conclusive
proof for this thesis. But I have thought that I could accept it with
great certainty, because in all such cases where a whole group
of curves starts from one vertex of an angle, e.g. for the lines
of distillation of a ternary system, I have found this thesis confirmed
that then they all touch one side of the angle. Only in very
exceptional cases the thesis is not valid.

Moreover, the theses which I shall give for the further course of
the g¢-lines, are independent of tihe initial direction of these lines.
Only, the ¢-lines themselves present a more natural counrse when
their initial direction is the indicated one than in the opposite case.

d
From the value given above for (d—v) follows that they have a
& q

- d;
tangent // v-axis, when ((—5—) =0, and a tangent // z-axis, when

d! -

d::: 0. Hence they have a very simple shape in a region where
d; d?

the lines (;l%) =0 and 27:?: 0 do not occur. Starting from the
¢ v (¢

point 2 =10 and v = b, they always move to the right and towards

43
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d d
larger volume, and (d—z-) is always positive. Therefore (gjz) and as
g ;

v
2

) v BTe always positive in such a region. As
&

will presently appear

lv
, and

v becomes greater the value of ¢ approaches to MRT'! TR

for very large value of v the g-lines may be considered as lines
parallel to the v-axis, for which the distribution over the region
from =0 to s =1 is symmetrical. The lines for which ¢ is
negative, extend therefore from ¢ =0 to =14 and for 2 =14 the
value of ¢ = 0. It will only appear later on that yet in their course
probably two points of inflection always occur for small volumes,
a fact to which my attention was first drawn by a remark of Dr.
Konnstamy, who had concluded to the presence of such points of
inflection in the g-lines from perfectly different phenomena.

d
But as soon as the line (f) =0 is present (the case that also
Z /v

a . . . .
d:p may be =0 will be discussed later on), a new particularity
&

makes its appearance in the course of the ¢-lines. A g-line, viz.,
which cuts this locus, has a tangent //v-axis in its point of inter-
section, and reverses its course in so far that further it does not

proceed to higher value of , but runs back to smaller value —
dv . .
so that (c?) , which is always positive in the beginning, is hence-
Z
q
forth negative. From that point where they intersect the line
d; dv
(_p =0 and where (~—) may be considered negatively infinite,
da /y da/q
this quantity becomes smaller negative. Still for v = 0, the ¢-line
must again run parallel v-axis. So there must again be a point of

inflection in the course of the g¢-line. In fig. 2 this course of the
g-lines has been represented, both in the former case when they do

d
not intersect the curve (_p)’ and when they do so. In the latter
/v

case they have already proceeded to a higher value of x in their
course than that they end in. They end asymptotical to a line z=uz,,
and at much smaller volume they also pass through a point z = .
The point at which with smaller volume they have the same value
of « as that with which they end, lies on a locus which has a

’ d
shape presenting great resemblance with the line (ﬁ) == 0. The value
v
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x-axis.

‘SIXE-0

Smme L

Fig. 2.

for the points of this locus may be derived in the following way.

f pdv

¥

If we write = MRT {1—2a)log(1—a)+ aloga}--

2}

WY _ a1 (2
then (—)v =q= ]lﬂU’ll__m -+ (dw),,

dv.

&

&
At infinite volume the value of ¢ = M RT [ 88 We saW above.
—a

The locus under consideration must therefore be determined by

@

J@):

v

v = 0. Hence on the line @ = the final value, a point must
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d
be found such that, proceeding along that same 2-line, f (—%)dm: 0.

v

So from this follows immediately 1. that the points of the said locus
d

restrict themselves to those values of 2 in which the curve (d—p) =0
&Sy

occurs, 2. that the points must be found with smaller volumes than

d; .
those of (&—2) = 0. For such points with smaller volume is viz.
/)y

d, " , . . .
(f) positive, and for points with greater volume negative —
L) v

however when the volume may be considered as a gas volume this
négative value has an exceedingly small amount. And even without

*(d . :
drawing up the equation J (d—p) dv = 0, we conclude that the said locus
L)y
v

d
has the same z-asymptote as (d_p) = 0 itself, and is further to be
t’ll’ ’v
found at smaller volumes. Hence it will also have a point where
its tangent runs // 2-axis There is even a whole series of loci (o be

given of more or less importance for our theory, which have a

(4 /d
course analogous to that of (—£>:0 and f (_p) dv=0.
dz /), dz ),

v

: g, : .
The latter 15 obtained from (f) by integration with respect to v;
)

3

all the differential quotients with respect to v of the same function
2

P:O

TV

d
(ZZE) put equal to O have an analogous course — thus
& v

which 15 a locus of great importance for our theory. That it has the same

d
x asymptote as (f) =0 1itself, and that all its other points are to
- ),

be found at Ingher value of v, follows immediately from the follow-

. . . d,
mg consideration. For a point of the line (i)) = 0 the value of
& ST
dp . . .
T = 0. For points of the same z and smaller v this value is
positive — but for points with larger v negative. For v = oo this negative
value has, however, again returned to 0. So there must have been

a maximum negative value for a certain volume larger than that

-18 -
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d?
for which this value =— 0. These are the points for which %:0.

&

2

dady
other hand positive for larger volumes. The approximate equation
of state yields for the loci mentioned and for following loci these

equations :

For smaller value of the volume is therefore negative — on the

db da
dz do mdp
—_—— = dv=20
v—b W for f s
db da
dz dz d
(v~=b)? »? dz /,
db da
Tdz  da dip
—_— - r — 0.
(v—0)* v® dadv

And so forth.

But let us now return after this digression to the description of
the shape of the g-lines. Whenever a ¢-line passes through the locus
¥, dp c . s o s

= dv =10, the asymptote to which it will draw near at infinite
2
v
volume is known by the value of z for that point of intersection. For
the present it does, indeed, pursue its course towards higher value of z,

d
but when its meets the locus (d—p) = 0, 1t has the highest value of

&/ v
@, and a tangent //v-axis. From there it runs back to smaller value
of a.

And this would conclude the discussion of the complications in
the shape of the g¢-lines, if in many cases for values of 7' at which
the solid state has not yet made its appearance, there did not exist
another locus, which can strongly modify the shape of the g-lines,
and as we shall see later on, so strongly that three-phase-pressure
may be the consequence of it.

. @y 'y
The quantities o and T

curve in the same way. It may be already derived from this that
2 2

ad
the existence of the loci —E:: 0 and —£= 0 will have the same
dv? da?

significance for the determination of the course of the spinodal line.

oceur in the equation of the spinodal
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That -as yet our attention has almost exclusively been directed to

dﬁ

-d—q:_—_:O is due to the fact that we know wilh certainty that a
i1 -

given binary mixture furnishes points for the latter locus for values

of T below 7% for that mixture, whereas the conditions for the
2

existence of a locus d—i} =0 are not known — and it might be
4

suspected that this remained confined to_temperatures so low that
the solid state would have set in, and so the complications which
would be caused by this, could not be observed. That such a sup-
position is not quite unfounded may still be safely concluded from

the behaviour of many mixtures, which quite answer to the consi-
2

) ) . w
derations in which the curve T
T

is left out of account. But that

the behaviour of mixtures for which more complicated phenomena

occur, cannot be accounted for but by taking into consideration that
2

can be =0, seems also beyond doubt to me.

da?

The approximate equalion of state gives for this quantity the -
.following value:

ab\? @b d'a
MRT | — —  —
v MRT (z) MET dz®* da?*

de* @ (1—a) (v—b)* v—b v
which I shall still somewhat simplify by assuming that & depends

linearly on z, and so T = 0. We can easily derive from this form
&

2

.. G'w
that if 7

can be = 0, this will be the case in a closed carve. At

2
the boundaries of the v,2-diagram T 18 certainly positive. For # = 0
&

and £ =1 even infinitely great. Also for v =056. And for v =

/ 1

it reduces to WT)’ the minimum value of which is equal to

4 MRT. That, if only T is taken low enough, it can be negative,
2

.. d*a - . .
at least if PR positive, is also obvious. At exceedingly low value

of T it can take up a preity large part of the v,a-diagram, which
must especially be sought in the region of the small volumes. With
rise of temperature this locus coniracts, and at a certain maximum
temperature for its existence, it reduces to a single point. So it is
no longer found above a cerlain temperafure.

(Zo be continued).
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