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""The points of contact of the three-pointed tangents of (F') form
a surface of order 2(n—4) (n* -+ 2n* 4 10n—12).

7. Through the fangent s in S (0 6 we can make to pass four
{angent " planes to the cubic cone of the principal tangents (§1). So
S is’ a parabolic point on four surfaces of the pencil. Therefore & is
a fourfold curve on the locus of the parabolic poinis.

. As the parabolic points of an F* lie on a curve of order 4n (n—2)
the locus under consideration is cut by each of the surfaces F in
a curve of order 4n(n—2)-4n*==8n(n—1).

The locus of the parabolic points of the surfaces of a pencil (F™)

18 a surface of order 8(n—1).

Chemistry. — “On the shape of the plaitpoint curve for miztures
of normal substances.” (Second communication). By J. J. van
Laar. (Communicated by Prof. H. A. Lorentz).

1. In a previous paper?), starting from van pEr WaALS’ equation
of state, in which 5 is assumed to be independent of » and 7, I have
found for the equation of the spinodal curves at successive tem-
peratures (1. c. p. 690):

"RTz-;lfw(l——m)ﬁ‘W{-a(v——b)’], LM

and for that of the plaitpoint curve in its », z projection (l.c. p. 695):

@ (1—=) 5"|:(1 —2r) v—3a (1 —-.v)B:I +Va (v——-b)’[?m; (1—a)8(6—8 Va)+

- _+a(v-b)(v-—3b)]:0. e e (®)

In this =2+ a(v—20), #=b Va,— b, Vi, a=Va,— Ve,
and =15, —b,.

The equations (1) and (2) hold for the so-called symmetrical case,
where mnot only b,, =/, (b, + b,) is assumed, but also a,, = }/a,a,.
These hypotheses lead to:

b= —2a)b, +ab, ; a=[1—a) Ve, + xVa,]
The equation (1) had been given already before by vaN pER WaAALS
in implicit form *), for after .some reduction his general equation

1) These Proc. April 22, 1905, p. 646—657-
?) Cont. I, p. 45; Arch. Neéerl. 24, p. 52 (1891). .
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da db da
. ; , ituti t —_, =, —
passes really into (1) after substitution of the values of 7' I ! 7o

2

and e in accordance with the above hypotheses.

But the equation (2) may be said to have been derived here for
the first time in the above simple form. It is true that van pEr WaaLs
gave a differential equation of this curve'), and derived an approz-
tmate rule for its shape ?), but he did not arrive at a general final
expression. Nor has Korrewre arrived at it in his very important
papers: “Sur les points de plissement” and ‘“La théorie générale
des plis, etc.” *) In his final equation (73) (Lc. p. 361) there occur,
besides 7', still several functions ¢ (v), §(v), W(v) and 3 (v), which
have been given respectively by the equations (37), (38), (40) and
(74) (l.c. p. 350 and 361). Korrewre’s equation is one of the 9tb
degree with respect to v, but it is easy to see thatit may be reduced
to one of the 8t degree (1. c. p. 361). It appears from our deriva-
tion that this degree may be reduced to the 4th, In a later paper?)
Kortewee confines himself to a full discussion of the plaitpoints in
the neighbourhood of the borders of the tp-surface.

I think that one of the reasons for failure in this direction is due
to the intricate form of the differential equation of the plaitpoint
curve, when we use the w-function. The S-function on the other
hand leads to simpler expressions. Already the differential equation

2

=0 or

for the spinodal line at given temperature, viz. (5;;—2
T /nT

0 . L
(5&) =0, is much simpler than the corresponding expression in .
z ) p, T

And to get the plaitpoint curve, we have only to combine

9‘—‘3 = 0 with (Qﬂ = 0.
oz ), 7 0z* )1

2. We shall now examine the shape of the curves given by (1)
and (2) more closely, and specially for the case that B=0, i.e.
b, =b,=">b. The calculations are rendered very simple in this way,
and it is obvious from the adjoined figs. 1—4, that when b, is not
=1b,, s0 § not==0, the results will be modified only quantitatively,
but by no means qualitatively. We shall come back to this in a
following paper.

Iy Verslagen Kon. Akad. Amsterdam, 4, p. 20—30 en 82—93 (1896).

2 Id. 6, p. 279—303 (1898). .

8) Arch. Néerl. 24, p. 57—98 en 295-—368 (1891).
%) These Proc. Jan. 31, 1903, p. 445.
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As d=m 4 a@w—0b =av— @ a passes into av for § =0, we
may write for (1):

RT:%I}: (1—-a:)a’v’—{—a(v—b)’J, .o (g
and (2) is reduced to:
z(l - 2y’ [(1 —2a)] + Va(v—b)’[?m;(l—w) a’v’—[—a(v—b)(v—Sb):l::O. (2a)

Let us put these equations into a more homogeneous form.
Asa=[Va,+a(Va,—V a,)]* = (Va,} 2a)*, we may write for (1a):

B ==la(—n)e +0/a +uor(1-7) ]
= ?;i, l:a, (1—2) + (Vaal -+ w)’ (1 —%)il ’
If we now put:
Ve, b
o =9 ; ';‘:wy

this last equation becomes:
2

2a
RT:—Z—w[m(l—m)-i—(q)—}—.'v)’(l—w)’:'.

Let us now introduce the “third” critical temperature 7,. This
temperature is the plaitpoint temperature at » = b, i. ¢. that at which
the limiting curve lying in the limiting plane v =& (see fig. 1 of my
previous paper cited above) reaches its maximum, and is represented
by (w=1):

20?

RT) = @ (1 — a) 7

But as in the case b, = b, for a, the value !/, is found (the
maximum of the now parabolic curve), we get:

1 2
RT, = /’ba .

Ouwr equation for RZ7" becomes therefore:

‘ RT.—.—.4RT.,w[x (1 — )+ (p + 2)* (1 —-w)’:l.

And if henceforth all temperatures are expressed in multiples of
T,, we have finally, putting

T
E;;:T,

r=4w[m<1—w>+(w+w)’(1—w)’] S w
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In this simple form the equation is very suitable for calculating
successive spinodal curves. It is of the second degree with respect
to x, of the third degree with respect to w. For a given value of
v we have therefore only to put successively o =1, 0,9, 0,8 etc.
down to 0, and then we find the corresponding values of z by
solution of ordinary quadratic equations.

The equation (2¢) becomes after division by x (1 — ) a®*:

y Ve by’ Yot (L — 3) (1 — /)] _
A G e e
Va Va,

jie. a8 —=—+av=¢p+a
¢ a

(1 — 22) 4 (9 -+ 2) (1 — w)? |i3+;(%i%(1_w)(1—3w)] = 0..(2)
This equation of the plaitpoint curve is of the third degree with
respect to @, of the fourth degree with respect to w.
3. Before discussing the equations (10) and (26) more fully, we
shall first derive a few relations between 7,, T, and 7.

1 2 8
As BRI, = L;‘- (see above) and BT, = 57 fb‘», we find immediately :

T, 164, 16

— ==
T, o7 217
From this follows that for values of ¢ <%/, V3 (= 1,36) T, will
be < 7,; i e. the lower critical temperature of the two components
will then be lower than the critical temperature of mixing of the
two liquid phases at v = 0.

Ve

l/a'n - Va:[ ’

Va,

1

—=———1, and we have evidently :
» Ve d
T

£=(1+3)

Foro=0i87, =0 X Fiiforog=wisT,=1,.Foro =73/, /3
(see above) Tz = (1 -4/, V3)' =1/,, (43 - 24 1/3) = 3,13.

It will also prove important to know the amount of the pressure
for all points of the spinodal curves. For this purpose we reduce
the equation :

As ¢ = 80

-
s

RT a

P

v—b o
to



(37)

-« RT (Va,+xa))  RT ol \a
P= v(1—2/) - v* T o(l—w) o2 (p + o)
This becomes on account of a* = 20RT, (see above) and 7/, =1:

RT, T
= —_— 2 ).
p=—m0 g — 20(p + 1)

Let us express p in the critical pressure p,. (As, namely, the
‘pressure p, corresponding to T, (v = b) is evidently = oo, p cannot
RT, T, 16 2 RT,

be expressed in p,). A3291:1/s——a’ndT W=y = ¢
hence — when we put
. p .
— =
Y
27 w T
el r L L
2‘/”[1—‘0 2w((p+m)] o

This equation may be used, when = is already known from (3 b).
1f this value is, however, substituted, we get:

27 o
S w[h(l_w) 2(p+a) A—0) — (p+a2) l—w)]
i.e
2T o
fp’l w,:x'v(l—a’)—l‘(‘P n,)’(l~a))(l——2w):|, .. . (3a)

4. Betler than descriptions and calculations the adjoined figures
1—4 represent the different relations which may present themselves
in the discussion of (1) and (20), combined with 3 or (3a). We
shall .therefore confine ourselves in the following to what is stricily
indispensable.

Two principal types occur, according as ¢ < 1,43 or >1,43.
Fig.1 with ¢ =1 is a represeniative of the one type, fig. 2 with
¢ = 2 of the other. The transition case @ — 1,43 is represented in
-fig. 4. . '

a. Description of the case ¢ =1 (fig.1 and 1a).

There are fwo plaitpoint curves, one of which extending from
C, to C,, the other from (, to 4. The latter, however, may only
be realized down to a point between C, and R,, where it is touched
by the spinodal line == 0,63 *).

L See Konrrrwee, l.c. p. 305 (fig 12) and plate Fy to Fy. (The plaitpoint has
already disappeared in the limiting line ¥ =5 in our case). R is a so-called point

de plissement double hétérogéne. Cf. also vay pEr Waars, These Proc. V, 310,
Ocl. 25, 1902.
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Beyond the point R, the temperature, and with it also the
pressure, decreases, as is to he seen from the succession of the
different spinodal curves, so that in the p, T-diagram (fig.1a) the
plaitpoint curve C,R,A shows a cusp at R,, and begins (o run back.

It is known that this case is vealized with mixtures of C,H, and
CH,OH, ether and water (KuveneN), ete. Il is the principal type I,
as I have fully described it in one of my two preceding papers?).’

Remarkable and quite unexpected is the fact that this type may
be realized for mixiures of mormal substances. It was formerly
believed that such deviating plaitpoint curves were only possible
when at least one of the two substances is anomalous. This, however,
seems not to be the case; more and more the conviction gains ground
with me that the anomaly of one or of both components only
accentuates the phenomena sharper or brings them into attainable
regions of temperature.

It is also striking in fig. 1a, that the curve C, C, has the same
appearance, viz. with an inflection iu the middle part, as the typical
curve as observed by Kuenex for C,H, 4- CH,OH (see fig.1 of my
just cited paper). Only in our case there is not yet a pronounced
maximum and minimum, as with the mixtures of C,H, with the
strongly anomalous substance CH,OH.

The type of fig. 1 occurs for comparatively small values of ¢.
According to the equation given in § 3 the proportion Tr/y =4
corresponds with ¢ =1. The critical lemperatures of the two
components must, therefore, lie comparatively far apart.

As hfp = %g, T, is considerably higher than 7. If we put
T,=1, as has been done in the figure, then 7, =0,59 and T, = 2,37.

b. Some mathematical and numerical details.

The plaitpoint curve C,C, touches the line z="'/, in C,, the
curve AC, touches the line =0 in A. Moreover the curve C,C,
touches the line ¢ =1/, once more in D, and it does so at
o ="2/,(v=1,50). In C, and C, no contaci takes place.

When ¢ becomes <1, and approaches to O (Te/T1 then becomes
larger and larger and approaches to o), then the curve C, 4 approaches
the straight line # =0 more and move and the curve C,C, the
dotted curve in the figure, which continues to present a cleavly

1) These Proc. VIT p. 636—638, April 22, 1905
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pronounced inflection point up to the last’). For values of ¢ >1,
the curve C,C, lies partially on the left of the curve z="1/,, and
the point of contact at D passes into two points of intersection.

By an approximate solution of (20) and substitution in (1%) and
(8) of the values found, the following points of the two plaitpoint
curves are calculated. (The other values of w or « are either imaginary
or do not satisfy).

9o=1

Curve C,C, Curve C,A

=05 06 07 08 09 1 «=03304 0506 07 08 09 1
w=1 049 0,43 0,39 0,36 0,33 | 2 =0 0,021 0,041 0,042 0,023 0,010 0,007 0
=4 1,78 1,98 2,13 2,26 2,37 | r =059 0,63 0,62 051 038 0416 0042 0
r=ow 674575 505 45! 4 T= 145 1,08 0 —3,09 —8,64—169 - 27

It is seen that the pressure begins to be negative for points in the
neighbourhood of A. This is not remarkable; also for a simple
substance the points of inflection in the ideal isotherms reach to
within the region of the negative pressures. Though the pressures
in some points on the spinodal curve are negative, this is no reason
why those on the connodal curves should be so.

The Lmits of the region of negative pressures on the spinodal
curves may be easily fixed (see the dotted curves in fig. 1) by solution
of the equation (see (3a))

2e(l—a)=(p+ 2’1 - 0) (2w —1).
If we put here (1 — 0) (20 — 1) =0, we find:
o=t =V1—29+1)6
246 '
In this way we calculate for ¢ —1:
o= 1 09 08 07 06 05
o= iO 0,04* 0,07 0,07 0,04° 0
1 0,84 0,75° 0,75° 0,84 1.
That x approaches to — 27 for =0, o =1, =0 follows

immediately from (3). For as 1—1:; approaches to 0, as we shall

27 1
prove presently, &= ) q—z” (—- 29)’) = —27, independent of the

value of ¢.

1) For this plaitpoint curve ¢ =0 the following points are easily calculated:
«=09 08 07 06 05 04
x=0,507 0,528 0,567 0,623 0,712 0,853
The equation (2b), viz.,, passes then into the following quadratic equation in zw:
22%? (9 — 100 4-3w?) — 306 @ — w) +1=0.
The other value for z is always > 1.
*) The maximum lies at w=0,54; % is then about = 0,043,
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In this we must notice that in the immediate neighbourhood of
the point A, x increases tith the utmost rapidity from — 27 to
+ o, when we pass the above considered border curve; in the

point A itsell this transition takes of course place suddenly. For

27 2z(1—a
when w = 1, & approaches to p )

= oo, according to (3a), except

2.a(1—a)

l—o

=0,

in the case that 2 is exactly =— 0, when (see further)

the following term yielding then the finite value —27. This follows
also from the figure, because the border curve, which separates positive

from negative pressures, passes through the point A.
. 3 . w T
That on the plaitpoint curve the expressions - and -
approach to 0 for 2=0, w=1, *=0 at 4, follows from (20).

For putting # = A and 1—w =14d, we get:

1+(pd’(3—2%d)=0,

3
or as 3¢d® may be neutralized by 1, 1 — 2@‘%:0, from which

JAN . a
follows, that at the point 4 7= 2% s0 remains finite. So A is of

t A
the order ¢°, so that 1—%) = really approaches to 0 at 4. From

this follows also the confact. And as according to (1) r approaches to
4 (A 4 ¢*d®) = 4g*® (A being of the order ¢°) for 2 =0, 0 =1,

aches to 0 at 4.
7=, approaches to 0 a

In the same way the plaitpoint eurve C,C, touches the line
g=1, for =", 0o=1TFor, for a="/, 1+ D), 0o=1—4d
equation (26) becomes:

——A+(¢+‘/;)"“[3*—8@?‘/2)’6 =0,

A §
which appoaches to — A - 3 (¢ -} '/,) ¢* = 0, yielding = 3(p~/.),

. . . A .
so again finite. So A is now of the order ¢%, and so — again =0,

which proves the contact at C,.

I call attention to the fact, that on account of the small values
of A a large portion-of the curve C,C, from C, as far as beyond the
point D may be calculated very accurately, by writing for (20) (¢ = 1):




(41
—A+=/,<1—w)’[3—9(1—w>(3w—1)],

so that A="/,(1 — o) [1 —3(1 — ) (Bo — 1)],

From this follows e.g. for o = 0,9, 0,8, 0,7, 0,6 resp., for A
0,022, 0,029, 0,004, 0,029.

The contact at D. If we put in (20) 2 ="/,, then 1 — 22 =0,
and hence:

(w+1/,)(1—w>*[3+4(«p+1/g>2(1—w)<1~3w)]=0-

This yields besides o =1 (the point C,), also:
8

@1y’

9
W= /3:!: /a [/1—(290+1)a

For ¢ =1 this yields two equal roots w = ?/;, which proves the
contact at D. For ¢ <1 the roots become imaginary, so that then
C,C, no longer cuts the line & ="1/,, but keeps continually on iis
right, whereas for ¢ >>1 two points of intersection are always
found. So is e.g. for ¢ =2 w="Y,, (close to C,) and w =1/,
(lying on the other branch between C, and C, (see fig. 2)).

In order to facilitate the tracing of the different spinodal lines, it
is to be recommended to fix the limiting values of = for =0,
2=1, w=1, o=1/,. Also for ="/, it is easy to calculate ~.
From (15) follows e.g. for 2 =10, 9 =1

7= 4w (1 — w)~

(1 —0)Bo—1)=

hence:

This yields:
w=109 08 07 06 05 04 03303 02 0,1
*=0-0,036 0,128 0,252 0,384 0,50 0,576 0,593 0,588 0,512 0,324

For £ =1 these values become simply 4 times larger, (¢ - z)*
then being =— 4. ‘

For z =1/, we get,

r=o{ld 91— o),

yielding :
o=1 09 09 08 o7 06 05 04 033 03
v=1 0971 0,981 1,09 1,27 146 1,62° 1,70 1,67 1,62.

For o =1 we get simply: ‘

v =4da (1 — ), .

from which follows: D2

-10 -
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z=0 01 02 03 04 05 06 07 08 09 1
=0 036 064 084 09 1 096 0,84 0,64 0,36 O
Finally we get for o =1/,:

T=" [-@' (I—ao) 4@+ 1)“1 ,

yielding : )
x= 0 01 02 03 04 05 06 07 08 09 1
r=0,593 0,837 1,07 1,28 148 1,67 1,84 1,99 2,13 2,26 2,37.

It appears from the diagram (see also above for 2 =1/,), that the
temperature from C, to C, is not continually ascending, but that it
shows a minimum very near (. This causes the spinodalliner =1
not to pass through C,, but to remain under it. The point C;, where
T is also =1, is an isolated point belonging to that line. Just beyond
C, the two branches of one and the same spinodal line intersect in
a double point; beyond that place the course is normal; between
C, and this intersection the spinodal line has two separate branches,
one of which encloses the point C,. Now the question arises,
whether this will be the case for every value of ¢. If we solve &
from (15), we get:

w’(Zw—w’)—m(l + 24 (1 ——w)’) +(£U;-—q)=(1— w)’):O.

This gives for @ two roots of the same value for given values of
v and w, when

dop+1)1—w)?+1—72—w)=0.
The value of a is then:
_Uitell—oy
0(2—w)

Now it follows from the value of the above given discriminant,
that it becomes =0 for #wo values of w. So two branches of a
spinodal line intersect, when those values of w become the same. From

1p (1) o — o (89> (p+1) — r)+ (4«> (1) + 1—27) =0

follows, that w has two roots of the same value, when
T . _ L T
=100+ 5 o=1-Y

And v being 1 at C,, the minimum disappears only, when v
becomes —1 in the above expression. And this is evidently only
the case for ¢ =, i.e. when 7} and 7, should have the same
value. Hence in general there will always be found a minimum in
the neighbourhood of C,. For ¢ =1 we find += 0,970, & = 0,94,
2=0,506; for =2 we find *=0,990, 0 =0,98, £=0,501;
ete. etc.

-11 -
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It may be easily demonstrated that in the neighboﬁrhood of C,
such a minimum never appears in our case. For from (18) follows

th __Tl__lG ..
Wl T—E_ﬁfp.
16
v =do o=+ @+ o]

After substitution of z=A, o =1/,(1 4 ), we get, neglecting
A?, which is justified by the result:

a0 olgm+(1+2) 0 -] =1,

1 1
or as m:l—d—{—d“—... , and so m—(l—l/,d)ﬂ:%d’:
9A 2A

—— _1_1262:3462’
1y, L ke ="

9 2 9 8
A =3/,d°: S)=gg: [+ 2},
/s (4'//’+m (fﬁ’ ’ 90)

The spinodal line 7T'= T, touches, therefore, the axis 2 =0 for
every value of ¢, and, at least on the assumptions made by us
concerning ¢ and b, a minimum can therefore never appear in the
neighbourhood of C,, in consequence of which the spinodal lines in
the immediate neighbourhood of C, would enclose this point.

Finally some corresponding values of & and w are subjoined, which
determine the shape of the spinodal line v =1 (7'= T}). By solution
of the quadratic equation

4w[m(1—.fv)—|—(1 +w)’1—w)’]=1

follows immediately :
o=1 08 07 06 05 04 033 03 02 0,1
&= 0,5 0,408 0,292 0,227 0,184 0,164 0,182 0,182 0,306 0,679
0,743 1,004
So this line cuts the axis 2 =1 for v = 0,7, and henceforth only
one solution satisfies. # becomes evidently 1 for w (1— w)® =1/,4
yielding about w = 0,07,

From the above derived equation 4¢(p+1)(l—w)*' 4 1—1(2—w)=0,
which was the condition for two equal values of 2, we find p = 1,v=1:
8w — 15w 4 7=10,
from which, besides =1, ="/, follows. To this belongs then
#="/, = 0,524, Between w =1 and ©=0,875 we find only

imaginary values for « in the above table.

yielding :

-12 -
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As to the spinodal hine 7' = T, (v = 0.59), we calculate # = 0,0019
for v = 0,30, whereas x = 0,006 corresponds to o = 0,40,

As to the shape of the spinodal lines for great values of » (vapour
branch) i.e. when = and o approach to O, follows immediately
from (18)

1:4(:)[."0(1-—3;)+(g>+m)”]=4w[q>’—}—(29)—}—1).1;].

1 R 2 b
If we substitute T/q, = T': % for =, and — for w, we get:
v
2 2
RT::—a—[r//‘—}—(Z;p—}—l)a:].
v

After substitution of ¢ = Za?i, this becomes :

v:%[u,-}—(a,—al)w].

From this follows that the vapour branches of the spinodal lines
in their v, z-projection will approach more and more to straight lines,
which will cut the axes # =0 and # =1 at distances proportional
to the quantities @, and a,.

5. Let us now consider the second type, which occurs for ¢ = 2.

a. Description of the case ¢ =2 (fig. 2 and fig. 2a).

4

The two plaitpoint curves of fig. 1, viz. C,C, and C,4 have met
for ¢ about 1,43 (see fig. 4), after- which two new ones have been
formed, now C,C, and C, 4. This case, which is found for compa-

r
ratively large values of ¢, for which the proportion -17“ approaches
1

mgré and more to unity, is the usual one or the normal one. It is
the principal type 111, as described in one of my two preceding papers’).
- The region of negative pressures on the spinodal lines extends
now all over the v, z-diagram, from #=0 to 2 =1, and is bounded
“by the two dotted curves (see fig. 2) above and below.

The spinodal line belonging to v==1,35 touches now the curve
'C, 4 in the point R,. Again the plaitpoints are not realisable from
a point between R, and C, to A4 (see the footnote in §4 at a.)

Beyond R, the temperature and with it the pressure decreases,
so that in the p,7" diagram (see fig. 2a) the curve C,R,4 runs back

3 L. p. 642—644.

-13 -
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again from R,. In R, the pressure is already negative, and it
becomes again = — 27 p, in 4. (See §4 at b).

When ¢ =2, we find easily from the equations derived in § 3,
that then To/7, = 2/, and T/p=*/,,. So if T, is again =1, then
T,=237 and T,=25,33. Now T, is higher than T

b. Some mathematical and numerical details.

Much having already been derived in § 4, it will suffice to give
some few values.
Of the two plaitpoint curves the following points were calculated

=2

c=0 015 02 03 04 05 08 07 08 09 1
w=03% 03% 0405 o4t o0 040 035T 03 03 03¢ 038 | Cumre
=287 287 304 838 370 400 428 460 487 510 533 { C.C,
ne=1 146 162 190 211 225 282 287 236 233 29

= 0 0,01 0,1 0,2 03 04 05

w= 1 091 081 07 08 08 093%ndl

T= 0 0,158 0,81 1,23 135 126 1,04 andl

= —21 —173 —790 316 —462 398 49 and w

Curve C, A.

The separation between the negative and positive pressures on the

spinodal curves is given by
o= 1 09 089 0,606 06 05 -

0 031 040 040 031 O
1 050 040 040 050 1

The places where 2 has here two equal values, are easily found
from the value of 2 given in § 4. Evidently we must have then
=1 —w)2w-—1)="1/,,. This gives v =0,894 and 0,606, =
V.8 E 1Y, V38). For ¢ =1 6 would have to be !/,, and there are
no values of o which satisfy this condition.

For the calculation of the different spinodal curves it is convenient
to know the limiting values of v again. We find for 2 =20:

vp=1/,=1 1,25 1,50 1,76 2 2,25 2,50 "2,75 3

=0 051 1,19 1,68 2 2,20 230 2,36 237

For # =1 these values are all 2'/, times greater. '

- {

L=

For a =1/, we find with the same values of w:
vr=1 1,60 253 3,20 3,63 3,88 3,99 4,04 4,04
. w=1 yields the same values as in § 4 for p=1. |
o =1, yields:
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(46)

z=0 01 02 03 04 05 06 07 08 09 1
> = 2,37 2,73 3,08 3,41 3,73 4,03 1,33 4,59 4,86 5,10 533

6. We may now determine, where the transition represented in
fig.d, takes place. (The place of the point P is also drawn in
figs. L and 21)).

If we put 1 —w=y in the equation (20) of the plaitpoint curve,
then

3y—2
(-2 +e+or(s+etoif==o . @

&
: : of o
Now in the double point sought 5 must be 0 and Eymust be 0,
when f denotes the first member of (@). This gives:

— 20 (1—2) £ (120" + 8" §(1—20) (o-+9) + @ (1—0){ +

+8@+yGy—)=0, . . . . . ()
and after division by 6y (z -+ ¢):
a(l—a)+ @+ 9Py @Q—)=0 . . . . . (9

Substitution of the value of & (I1—=a) from (¢) in (@) gives:

3y — 2
(1—20) + (o + 9) 5 (3 -5 2y) =0,

or
1—3
(1—-2.’0)—]—(.2:—{—@)3/’1—_————2'—;:0. C e (@)

So we have to solve y, @ and ¢ from (a'), (0) and (¢). Substitution
of 1—2z from (a), and #(1 —a) from (c) in (b) gives, after
division by (z 4 ¢)y:

1 —3y\?
—20 -2 +y (1) +

1—2y
1—3
+ 8y* ;—-yl — 2z+<1~23/)

i. e. after multiplication by (1 — 2y)*: -
—2(1 =2 +y' (1 —3y)" +
+ 3y (1 —2y) |~y (1 — 8y) + (L — 29)*| + 8y* (By—2) (1—2y)* =0,

from which ¥ may be solved. The above equation gives:

+ 3y’ By — 2) =0, ;

1) This point must be thought more to the left. In fig. 4 no contact hut inter-
section takes place in the double point P.

-15-




(47)

—2(1—29)" (1 =3+ 8y 1 —2)(y"+ 2y -1 =0,

or 3y* — 15y* 4~ 29y® — 27y* + 12y — 2 =0,
i. e. after division by (y —1)*:
8y* — 6y + 2,
yielding : _
y=1=x1,V3.

As it is obvious that y cannot be larger than 1, only:
y=1—1/,1/3=0,4226

salisfies here.

If we substitute the value 2 4 ¢ from (a) into (c), we get:
(1—2y)°
vy (1—3y)r

In this the last fraction passes into '/, (1 4 §/8), after substitution
of y=1—1/, 138, so that we get for x:

z2(l—a)—*/,(1+V3)

2(1 —a)—(1— 22)°

1——4w(1—.'v)g=0,

hence:
o(1—a)=",(— 1+ 18),

giving:
5= ‘/,31 =, (V6 — 1/2)‘ = 0,2412 or 0,7588.

It is obvious from the figure, that only the first value satisfies,
viz.: .

e="/,11—1/,(1V6 — ;/2)% = 0,2412.
The value of ¢ is finally found from (c):
z(1—ua)
K = =13/ (2 3),
@9y =—r s s="C+V3)

giving @ + ¢ ="1/,(8 12+ /6), hence o='/,(—1+1"241/6)=1,432.
As y=1—"/,V38, 0w ="1/,18, i.e. the intersection takes place
at v=1>5}73 = 1,732 5.
As mentioned before T,=1T, for ¢ = 1,30 (see § 3). For ¢p = 1,43
T, is alveady < T',. For Bjp,=1/,, ¢* we find easily the value
1,215, while 2,887 is found for T/y.= (1 - 1/p).

7. Besides the cases, given in figs. 1 and 2, representing the
principal types 1 and III, there is another important type, viz. II,
of which I also gave a full description in my previous paper, which
I have already cited several times'). The p,7-diagram of this case

3 L c. p. 663—667.
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is given in fig. 40. KUENEN met with it, among others, in the case
of mixtures of C,H, with ethyl- and some higher alcohols. Also
triethylamine with water is a well-known instance. L

This case is evidently found, when the plaitpoint curve C,C, of fig. 2
assumes the shape drawn n fig. 3. We may namely imagine that
when the two curves C,C, and C,4 approach each other, a deviation
from the straight course may be found on the left side of C,C,,
specially if b, should not be =5,, by which the point C, would
therefore be shifted to the left, to the side of the small volumes. At
all events the anomaly of one of the two components can give
rise to the occurrence of this second principal type, as I showed in
a preceding paper.

From the shape of the different spinodal curves it is' obvious that
from C; the temperatures first increase, as far as the point of contact
at RE,. The temperature is then 7" (see fig. 3a). But between R, and
R,', where the plaitpoint curve is again touched by one of the
spinodal curves, the temperature decreases, and so also the pressuvre,
so that in the p, T diagram of fig. 3a the line R, R, runs back
again, as in fig. 1a the line R, 4 and in fig. 2¢ the line R, 4, having
in this case two cusps in R, and R,

Here the points between R, and R,, and also those on C,R, and
C,R,' in the neighbourhood of R, and R,’ can again not be realized,
and the consequence will be the occurrence of a three phase
equilibrium?).

As 1 already observed in one of my previous papers (L.c. p. 646),
after the two liquid phases 1 and 2 have coincided in the neigh-
bourhood of the point R',, here too, separation of the two liquid
phases must take place again — provided the temperature be sufficiently
lowered — and this will take place in the neighbourhood of the
point, where one of the spinodal curves in I, touches the plaitpoint
curve C, A. This is also represented in the p, 7T diagram of fig. 3a.

When comparing figs. 1, 2 and 3, we see clearly the connection
between the three principal types and their transition into each other.
The connection is given by the different course of the two plaitpoint
curves in figs. 1 and 2, which (see fig. 3) may pass continuously
into each other with changed circumstances of critical data of the
two components.

1) Cf vax pEr Waars, Continuitat II, p. 187, and These Proceedings V,
p. 307—11 Oct. 25, 1902.
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