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Physics. — “Contribution to the theory of binary miztures, I1”, by
Prof. J. D. van pEr Waatrs. (Continued, see p. 621).

Not to suspend too long the description of the course of the g-lines

d .
in the case that the locus R__l?: 0 exists, we shall postpone the deter-
&

mination of the temperature at which this locus has disappeared,
and the inquiry into the value of z and v for the point at which
it disappears — and proceed to indicate the modification in the
course of the ¢-lines which is the consequence of its existence.

dy
From the value of ﬁ:: _ & follows that when a g-line

dag 4

dadv

2

a*w . .
passes through the curve = 0, it has a direction parallel to the
t’ll,

Fig. 3.
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Yo,
z?
will be twice directed parallel to the z-axis, and have a shape as

! 2
x-axis in such a point of intersection. So a ¢-line meeting

d'w
replesented in fig. 3 — at least as long as the curve = =0
dady dl, v

does not occur. Such a shape may. therefore, be found for the g-lines,
in the case that the second component has a higher value of b, and
lower value of 7} —, and such a shape will certainly present itself
in the case mentioned when the temperature is low enough.

Then there is a group of g-lines, for which maximum volume,
and minimum volume is found. The outmost line on one side of
this group of g-lincs, viz. that for which ¢ possesses the highest

value, is that for which maximum and minimum volume have coincided,
3

lf = 0 in the point, in which this curve
l?l.

itself has the smallest volume. The other outmost line of this group
of ¢-lines, viz. that for which ¢ possesses the smallest value, 15 that

for which again maximum and minimum volume have coincided, and
2

and which touches the curve

Y
which also touches the curve :):O, but in that point in which

dz

this curve itself has its largest volume. So for these two points of
3

d*
contact the equation d—f = 0 holds. These two points of contact are,
&

Clﬂ d3
ki = 0 and —lp:
2 dm3

therefore, found by examining where the curves
e

intersect. This last locus appears to be independent of the temperature,
3

as we may put Fo equal to 0. We find from the equation on p. 638
"rv b

F (db)’ b .
P 1—2z dz da?

— = MRT | — - 2 =0
da?® 3 & (1—a) (v—0)* t (v—0)*
: &y :
If we neglect T we find from E——;_.O |
dz 3 1—2u "
2 2* (1—a)* ,'

dﬂ
The locus Zl_? = 0 occurs, ”cherefore, only in the'left side of the
" :

figure or far values of @ below 4. The lme » =1/, 15 an asymptole
for this curve, and only at infinite volume this value of z is reached.
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d
And as for £ = 0 also v—& must be = 0, the curve d—:p:()sta,l'ts
€

ab
from the same point from which all the g-lines start. If 7o should
&

not be equal to 0, we have ground for putting this quantity positive

(Cont. II, p. 21), and we arrive at the same result for the initial
3

d
point and the final point of the curve E;E—f =0.

2

So the points of the curve %_—:O, where tangents may be
drawn to it parallel to the z-axis,
lie certainly at values of x smal-
ler than 4, and accordingly the
two outer ones of the group of
the ¢-lines with maximum and
minimum volume have their hori-
zontal tangents also in the left
side of the figure. The g¢-line
with the highest value of ¢ at
lower value of @ than that with
the lowest value. This is repre-

sented in fig. 4.
We notice at the same time

that the points in which a g¢-line
2

diy
Fig. 4. touches the curve T f:O, are
&€

pomnts of inflection for such a ¢-line, just as this is the case with

d
the p-lnes when a p-line touches the curve d—lf From

]
_ (W
= ().

follows :
a*p (dv a*y
e _—=0, -
dadv (d.v)q+ dz’ '
and
d*p d* a4 dv\? dp /dv d*p
: =+ lpa o I s _)+"T =0
dadv da*y dede® \dw /, da*dv \dz /, du
. dv 1
In the poinls mentioned | — | =0, because T =0, and at the
A I q &
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td

: P d'v . . .
same time T = 0. Hence )= 0, which appears also immedia-
& & q

tely from the figure.

2

a
Within the curve T = 0 every g-lne that intersects it, has also
&

a point of inflection, because the latter must pass from minimum
volume to maximum volume in its course. So there is a continuous
series of points in which ¢-lines possess points of inflection between
the two points in which horizontal tangents may be drawn to
ap
da?*
g-lines must possess points of inflection on the left of the curve
dp
da*
side turned to the a-axis just after it has left the starting point. If
2

d
it is to enter the curve -ﬁ: 0 in horizontal direction and to pass
&

= 0. But there is also a continuous series of pointsin which the

=0, so with smaller value of 2. For every g¢-line has its convex

then to smaller volume, it must turn its concave side to the a-axis
in that point, and so it must have previously possessed a point of
inflection. Most probably the last-mentioned branch is somewhere
continuously joined to the first mentioned one. If so, there is a closed

2

d’v
curve in which = 0 — and then 1t may be expected that this
&g N

closed curve contracts with rise of 7, and has disappeared above a
certain temperature. But these and other particulars may be left to
a later investigation.
We have now described the shape of the g-lines, 1. in the case
a? d:

A : .
that neither 77 nor i is equal to O, 2. in the vcase that the

d*p . . dp
eurve ——- — 0 exists, 3. in the case that the curve ®2=01sf0und.
It remains to examine the course of the g-lines when both curves
d*p a’y :
= —— =0 exist.
da* 0 and dadv *

dhp - : a
For the occurrence of the ke 0 it is only requived that 7
& &

be positive, as we shall always suppose, and that 7' is below the

2

d
value of the temperature al which the curve % = 0 has contracted

to a single point. It may, therefore, ocenr with every binary system,
without our having to pay attention to the choice of the components.
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a? dp .
But the occurrence of the curve —— =| — | = 0 is not always pos-
dady dz /,

sible, as we already showed in the discussion of the shape of the
isobars. If we consult fig. 1 (These Proc. IX p. 630) it appears

& . )

that the curve (d—p) = 0 does not exist throughout the whole width
Ly.

of the diagram of isobars.

With mixtures for which the codrse of the isobars is, as is the case in

the left side of the fignre, the line (%) =— 0 does not exist at all.
v

Only with mixtures for which the course of the isobars is represented

by the middle pavt of fig. 1 it exists and if the asymptote is found,

it can occur with all kinds of volames. Also with mixtures for which

the course of the isobars is represented by the right part of fig. 1,

it exists, but then only at very small volumes, and it possesses only

the branch which approaches the line v = & asymptotically.

T.et us now consider a mixture suclh that the curve d_p =0 is
L/

2
really present ai such a temperature that also the curve Zi_L’P =0
&

exists; then we have siill to distinguish between two cases, i.e.
1. when the iwo loci mentioned do not intersect, and 2. when they

d
do intersect. If they do not intersect, and the curve (Z-Z;) =0 lies
v

on the right of =0, then the g-line, after having had its maxi- -

da’®

- o1 . a
mum and minimum volume, will intersect the line (_p) = 0, in
&/ y
that point of intersection will have a tangent // v-axis; it will
further run back to smaller volume, just as this is the case with one
of the g¢-lines drawn in fig. 2. This may e.g. occur for mixtures cor-
responding to the left region of the diagram of isobars, when this

region is so wide that also the asymptote and a further part of the

dp : : . . . .
curve (—;,) =0 is found. If with non-intersection the relative position
« v

a? d .
of the two curves o =0 and )~ 0 are reversed, this can
daz? da /,
probably not occur but for mixtures which correspond to a region
of the diagram of isobars which has been chosen far on the

right side. The course of the ¢-lines which then pass through
2

d
the curve ﬁ_—_o, is represented in fig. 5. But when the two

]

50
Proceedings Royal Acad. Amsterdam, Vol IX,
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az d
curves 1!) =0 and (f) =0

dw 2/,
intersect, which then necessarily
takes place in 2 points, the shape
of the g-lines is much more intri-
cate. Then numeralor and deno-
minator are equal to zero in

d
dv _ da? | dv .
T q__ i , anc iz is not
dr /), = ! B
: to be determined from this equa-
dv
tion. Then (Zi{) must be deter-
¥/ q
mined from :

Fig. 5.

N [dv\? d* dv d*p
_ —_ — = — =0
(da:dv“’) (dﬂ:)q+ 2 (da:ﬂdf) (dm>q+ (dz")

In the discussion of the shape of the p-lines we came across an
2 2

W :
analogous case when the curves —— =0 and =0 intersect;

dv? dadv
and there we found that the two points of intersection had a different
character. For one point of intersection the p-line has two different
o . &y Ay P \?
real directions, depending on the sign of T — LI

v® dvda?® dudv®

this expression was negative, the
loop-isobar passed through that
point of intersection. In the
same way, when from the above |..-

d
quadratic equation for (—U)
dz /g

we write the condition on which
the roots are real, we find the
condition :

Py Py [ dwY): ,
‘:%? dwde (da;’dv negative;

which may be immediately found
from the condition for the loop
of the loop-isobar, as require-
ment for the loop of the loop-
q-line, when we interchange . Fig, 6.
and
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The g¢-line which passes through the first point where the above
condition is negative, has, therefore, a real double point, and runs round
the other point of infersection before passing through this double point

da
for the second time. In Fig. 6 the dotted closed curve a:f =0 has
d d?
been traced, and also the dotted curve —]—0> = — hd = 0. The
dw dvd

point of intersection lying on the left, is the double point. According
3

d
to what was stated before, d—lf is negative in this point, and the
&

3

quantityd > is positive, which is also to be deduced from what was
LAY
. : dp Py
; ly ¢ he si f =——
mentioned previously about the sign o Tode T’ So the cri

d
terion by which the reality of the two directions of (—v> is tested is
t/q
satisfled in that point of intersection. In the second point of inter-
3 3

section T is positive, and T is also positive. It is true that it

d.! ZS d:! 2
does not follow from {his that il G 4 >< lP) —- but 1 it

da? dedv® dvda?

appears in the drawmg of the loop-¢-line that there is no other
possibility but that it runs round the second point of intersection,
and 2 it appears, that just as we have mentioned in the analogous

case for the shape of the p-lines (Fooinote p. 626), only when the

. . . . d*y
two points of intersection coincide, so when the two curves d——;—_—O
&

Pw L dy D v
and —— =0 touch, the quantity da® dwde® (dvd:u’

2
dadv ) is equal to

2

P . :
— =0 has greater dimensions, so at lower
ae

0. In the case that

temperature, the loop-q-line will, of course, extend still much more
to the right, and the higher ¢-lines must be strongly compressed at

d
the point where the curve (—d—zg) =0 cuts the second axis (the line
v/

z=1).

This loop-g-line determines the course of all the other g-lines.
2

. . d
Thus in fig. 6 a somewhat higher g¢-line passes through %:O,
l’zl'

in vertical divection just above the double point, rises then till it
50%
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passes through ihis curve for the second time, reaches its highest

. c oy . dp ] . . .
point, after which it meets the curve (EI_) — 0 in vertical direction,
- ,.’b' v

and then pursues its course downward afier having been directed
horizontally twice more.
It must then again approach asymplotically that value of a, at

o . g o
which it intersected the line f f dv =0 shortly after the beginning
v

of its course. This line has also been drawn in fig. 6. It is evident
2

d
Y—0. I fig. 6 it has, accord-

da?

that it may not intersect the curve

ingly, remained restricled to smaller volumes than those of the curve
I
da’

d
could meet the locus f TZ£ v = 0 several times. As ¢g— MRT

& —&

=0. TFor the assumption of intersection involves that a g-line

l in

such a meeting point, it follows from this that only one value of

x can belong to given ¢. It deserves notice that in this way without
d?

any calculation we can state this thesis: “The curves d—lf =0 and

L

d;
f Tp dv =10 can never intersect.” According to the equation of state
&

it would run like this: ‘“The equations:

db\? @’ d

aY o de ypp® B
1 da ;_da:"’ and de _dax
z(l—a) ' (v—0b) ’ 5

v v—>b

MRT

can have no solution in common. Indeed, if » from the second equation
is expressed in @ and 7T, and if this value is substituted in the first
equation, we get the following quadratic equation in MRT':

d*a
VRTY 1 1 db)“+ 1 db do*
( ) 2 (1—u) +—[;’— dw b dw da
dw
ldbda 1 1 d% 1 /da\?
— 2(MRT) | — — — — — — b () =
( );b“ dode b 2 da® +b’ (da)

A value of MRZ, which must necessarily be positive to have
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1dbda_ 1 d%a

T de b From the foregoing remarks it
&L Ax &

significance, requires

d .. d;
is sufficiently clear that d—a must be positive to render the locus f E}i dv
& i

da 3
= 0 possible, and that T must be positive to render
Hi ——

Yo possi-

dx®

ble. The roots of the given quadratic equation, however, are then

o 1 dbda 1. . ,

imaginary, the square of I g 2 dm being necessarily smaller
1 db da

than the square of 7 I o

, and the square of this being smaller

1 fda\?

than the product of Z—;({—;) and the factor of (MRT).
) T

But let us return to the description of the course of the remaining

g-lines. There is, of course, a highest g-line, which only touches the

2

dz?

locus = 0, directed horizountally in that point of contact, and

ds
for which also -c?mlf =0 in that point. There is also a ¢-line which

ay

dm?

touches the locns

= 0 in its downmost point, and which as a

rule will be another than that which touches it in its highest point.

The g¢-lines of higher degree than the higher of these two have again

the simple course which we have traced in fig. 2 (p. 635) for that

) d,
g-line which intersects the locus (-dj-) = 0. Only through their con-
- L)y

siderable widening all of them will more or less evince the influence

of the exislence of the above described complication. The g-lines of

lower degrce than the loop-g-line have split up into two parts, one

part lying on the lefi which shows the normal course of a g¢-line
d

which culs (C-lﬁ) = 0; and a detached closed part which remains
vV /v

enclosed within the loop. Such a closed part runs round the second

. . . . dp "y .
point of infersection which " =0and T 0 have in common,
2

L : . a
passes in ils Jowest and highest point through d—l? =0, and
T

d
through (d—];) =0 in the poini lying most to the right and most 1o
¢ v

the left. With continued decrease of the degree of ¢ this delached
l

-10 -
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part contracis, and disappears as isolated point. This takes place
before ¢ has descended to negative infinite, so that g-lines of very
low degree have entirely resumed the simple course which such

. ap\ .
lines have when only the curve (_p) = 0 exists.
& v -
Also in this general case for the comrse of the g-lines we can

form an opinion aboul the locus of the points of inflection of these

2

I3 » i3 v .
curves, so of the points in which (d_7> = 0. We already mentioned
¥ /q

d
above that when the line (—p) = 0 exists at a certain distance from
ye

it there must be points of inflection on the ¢-lines at larger volume.
d]
If also the asymptote of (f) = 0 should exist, also this series ot
'y

points of inflection of the g-lines has evidently the same asymptote.
In fig. 6 this asymptote lies ontside the figure, and so it is not
represented — but the remaining part is represented, modified, however,
in its shape by the existence of the double point. The said series
of points of inflection is now sooner to be considered as consisting
of two series which meet in the double point, and which have, therefore,
d
got into the immediate neighbourbood of the line (d_{}) =0 there.
. Ly
So there comes a series from the lefi, which as it approaches the

. a :
double point, draws nearer to (f) =0, and from the double point
%)
there goes a series (o the right, which first remains within the space
2

)
d; =0 is found, and which passes through ihe lowest

point of this curve, bui then moves further to the side of the second

d
component at larger volume than that of the curve (—P>=O The

in which

L/
double point of the g-loop-line is, thercfore, also double point for the
locus of the points of inflection cf the g-lines, and the continuation
of the two branches which we mentioned above, must be found

dp , ,
above .the curve (—) = 0. Accordingly, we have there a right branch,
& v

: e Y : -
which runs within %QL:O, and passes through the highest point of

¢

this curve, and a left branch which from the double point runs to
the lefl of the loop-g-line, and probably merges into the preceding

-11 -
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branch. If this is the case the outmost ¢-lines on the two sides, both
that lying very low and that lying very high, have no points of
inflection.

TUE SPINODAL CURVE AND THE PLAITPOINTS.

The spinodal curve is the locus of the points in which a p- and

d* d*p
, . dv dv dadv do*
a ¢-line meet. In these points c_l;,,:%q and so — o = — po
“dvt dady
dypdy

Clﬂ 2 .
L ( dull!;) In order to judge about the exisience of such

.points of contact, we shall have to trace the p and the ¢ lines
together. As appears from fig. 1 p. 630 the shape of the p-lines
is very different according as a region is chosen lying on the
left side, or in the middle or on the right side; but the course of
the ¢-lines in the different regions is in so far independent of the
choice of the vegions that q—., always represents the series of the
possible volumes of the first component, and gj., the series of the
possible volumes of the second component, and also the line of the
limiting volumes. As the shape of the p-lines” can be so very different
we shall not be able to vepresent the shape of the spinodal line by
a single figure. Besides the course of the p-lines depends on the

d anyp
existence or non-existence of the curve ——d—p: o 0, and the
v v
course of the g-lines on the exisience or non-existence of the curve
d*e . . . .
d_7:0’ and Dbesides, and (his holds for both, on the existence of

2
the curve

- = 0. Hence if for all possible cases we would illustrate
GV

the course of the spinodal curve in details by figures, this examination
would become too lengthy. We shall, therefore, have to resirict
ourselves, and try to discuss at least the main points.

Let us for this purpose choose in the first place a region from
the left side of the general p-figure, and let us think the temperalure

so low, so below (7%),, thal there are still two isolated branches for

d . . .
the curve TP: 0 all over the width of the region.
av h

-12 -
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In fig. 7 7 is thought higher
than the temperature at which
d*¢
da*
below this temperature. In fig. 7
all the g-lines have the very simple
course which we previously in-
dicated for them, and the p-lines
the well-known course, with which

— 0 vanishes, and in fig. 8

d T
(d—v) is positive on the liquid side
P

&

d
of L= 0, and on the vapour side
v

dp
v
two branches of this curve, the

of — =0, negative between the

dv
transition of (——) from positive to
dz /y

Fig. 7.

negative taking place through
infinitely large. The isobars p,, p, and p, have Dbeen indicated
in the figure, in which p, <p, <p,. Also a few g¢-lines, ¢, < ¢,
and the points of contact of p, to g, and of p, to ¢,. Also on
the vapour side a point of contact of p, to ¢, It is clear 1st
that every g¢-line yields two points for the spinodal curve, and
2"d that these points of contact lie outside the region in which

d
va—) is positive. On the other hand we see that the distance from

. d
the spinodal curve {o the curve _d_p: 0 can be nowhere very large.
7

Only by drawing very accurately it can be made evident that on
g J J
the vapour side the spmodal curve has always a somewhat larger

d
volume than the vapour branch of the curve 313:0. In the four
v

d
points, in which d—p—_—O intersects the sides, indeed, the spinodal
v

line coincides with this curve.

Fig. 70 has been drawn to give an insight into the circumstances
at the plaitpoint. At 7"> (T%), the iwo branches of the curve
d
Ez—)—O have united al that value of @, for which 7 = (T%),. One
of the p-lines, namely thal of the value p:(p@i, touches in the

-13 -
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point at which the two hranches have joined at a volume v = (vg)s, and
has a point of inflection there. Two
parts of g-lines have been drawn
as touching the p-line. The two
points of contact (1) and (2)
are points of the spinodal curve,
and lie again outside the curve

d]
d—p-_—O. For a higher p-line these
U
points will come closer together.
And the place where they coin-

cide is the plaitpoint. As in

d? a?
point (1) (#)p>(g£) and re-
q

) ) d*v d*v
versely in pomt(Z)(‘—i—E)q > (%) ;
d*v d*v
Fig. Tb. )=\ g then (1) and (2)
have coincided, and this may be considered as the criterion for the
plaitpoint so that in such a point the two equations:

dv _ dv

(ﬁ)p— dz /g

d*v _ dv

(@)=(),
hold.

The following remark may not be superfluous. In point (2)

d*v d*v .
— | is not only smaller than [ — |, but even negative. In order to
da? ), da* ),

find the plaitpomnt, the point in which 2 points of contact for the ¢ and
d*v

2 d*v

the p-lines comncide, and so (j_ﬂ) and ((F) have the same value,
Q& » i q

d*v

(—) must first reverse its sign in the point (2) with increase of
P

and

da?

dz?

be obtained. And that, at least in this case, this reversal of sign
must take place with point (2) and not with pomnt (1), appears from

d’v
the value of p for the isobar before the equality with (———) can
g

v
the positive value of (J{E) So we arrive here at the already known
©/q

theses that in the plailpoint the isobar surrounds the spinodal curve,
and also the binodal one.

-14 -
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As

dv 1 [dw 1 /dw
do, = () do + — da? 22 dot ete.
o (dm) T (d )p ¢ +¢1.2.3(dm”)pd‘z e
dv 1 /d* 1 d*v
dog =22 do + (=2 do* +——— (22 da® ete.
i (da;)q ’ 1.2(dm’)q ’ +1.2.3(dw3)qd"° o
1

we find for a plaitpoint :
d*v d*
1.2.8 (\de*), \do*

So the p- and the g-lines meet zmd 1nte1¢ect in a plaitpoint, and
this is not always changed when a point should be a double plait-
point. We shall, namely, see later on that the criterion for a double
plaitpoint is sometimes as follows:

dv dv

d’b da, g

d*v d*v
(w)r )=

Let us now proceed to the discussion of the case represented by
fig. 8. Here it is assumed that 7" lies below the temperature ai

dnp . . . . .
Tt = O vanishes, so thai this locus exists, it being moreover
&

d,
supposed that it intersects the curve d£: 0. It appears from the
v

and

dvy — dvg = dx?® ete.

and

which

drawing that for the g¢-lines for which maximum and minimum
volume occurs, two new points of conlact with the p-lines are
necessarily found in the neighbourhood of the points of largest and
smallest volumes at least for so far as these points lie on the liquid

dp
———O
side of o .

So there is a group of g-lines on \vluch 4 points of the spinodal
curve occur, and which will therefore intersect the spinodal curve
in 4 points. The two new points of contact lie on either side of
d“ly

dm
from this curve, the iwo old poinis of contact not being far removed

=0, and these two new points of contact donot move far away

d
from 'L = 0.
dv
If we raise the value of ¢, the {wo new points of contact draw
2

d
the ¢-line which louches 2 :',
&

nearver 10 each other. Thus e. in its

at

8
highest point, and for which ( )._ 0 and also ( da:: =
g

-15-
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point has also been drawn in the figure. Also this g-line may still
be touched by two different p-lines, which, however, have not been
represented in the drawing. For a still higher ¢-line these points
would coincide, and in consequence of the coincidence of two points
d*v
of the spinodal curve a plaitpoint would then be formed. (@) always
/]
d*v . . .
being positive, (ﬁ) , which has been negative for a long time in

g
the point lying on the left side, must first reverse its sign before it

can coincide with the pomnt lying on the right — a remark analogous
to that which we made for the plaitpoint that we discussed above.

If on the other hand the value of ¢ is made to descend, the point
of contact lying most to the left will move further and further from

dp
the curve
v da?

d
=0, and nearer and nearer to the curve Zl%;: 0, till

for ¢-lines of very low degree, for which as we shall presenily see,
the number of points of contact has again descended to two, the
whole bears the character of a point of contact lying on the liquid side.

But something special may be remarked about the two inner
points of contact of the four found on the above ¢-line. When
the g¢-line descends in degree, these points will approach each
other, and they will coincide on a certain g-line. Then we have

2 2
. v d*v
again a plaitpoint. In this case neither (—d 2), nor ( d—*) need reverse
v &
g »

its sign because these quantities have always the same sign for each
of the two points of contact which have not yet coincided, i.e. in
this case the positive sign. But in this case, too, there is again besides
contact, also intersection of the p- and g-lmes. On the left of this
plaitpoint the g¢-line lies ai larger volumes, on the right on the other
hand at smaller volumes than the p-line, the latter changing its
course soon after again from one going to the right into one going
to the left.

This plaitpoint, however, is not to be realised. With the two
plaitpoints discussed above all the p-line and all the g-line, at least in
the neighbourhood of that point, lie outside the spinodal curve, and so
in the stable region. In tlns case they lie within the unstable region.

Summarizing what has been said about fig. 8, we see that there is a
group of g¢-lines which cut the spinodal curve in four points. The
outside lines of this group pass through plaitpoints. That with the
highest value of ¢ passes through the plaitpoint thatis to be realised ;
that with the lowest value of ¢ passes through the plaitpoint that
is not to be realised. All the g-lines lying oulside this group intersect
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the spinodal curve only in two points. If, however, the temperature
chosen should lie above (77%), the g-lines of still higher degree than
of that, passing through the vapowr-liquid-plaitpoint, will no longer
cut the spinodal curve. ;

And finally one more remark on the spinodal curve, which may

N d? da
occur in the case of fig. 8. By making the line dlf:: 0 and zz—l—f
v &
d? d’
¥ d hi is ne-

= 0 intersect, we have a region, in which both T 0
v

az?

gative. In such a region the product of these quantities is again
2. 3
"’) . If this should be the
dady .
case, it takes again place in a locus which forms a closed curve.
Within this region there is then again a portion of the spinodal
curve which is quite isolaled from the spinodal curve considered.

With regard to the p- and g-lines this implies, that there both
2—2 and Z—ll% is negative; and so that contact is not impossible. Such
a }portionqof a spinodal curve encloses then a portion of the -
surface which is concave.concave seen from below. If we consider
the poiuts lying within the spinodal curve as representing unstable
equilibria, the points within this isolated portion of the spinodal
curve are a fortiori umstable. The presence of such a portion of a
spinodal curve not being conducive to the insight of the states which
are liable to realisation, we shall devote no more attention to them.
It appears from this description
and from the drawing (fig. 8)
that in this case the spinodal curve
has a more complicated course
.than it would have if the curve
2
d—l_P: 0 did nol exist. It has
de® |
a portion on the liquid side
in which it is forced towards
smaller volumes. Thereis, however,
no reason to speak here of a
longitudinal plait. We might speak
of a more or less complicated
plait here. But we shall only use
the name of longitudinal plait,
when we meel with a portion
that is quile delached from the

positive, and it may become equal to (
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ordinary plait, which portion will then on the whole run in the
direction of the v-axis.

There remains an imporlani question to be answered: “What
happens to the spinodal curve and to the plaitpoints with increase
of temperature "’

At the temperature somewhat higher than (77%), there exist 3
plaitpoints in the diagram. 1. The realisable one on the side of the
liquid volumes. 2. The hidden plaitpoint also on the side of the
liquid volumes. 3. The realisable vapour-liquid plaitpoint. Letl us
call them successively P,, P, and P,. Now there are two possibilities,
viz. 1. that with rise of the temperature P, and P, approach each
other and coincide, and the plait has resumed its simple shape before
P, disappears at T—(T%),; and 2. that with rise of 7" the points
P, and P, coincide and disappear, and also in that case the plait
has resumed a simple shape. In the latter case, howeéver, the plait-
point is to be expected at very small volumes, and so also at very
high pressure. Then, too, all heterogeneous equilibria have disappeared
at T = (T}),. Perhaps there may be still a third possibility, viz.

2

d
when the locus C—h%p =0 would disappear at a temperature higher

than (7%),. Besides the plaitpoint P, another new plaitpoint would
then make its appearance at 7'= (T%), on the side of the first com-

ponent. This would transform the plait into an entirely closed one,
2

d
and only above the temperature, at which d—:p-z 0 vanishes, all he-
&€

terogeneous equilibria would have disappeared.

Let us now briefly discuss these different possibilities. We shall
restrict ourselves to the description of what happens in those cases,
and at least for the present leave the question unsettled on what
properties of the two components it depends whether one thing or
another takes place. If P, and P, coincide, the portion of the locus
a*p

= =0 which we have drawn in fig. 8 for smaller volumes than
v

2

d

that of ?;p =0, must have got entirely or almost entirely within

o3
2

the region where ey is negative in consequence of the rise of tem-
v

t

a*P .
perature, or the whole locus E_li_ =0 may bave disappeared with
I’v

rise of 7.
Now at P, in the previously given equation :
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@)-(&)

the factor of dx® is negative, but at P, this factor is positive. If
the points P, and P, coincide, this factor = 0. With coincidence of
these plaitpoints, called Jeterogencous plaitpoints by Korirwee, besides

dv dv” d d*w (d’v) ‘LlSO( ) ( )
— =11 & —~—l=1{-—],8
(da:),, (dm M\ a3 ), ), dz’

d* . .
If P, and P, coincide, 7“1) =0 has contracted with rise of tem-
v

d . . .
perature. Also ?d_g: 0 contracts with rise of the temperature and
4

is displaced as a whole, as I hope to demonstrate further. But the

]
contraction of 39; =0, whose top moves to the left, happens rela-
v

1
1.2.3

dv, — dvy = da?

tively quicker, so that e.g. the top falls within the region in which
2 . . d
d12p is negative. The existence of the point £, requires that (E%)
&2 & q

2 2

. . d d
is positive. The point P, lies on the right of d:’ = 0 and above ;l—-:f = 0.

2 2

d . d :
If the top of d—:p =0 lies within the curve jg = 0, neither P, nor
» :

P, can exist any longer. Before this relative position of the two
curves they have, therefore, already disappeared in consequence of
their coinciding. Also in this case the coincidence of heterogencous
plaitpoints holds. At P, the factor
of dz® was positive, and at P,
this factor is negative. In case of

Al v
coincidence (C—U . With
d® da?

further rise of T howeve1 the

2

top of ¥
op 0 o

=0 will have to get

again outside the region where
d*y a4
il o is negative. The curve a4 =0,
da? duw?

namely, cannot extend to & =0,

d!
and the curve cT:f = 0at = (T%),
v

has its top at a=0. We draw
Fig. 0. from this the conclusion, that
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2

. . . d
with continued increase of temperature the curves (Fy— =0 and
l?/’

d2

l—:-p =0 will no longer intersect, but will assume the position indicated
v -

by fig. 9.

The spinodal line runs round the two curves, and so in conse-
2

I — 0 it is forced to remain at an
&

quence of the presence of

2
4 y .
e 0. The ‘question
may be vaised whether the spinodal curve cannot split up info two
t]

d*
separated parts, one part enclosing the curve ?—’_—_ 0, the other part

exceedingly large distance from the curve

av”
[2
passing round FZO' The answer must then be: probably not.
v
2 2
In the points between the two curves o and are indeed, posi-
av &€

2

live, but still small, whereas does not at all oceur in the figure,

T av

and will, therefore, in general, be large. Now if the temperature at which
2 3.

1
T = 0 disappears, should lie above (1%),, % — 0 shifts to the left,

till it leaves the figure, and the spinodal curve is closed at # =10
and 7 =(T}),, and the new plaitpoint makes its appearance, which
we mentioned above. From this moment we have a spinodal curve
with two realisable plaitpoints. The graphical representation of the
curvature of the p- and the ¢-lines is in this case very difficult,
because both groups of lines have only a slight curvature. If, howe-
ver, we keep to the rule, that the p- and the ¢-lines envelop the
spinodal curve at realisable plaitpoints, we conclude that the value of

da? da®
point. When these points, called homogencous plaitpoints by KorTrwee,

d*v v e L .
(——) and (—) is positive in P,, and negative in the other plait-
» g

d a
coincide, (—v) :(—U-) = 0. Above the temperature at which this
da' /), \d2’/q

lakes place, the p- and the ¢-lines have no longer any point of contact. In

3

:P: 0, the course

consequence of the disappearance of the locus ”
av

of the p-lines has become chiefly fromn left to right, so in the direc-
tion of the a-axis. On account of the disappearance of the locus
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a*y
dz*
least with a volume whiclh is somewhat above the limiting volume,
they run chiefly in the direction of the »-axis.

Many of the results obtained about the course of the spinodal
curve, and about the place of the plaitpoints, at which we have
arrived in the foregoing discussion by examining the way in which
the p- and the g¢-lines may be brought into mutual contact, may
be tested by the differential equation of the spinodal line. This
will, of course, also be serviceable when we choose another region
than that discussed as yet.

From:
a*yp d’lp apy
v da® (d:vdv) =
we derive:
a*y L_ZLI]_) d*lp dy s ap Ay
do® @' v datdv dudy dady’
n d”tp dﬁw d’tp a*yp 20321[) a*y
dn® do* * dadv® * da’dv
gndy_sudy o0 oy
de* dv*  dv* de* ' dedv dede
We arrive at the shape of the factor of 7’ by considering that from:

=0 the course of the g-lines has also been simplified, and at

EE

do +

dT = 0.

de = Tdy—pdv qde
follows :
dp = —qdl —pdv 4 gde
ap d*p d*y
th == — d d == - - .
so that ( 7 ,,) 7 and S0 TTd (clv’ )x’gtc

This very complicated differential equation may be reduced to a
simple shape.
Let us for this purpose first consider the factor of dv. By substi-

(d’tp) dnyp
. . ) dady e dv da dv
tuting in it th antit for — and | =} for —

g e quantity o or o an ( dw),,fm p

dv? dv?

this factor becomes :
d’lp &3P (dv d*y

)+2 N\ )T al
dz daedv? \ da » da*dv

dy
From p=— d—vp- we derive :
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c‘i’u/ dv d’y
(= =0
dv? (dw)p+ dzdvy

Py () Py (B By (P
dv? \dz*/p dv® \da /, dvidz\dz /)" da’dv

from which appears that we can write the factor of dv in the form of:

d*y 3(({20)
R da? ;,

We might proceed in a similar way with regard to the factor of
dz, but we can immediately find the shape of this factor by substi-
tuting the quantity « for v and ¢ for p in the factor of dv. We find then:

d?w 2 d2al,
&) &),

As long as we keep 7 constant, and this is necessary for the
course of a spinodal curve, the differential equation, therefore, may

be written :
d2 2 2 dﬂ 9 d2
(2 (N gy — (BN (DY gy =0,
dv? da? p da? dv® q

. . d’a da\?/d*v .

By taking into account that ( — )= —|~-] (5], we obtain
dv®/q dv J\dw*/, .

after some reductions which do not call for any explanation, the

simple equation :
&)
(2)=(2) =
42 ) spin \ 0% Jp=q @)
)

da?

and

As a first result we derive from this equation the thesis, that

dv dv . LA d*
— ] and (= must have the same sign, if| =~ | and | ==
dx spin dx p=gq do ) da® q

have the same sign and vice versa. Thus on the vapour side in fig. 7

i and do I 1 d si d a bei
— ) and | = ) have alws: rever ' —
e p“l i), have always reversed sign, and | —- - eing

dy
negative, (d—> is negative on the vapour branch of the spinodal
sptn

curve. Reversely the curvatures of the p and ¢-lines have the same

v dv
sign on the liquid side, and (—-) = (—) = positive. If, however,
i bz‘“ dl?l‘ p=q
- 51
Proceedings Royal Acad. Amsterdam. Vol. IX.
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v
(F) should have been indeed negalive there, as was accidentally
/g

represented in point 2 of the spinodal curve, the spinodal curve runs
towards smaller volumes with increasing value of x. So if there oceur
points with maximum or minimum volume on the spinodal curve,

dv e
(—) is infinitely
dx span

large, which occurs in the case under consideration when the spinodal

d2
(C—l—i) =0 in those points. If on the other hand
& q

v
curve is closed on the right side for 7' > (7}), then ((Z_Q) must be
as p

=0, and so the p-line must have a point of inflection in such a

point, to which we had
way. A great number
differential equation of

call attention to what

moreover already concluded before in another
of other results may be derived from this
the spinodal line. We shall, however, only

d: 1l
follows. In a plaitpoint (J}-) = (c—v) .
d‘m spin d:’U p=q

d*v

l?
For a plaitpoint it follows from this that (——~) = (( v)
»

2 F N
da dx 7

. . d o .
If for a point of a spinodal curve (—v) is indefinite, both
&/ span

? d*v
(—%) and (F) must be equal to 0. This takes place in two cases:
da’/, «? /g

1. in a case discussed above when the whole of the spinodal lineis
reduced to one single point. 2. when a spinodal line spiits up info
two branches, as is the case for mixiures for which also 7% minimum
is found. In the former case the disappearing point has the properties
of an isolated point, in the second case of a double point.

In the differential equation of the spinodal line the factor of d7
may be written :

1(/d*Ty d* 0 Ty d d*Ty dgqyt
T da® )7 dv? dadv ) p dadv + av® o, da?

and by putting e —1 for 7% it may “be reduced to:

1 (d*y d’e 5 My d’s P die
T {dv? da® dadv daedv ds® dv®
or to
1 W (d' (dv’\? d’e (dv d’e
T 2 )73\ 7., + =5 +'_2 .
T dv® |dv*\dz p=q dadv\dz p=g

2

14d
The factor by which _ oY

T is to be multiplied, occurs for the
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first time in formula (4) Verslag K. A. v. W. Mei 1895, and at the
close of that communication I have written this factor in the form:

(id_v 1 da>’+ aa,—0a,,’
v day, " 2 da a’
from which appears that in any case when a,a, > a,,?, this factor
is negative. Here, too, I shall assume this factor to be always negative,
but I may give a fuller discussion later on.

In consequence of these reduciions the differential equation of the
spinodal curve may be written as follows :

'y [d* d*y [d*v daT
— | — | dv -+ — | doe+ —{— }|=0.
dv? \da® JpT daxdv \dx* /4T 1

From this equation follows inter alia this rule concerning the
displacement of the spinodal curve with increase of 7, that on the

2

d
side where ({7—9 is positive, the value of v with constant value of
" /p

2a

v

k)

x, increases, and the reverse. So the two branches of a spinodal
curve approach each other with increase of the temperature. But I
shall not enfer into a discussion of the further particulars which
might oceur when this formula is applied. By elimination of dv I
shall only derive the differential equation of the spinodal line when
we think it given by a relation between p, # and 7. We find then:

2 d i 4z ar dT a
da* da )y 1| \da® )p,T\da* ) .1 r ap Joa\da® Jp1

for a plaitpoint the factor of dz disappears, and we find back the
equation (4). Verslag K. A. v. W. Mei 1895, for the plaitpoint curve.
At constant temperature we find for the spinodal curve:

d*v

d_p :(—d£> 1— d{cgq.
d{b‘ spln d.’b' v (dz'lJ)
p

da?®

(0 be continued).

514
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