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" . -The points of contact of the three-pointed tangents of (FII) form 
a . suija ce , 0/ 01Yler 2(n- 4) (121 + 2n2 + 10n-:12). 

7. Thl'ough the' iangent s in S io (5 we can make to pass four 
tangent - planes to the cubic cone of the principal tangents (~1). So 
S is' a parabolic point on four surfaces of the pencil. Thel'efol'e (i is 
a fourfold curve on the locus of the pal'abolic points. 
- As tbe parabolic points of an FII lie on a curve of order 4n (12-2) 
the locus under consideration is cut byeach of the surfaces F" in 
a curve of order 412 (n-2) +4n' =8n(n-1). 

The locus of the pambolic points of the s'wjaces of a pencil (FI.) 
%s a surface of orde?' 8(n-1). 

Chemistry. - "On tlle shape of the plaitpoint curve for mi,vtzwes 
of nm'mal s~lbstances." (Second communication). By J. J. VAN 

LAAR. (Communicated by Prof. H. A. LORENTZ). 

1. In a previous paper 1), starting from VAN DER WAALS' equation 
of state, in which b is assumed to be independent of v and T, I have 
found for the eqllation of the spinodal curves at successive tem­
peratures (I. c. p. 690): 

fiT = ~ [x Cl-x) f)2 + a (V-WJ ' . . . . (1) 

and for that of the plaitpoint curve in its v, [IJ pl'ojertion (l.c. p. 695): 

:v Cl-x) &{(1-2.1') v-Sm (l-.VWJ+ Va(v-w[ Sm (l-=.v) & (&-~ Va)+ 

- . + a(v-b) (v-Sb) ] = O. . . . . -. ~ (2) 

In this &=.n'+a(v-b), .1Z'=bIVa,-b2V~P a=V'a,-Va l , 

and ~=b2-bl' 
'rhe eqnations (1) and (2) hold for the so-called symmetrical case, 

where not only bu = 1/2 (bI + b2 ) is assumed, but also aH = Va1a2 • 

These hypotheses lead to: 

b = (1 - m) bI + .vb, ; a = [(1 - x) Val + .'1; Va2]2. 

The equation (1) had been gi ven already before by VAN DER WAALS 

in implicit form '), fol' aftel'. some reduction his general equation . 
1) These Proc. April 22, .1905, p. 646-657-.. 
2) Conto II, p. 45; Arch. Néerl. 24, p. 52 (1~91). 

3 
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d db d'a 
passes really into (1) aftel' substitution of the values of ~ , - , 

dm dm dm 2 

d'b 
and dm' in accordance with the above hypotheses. 

But the equation (2) may be said to have been derived here for 
the first time in the above simple form. It is true that VAN DER WAALS 
gave a diffel'ential equation of th is curve 1), and derived an approx~ 
imate rule for its shape 2), but he did not arrive at a general final 
expression. Nor bas KORTEWEG arrived at it in his very important 
papers: "SUl' les points de plissement" and "La théorie générale 
des plis, etc." I) In his final equation (73) (l.c. p. 361) there occur, 
besides T, still several functions p (v), ; (v),. ",,(v) and 'I. (v), which 
have been given respectively by the equations (37), (38), (40) and 
(74) (1. c. p. 350 and 361). KORTEWEG'S equation is one of the 9 th 

degree with respect to v, but it is easy to see that it may be reduced 
to Olle of the 8th degree (1. c. p. 361). It appeal's from Dur deriva~ 

tion that this degree may be reduced to the 4th • In a later paper 4) 
KORTE WEG confines himself to a fuU discussion of tIle plaitpoints in 
the neighbourhood of the borders of the tp-surface. 

I think that one of the reasons for failure in this direction is due 
to the intricate form of the differential equation of the plaitpoint 
curve, when we l1se the tp-function. The ;-function on the other 
hand leads to simplel' ,expressions. Already the differential equation 

for the spjnodal line at given tempemture, viz. (~2:) = ° or 
ViV p,T 

(~1)P,T 0, is mucll simpIer than the corresponding expl'ession in 'I" 

And to get the plaitpoint curve, we have only to combine 

(
àlL1) • h (à2P,1) 0 ~ =Ow!t "î2 =. 
vX p,T vm p,T 

2. We shall now examine the shape of the curves given by (1) 
and (2) more closely, and specially for the case that /"j 0, i. e. 

bI = b, = b. The calculations are rendered very simple in th is way, 

alld it is obvious from the adjoined figs. 1-4, that when b1 is not 
= b2 , so ~ not = 0, the results will be modified only quantitatively, 
but by no means qualitatively. We shall come back to this in a 
following paper. 

1) Verslagen Kon. Akad. Amsterdam, 4, p. 20-30 en 82-93 (1896). 
2) Id. 6, p. 279-303 (1898). 
3) Arch. Néerl. 24, p. 57-98 en 295-368 (1891). 
4) These Proc. Jan. 31, 1903, p. 445. 
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As f) = 3't + a (v - b) = a v - fl Va passes into av for fl =0, we 
may wl'ite for (i): 

RT = :~ [IV (1 - IV) a'v' + a (v - b)' ], . . . (la) 

and (2) is reduced to: 

Iv(l- Iv)aZv3 [(1 -2<v)v] + Va(v- W[S<V(1-<V)a 2v2+a(V-b)(V-3b)]=O. (2a) 

Let us put these eqmttions into a more homogeneous form. 
As a=[Va1 +x(Va2-Va1)]S = (Va1 +,va)\ we may write for (ia): 

RT=: [IV(1--<V)a2 + (Val +<va)'(l- ~)] 

2a' [ (Val)' ( b)2] = -:;- IV (1 - <v) + ~ + x 1--; . 

If we now put: 

this last equation becomes: 

b -=W, 
v 

RT = 2:' W [v (1- <v) + (cp + <v)' (1- W)'J 
Let us now intl'oduce the "third" critical temperature To• This 

tempel'ature is the plaitpoint tempel'ature at v = b, i. e. that at which 
the limiting curye lying in the Iimiting plane v = b (see fig. 1 of my 
previous paper cited above) reaches its maximum, and is represented 
by (w=1): 

2a' 
RTo = 1Ve (1- xe)-. 

b 

But as in the case bl = b, for Xc the value li, is found (the 
maximum of the now parabolic curve), we get: 

IJ ' RT-~ ° - b • 

Our equation for B T becomes therefore: 

RT= 4RTo W [x (1- x) + (cp + <v)' (1- W)']-
And if henceforth all temperatures are expressed in multiples of 

To, we have finally, putting 
T 

T = 4 W [v (1 - .v) + (lP + IVP (1 - W)'J (lb) 



- 5 -

( 36 ) 

In this simple form the equation is very suitable for calrulating 
successive spinodal Cl1l'Yes. It is of the second degree with respect 
to cc, of the tld1'cl degree with respect to (0. Fot' n given value of 
1: we have therefore ouly to put successively (0 = 1, 0,9, 0,8 etc. 
down to 0, and then we find the corresponding values of .7] by 
solution of ordinal'y quadratic equations. 

The equation (2a) becomes aftel' division by cc (1- cc) aBv4
: 

(1 _ 2.v) + Va (1 _ ~)2 [3 + a/r;.2 (1 ~ blv) (1 - Sb/v)] = 0, 
a v IV (1 -- .v) 

. Va Val 
1. e. as - = - + IV == lP + IV 

ct ct 

(1- 2al) + (g; + al) (1- (0)2 [s + (g; + al)' (1- (0)(1- SW)] = O .. (2b) 
IV (I-IV) 

This equation of the plaitpoint curve is of the thi1'cl degl'ee with 
respect to cc, of the fOU1·th degree with respect to (0. 

3. Befare discussing the equations (lb) and (2b) more fully, we 
shall fil'st del'ive a few l'elations between To, Tl and T2 • 

1/ a2 8 a 
As BTo = T (see above) and RTl == 27 i;, we find immediately: 

1\ 16 al 16 
_ -- lP' 

~-27~--27 . 

From this follows th at for values of ljJ < 3/4 V3 (= 1,30) Tl wiII 
be < To ; i. e. the lowel' critical temperature of the two components 
will the11 be lower than the critical temperature of mixing of the 
two liquid phases at v = b. 

1 Va, -= - - 1, and we have evidently; 
ljJ Val 

-2.= 1+- . T ( 1)2 
Tl lP 

Fot' lP = ° is T~ = 00 X 'Pl; for lP = 00 is T, = Tl' Fa!' (p = 3/, V3 
(see aqove) T2hl == (1 + 4/9 V3)2 = 1/27 (43 + 24 V3)::::= 3,13. 

It will also prove important to know the amount of the presslwe 
for all points of the spinodal curves. For this purpose we reduce 
the equation : 

to 

ET a 
p==--­

v-b v' 
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. . RT (Val+:ca)~ ET a2 p=____ _ = _____ (cp + .'11)2. 
V (l_bM v2 v(l-w) v2 

This becomes on account of a2 = 2bRTo (see above) and T/n = 't': 

RTa I 't' I 
P = -b- w /1-w - 2w (cp + .1,)2\. 

Let us express p in the critical pressure Pl' (As, namely, the 
'pressure Po corresponding to To (v = b) is evidently = 00, IJ cannot 

. Rl\ Tl 16 2 RTo 
be expressed In Po)' As Pl = l/S -b- and T

o 
= 27 P',Pl = 27 -b- cp2, 

hence - when we put 

n = 27 w [_'t' __ 2w (cp + m)~J. . . . . (3) 
2 lf!2 1-(0 

This equation may be used, when 't' is already known from (H). 
If this value is, however, substituied, we get: -

i. e. 

Jr = 27 ~ [2.'11 (l--.'V) + 2 (cp+.V)2 (l-w)2 - (cp+a:)2 (l-w)J, 
cp~ 1-(0 

~ = 2: l-
W
-'-[2.v (1- m) + (cp +m)' (l-w) (1-2w)J. . . . (3a) 

cp -w 

4. Better thau <.lescriptions and calculations 111e adjoined figures 
1-4 l'epresent the different relations which may preElent themselves 
in the discus sion of (lb) and (2b), combined with 3 Ol' (3a). We 
shall ,therefore con fine ourselves in the following to wh at is strictly 
indispensable. 

'lioo principal types occu..r, accol'ding as cp < 1,43 or > 1,43. 
Fig. 1 with <p = 1 is a repl'esentative of the one type, fig. 2 with 

lp = 2 of the other. The transition case cp = 1,43 is repl'esented in 
-fig. 4. 

a. Desc7'iption of the case p = 1 (fig. i and ia). 

There are two plaitpoint - curves, one of w hich extending fr9m 
Co to C2 , the other ti'om Cl to A. The lat ter, howevee, may only 
be realized down to a point between Cl and BI' whel'e it is touched 

"by the spinodal line or = 0,63 1). 

1) See KORTI'WEG, 1. c. p. 305 (fig 12) and plate Fl to FG' lThe plaitpoint has 
already disappeared in the limiling line v = b in our case). Rl is a so·called point 
de plissement double hétérogène. Cf. also VAN DER WAALS, These Proc. V, 310, 
Ocl. 25, 190:2. 
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Beyond the point Rl the temperature, and with it also the 
pressure, decreases, as is to be seen fl'om the succession of the 
different spinodal curves, so that in the p, T-diagram (fig.1a) the 
plaitpoint curve C1 R I A shows a cusp at Rl, and begins io run back. 

It is known that this case is realized with mixtures of C, Ha and 
CHaOH, ether and water (KUENEN), etc. li is the lJ?'incip'àZ type I, 
as I have fully described it in one of my two preceding papers 1) .. 

Remal'kable and quite unexpected is the fact that this type may 
be realized for mixtures of 1w1'mal substances. It was formerly 
believed that such deviating pJaitpoint curves wel'e only possible 
when at least one of the two substances is anomalous. This, howevel', 
seems not to be the case; more and more the conviction gains gronnd 
wUh me that the anomaly of one Ol' of both components only 
accentuates the phenomena slw1'}Jer or brings them into attainabZe 
l'egions of temperature. 

It is also striking in fig.1a, that the curve Co 0, has the same 
appearance, viz. with an inflection iu the middle part, as the typical 
curve as observed by KUENEN for C,Ho + CHaOH (see fig. 1 of my 
just cited paper). Only in our case there is not yet a pronOlmced 
maximum and minimum, as with the mixtures of C,Ha with the 
strongly anomalous substance CHaOH. 

'rhe type of fig. 1 occurs for compal'atively small values of cp. 
According to the equation givell in § 3 the propol'tion T2/:Ij = 4 
cOl'l'esponds with cp = 1. The critical temperatures of the two 
components must, therefore, lie comparatively fal' apart. 

16 
As TI / 1'o = 27' To is considerably higher than Tl' If we put 

To = 1, as has been do ne in the figure, then Tl = 0,59 and T, = 2,37. 

b. Same mathematicaZ and numericaZ details. 

The plaitpoint curve CoC: touches the line .x= 1/, in Co, t.he 
curve ACl touches the line ,'1] = ° in A. Moreover the curve CoC, 
touches the line al = 1/, once more in D, anel it does so at 
w = '/3 (v = 1,5 b). In Cl aud C2 no contact takes phtce. I 

When cp becomes < 1, anel approaches to ° (T2/T1 then becomes 
larger and larger anel approaches to 00), then the curve CIA approaches 
the straight line al = 0 more anel more and the curve Co C~ the 
dotted curve in the figure, which continues to present a ç]e~rly 

1) These Proc. VIl p. 636-638, April 22, 1905 
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pronounced inflection point up to the last 1). For values of g> > 1, 
the curve COC2 lies partially on the left of the curve x = 1/~, and 
the point of contact at D passes into two points of intersection. 

By an approximate solution of (2b) and substitution in (1b) and 
(3) of the values found, the following points of the two plaitpoint 
curves are calrulated. (The other values of 00 Ol' x are either imaginary 
or do not satis(y). 

x = 0,5 0,6 0,7 0,8 0,9 'I '" = 0,33 0,4 0,51) 0,6 0,7 0,8 0,9 1 
'" = 1 0,49 U,43 0,3U 0,36 0,33 x =0 0,021 0,04'1 0,042 0,023 0,010 0,0017 0 
':' = 1 '1,78 '1,98 2,13 2,2(j 2,37 'r = 0,59 0,63 0,62 0,5'1 0,33 0,'16 0,042 0 
7r = 00 (\,'4 5,75 5,05 4,51 4 -; = 1 1;15 1,08 ° -3,09 -S,(j4 -'16,9 - 27 

It is seen that the pressure begins to be negative for points in the 
neighbourhood of A. This is not remarkable; also for a simple 
substance the points of inflection in the ideal isotherms reaeh to 
within the region of the negative pressures. Though the pressures 
in some points on the sjJinodal curve are negative, this is no reason 
why those on the connoc1al curves shoulc1 be so. 

The hmits of the region of negative pressures on the spinodal 
curves may be easily fixed (see the c10tted curves in fig. 1) by solution 
of the equation (see (3a)) 

21v (1 - tv) = (g> + IV)2 (1 - (0) (200 - 1). 
lf we put here (1- (0) l200 -1) = 0, we find: 

. _ (1 - pO) ± V1- 2g> (g> + 1) 0 
3)_ • 

2+0 
In this way we calculate for cp = 1 : 

00 = 1 0,9 0,8 0,7 0,6 0,5 \ ° 0,045 0,07 0,07 0,045 ° 
.1] = l1 0,84 0,75 5 0,755 0,84 1. 

That j'( approaches to - 27 for x = 0, 00 = 1, T = ° follows 
T 

immediately from (3). For as 1-- approaches to 0, as we shall 
-00 

prove presently, 3't = 2
2
7 ;2 (-- 2g>2) = -27, independent of the 

value of cp. 

1) 1.'01' this plaitpoint curve qJ = 0 the following points are easily calculated: 
~ = 0,9 0,8 0,7 0,6 0,5 0,4 
x=0,507 0,528 0,567 0,623 0,712 0,853 

The equation (2b), viz., passes then inlo the following quadratic equation in Xw: 
X 2",2 (9 - 101<1 + 3",2) - 3x", (2 - "') + 1 = O. 

The other value for x is always > 1. 
2) l'he maximum lies at ",=0,54; x is then about=O,043. 
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In this we must notice that in the immediate neighbourhood of 
the point A, ~ incl'ettses with the utmost l'apidity fi'om - 27 to 
+ 00, when we pass the above considered border curve; in the 
point A itself this transition takes of course place suddenly. For 

272,v(1-m) 
when w = 1, :Tt approaches to 1 = 00, according to (3a), emcept 

cp~ -w 
2a:(1-,v) 

in the case that m is exactly = 0, when (see further) = 0, 
l-w 

the following term yieldmg then the finite value -.27. This follows 
also from the figure, because the border curve, which separates positive 
from negative pressures, passes th1'ough the point A. 

a: 7: 
That on the plaitpoillt curve the expressions 1-- and -­

-w 1-w 
approach to ° for m = 0, w = 1, 't = ° at A, follows from (2b). 
For putting m = I:::. and 1- w = Ó, we get: 

1 + lJ!(J2 (3 - 2 ~2Ó) == 0, 

ó3 

or as 3cpó2 may be neutralized by 1, 1 - 2cp2 6. = 0, from which 

6. 
follows, that at the point A. 3" == 2cp3, so remains finite. So t::. is of 

d 

~ I:::. A. the order ó3
, 80 that -- == - really approaches to ° at . From 

] -(J) Ó 

this follows also the contact. And as according to (1b) 7: approaches to 
4 (6. + cp2 d2

) = 4g:hJ 2 (I:::. being of the order d3
) for m = 0, w = 1, 

't 
-- approaches to ° at A.. 
l-w 

In the same way the plaitpoint curve Co G, touches the line 
al = 1/2 for al = 1/2, W = 1. For, for a: = 1/; (1 + 1:::.), w = J - cf 
equation (2b) becomes: 

- 6. + (cp + 1/2) cJ2 [3 - 8 (cp + '1/~)2ÓJ = 0, 
- -. t:.-
which appoaches to - 6. + 3 (cp + 1/2) cP = 0, yielding d2 = 3(p+ 1/,), 

6. 
so again finite. So I:::. is now of the order (J2, and so d again = 0, 

which proves the contact at Go. 
I eaU attention to the fact, that on account of' the sma11 values 

of 6. a large portion 'of the curve Go G2 from GD as far as beyond the 
point D may be calculated very accurately, by writing fol' (26) (cp = 1): 
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so th at 

- b. + B/~ (1 - w)~ [3 - 9 (1 - w) (3w - 1)J ' 

b. = o/~ (1 - oo)~ [1 - 3 (1 - w) (3w - 1)} 

From this follows e.g. for 00 == 0,9, 0,8, 0,7, 0,6 resp., fol' b. 
0,022, 0,029, 0,004, 0,029. 

The contact at D. If we put in (2b) aJ = 1/~, then 1- 2[c == 0, 
and hence: 

(<p + 1/~)-(1 - W)2 [3 + 4 (<p + 1/~)2 (1 - w) (1 - 3W)] = o. 

This yields besides w == 1 (the point Co), also: 
3 

(1 - (0) (3w - 1) = (2p+1)2 ' 

hence: 

00 = ~/3 ± I/a V 1 - (2P:1)2 . 

For <p == 1 this yields two equal roots w = ~/3' which proves the 
contact at D. For <p < 1 the roots become imaginary, so that then 
CJ)~ no longer ents the line x == 1/2' but keeps eontinually on its 
right, whereas for p > 1 two points of intersection are always 
found. So is e. g. fol' p = 2 00 = 14/15 (close to Co) and w == 2/6 
(lying on the other branch between Cl and C2 (see fig. 2)). 

In ordel' to facilitate the tl'acing of the different spinodal lines, it 
is to be reeommended to fix the limiting values of 't' for aJ = 0, 
x==1, 00==1, W=1/3• Also fol' aJ=1/2 it is easy to ealclllate 't'. 

From (1b) follows e.g. for aJ = 0, P = 1 : 
't' = 4w (1 - w)~. 

This yields: 
w=1 0,9 0,8 0,7 0,6 0,5 0,4 0,333 0,3 0,2 0,1 
T =0 -0,036 0,128 0,252 0,384 0,50 0,576 0,593 0,588 0,512 0,324 

For tC = 1 these values become simply J times larger, (p + x)~ 
then being = 4. ( 

For aJ = 1/~ we get, 
't' = 00 tI + 9 (1 - (0)'1, 

yielding: 
00 = 1 0,95 0,9 0,8 0,7 0,6 0,5 0,4 0,33 0,3 
T = 1 0,971 0,981 1,09 1,27 1,46 1,626 1,70 1,67 1,62. 

For 00 == 1 we get simply: 
r = 4.'11 (1 - .'11),_ 

from w hich follows: 
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[IJ = ° 0,1 0,2 0,3 0,-1 0,5 0,6 0,7 0,8 0,9 1 
T = ° 0,36 0,64 0,84 0,96 1 0,96 0,84 0,64 0,36 0: 

Finally we get fol' W = 113 : 

T = 4/3 [v (1 - m) + 4/0 (,v + 1)2J ' 

yielding: 
[IJ = ° 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1 
T = 0,593 0,837 1,07 1,28 1,48 1,67 1,84 1,99 2,13 2,26 2,37. 

It appears from the diagram (see also above for ,v = 1/2)' that the 
temperature from Co to C~ is not continually ascending, but that it 
shows a minimum very near Co. This causes the spinodalline T = 1 
not to pass through Co, but to remain under it. The point Co, where 
T is also = 1, is an isolated point belonging to that line. Just beyond 
Co the two branches of one and the same spinodal line intersect in 
a double point; beyond that place the course is norm al ; between 
Co and this intersection the spinodal line has two separate branches, 
one of which encloses the point Co. Now the question arises, 
whether this will be the case for every value of p. If we sol ve [IJ 

from (lb), we get: 

a;2 (2w - ( 2) - a; (1 + 2<; (1 - W)2) + (4: -- p' (1 - W)2) = O. 
This gives for IV two roots of the same value for given values of 

Tand w, when 
4 p (p + 1)(1 - W)2 + 1 - T (2 - w) = O. 

The value of IV is then: 
1/2+p(1-w)2 

(/) - ~---'--'---~ 

,- w(2-w) 

Now it follows from the value of the above given discriminant, 
that it becomes = ° for tUJO values of w. 80 two branches of a 
spinodal line interseet, w hen those values of w become the same. From 

4p (p+1) w2 
- w (sp (p+1) - T) + (4P (p+1) + 1-2T) = 0 

follows, that w has two roots of the same value, when 
T2 T -- = 16p (p+l) j w = 1-1/s . 

l-T P (p+l) 
And T being 1 at Co, the minimum disappears only, when T 

becomes = 1 in the above expression. And this is evidently only 
the case for p = 00, i. e. when Tl and 1~ should have the same 
value. Hence in general there will always be found a minimum in 
the neighbourhood of Co. For p = 1 we find T = 0,970, w = 0,94, 
[IJ = 0,506; for p = 2 we find T = 0,990, w = 0,98, [IJ = 0,501 ; 
etc. etc. 
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It may be easily demonstrated that in the neighbou~hood of Cl 
such a minimum never appears in Dur case. For from (lb) follows 

Tl 16 
with T = - = - cp~ : 

T o 27 

~~ lf2 = 4w ['IJ (1 - IV) + (cp + 'IJ)2 (1 - (0)2J • 

Aftel' sllbstitution of IV = 6, 00 = 113 (1 + ó), we get, neglecting 
6 2

, which is justitied by the l'esult: 

(1 --I- d) [~ 6 + (1 + 26) (I - 1/2Ó)2] = 1 , 
4 cp' cp 

or ttS 

yielding : 

6 = 3/4ó2: (~+~)=3(P: (~--I-~). 
4'1,2 <p (p2 cp 

The spinodal line T = Tl touches, therefore, the axis x = 0 fol' 
every value of cr, and, at least on the assmnptions made by us 
concerning a and b, a minimum ean thel'efore never appeal' in the 
neighbourhood of Cl' in ronsequence of which the spinodal lines in 
tlle immedü"te neighbourhood of Cl would enclose this point. 

Finally some corresponding valnes of x a.nd ware subjoined, which 
determine the shape of the spinodal line 'l' = 1 (T = To). By solution 
of the qua.dratic equation 

400 ['IJ (1 - ,'IJ) + (1 -t- m)' 1 - (0)2J = 1 

fo11ows immediately: 
w = 1 0,8 0,7 0,6 0,5 0,4 0,33 0,3 0,2 0,1 

II! = 0,5 0,403 0,292 0,227 0,184 0,164 0,182 0,182 0,306 0,679 
0,743 1,004 

80 this line cuts the axi& x = 1 fol' W = 0,7, and henceforth only 
one solution satisfies. x becOlnes evidently 1 for W (1- W)2 = l/w 
yielding about W = 0,07. 

From the above derived equation 4tp(cp+l)(1-wY+1-'l'(2-w)=0, 
which was the condition fol' two equal values of x, we find cp = 1, T = 1 : 

800
2 

- 15w + 7 = 0 , 
from which, besides w=l, W=7 Is follows. To this belongs then 
IV = 11/21 = 0,524. Between w = 1 and w = 0,875 we find only 
imaginary values for ,v in the above tabie. 
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, As to the spinodal lme T = '1\ (r = 0.59), we calculate al = 0,0019 
for (1):::= 0,30, whereas llJ:::= 0,006 eorresponds to (I) = 0,40. 

As to the shape of the spinodal lines for great values of v (vapoul' 
branch) i. e. when 't' aud (I) approach to 0, follows immediately 
from (lb)· 

T:::= 4(1) [.'1) (1 - 'v) + (rp + al)2J :::= 4(1) [rp2 + (2rp + 1) ,'I)J . 

~ a' b 
If we substitute TI To = T: ;b fol' 't', and ;; for (1), we get· 

Rl' = 2:
2 

[fJ>2 + (2 g> + 1) al J . 
Aftel' substitution of (f = Va\ this becomes: 

a 

v = R~ [al + (a 2 - al) al] . 
From this follows that the vapour branehes of the spinodal lines 

in their v, x~projection wil! appl'oach more and more to straight lines, 
which will cut the a:x:es x = ° and tIJ = 1 at distances proportional 
to the quantities al and a2. 

5. Let us now consider the second type, which occurs fol' cp = 2. 

a. Description of tJle case cp = 2 efig. 2 and fig. 2a). 

The two plaitpoint curves of fig. 1, viz. Co C2 and CIA have met 
for g> about 1,43 (see fig. 4), aftel'- which two new ones have been 
formed, now Cl C

2 
and Co A. This case, which is found for compa­

T 
ratively large values of cp, fol' which the proportion T 2 approaches 

1 

more and more to unity, is the usual one or the uormal one. It is 
th~ p'f'incipaZ type 111, as descl'ibed in one of my two preeeding papers 1). 
- The region of negative pressUl'es on the spinodal line& extends 
now all over the v, x-diagram, from x = ° to x = 1, and is bounded 

t by the two dotted curves (see fig. 2) above and helow. 
The spinodal line belonging to 't = 1,35 toucues now the curve 

: Co A. in the point R,. Again the plaitpoints are not realisable from 
a point between R

2 
and Co to A (see the footnote in § 4 at a.) 

Beyond R
2 

the temperature and with it the pl'essure decreases, 
sa that in the p,T diagram (see fig.2a) the curve CoR,A ntns back 

1) 1. c. p. 642-644. 
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again from R~. In R~ the pl'essure is already negative, and it 
becomes again = - 27 PI in A. (See § 4, at b). 

When <J' = 2, we find easily from the equations del'ived in § 3, 
that then T2/T1 = 21/4 and Tl/Ta = 64/21' So if Ta js again =1, then 
Tl = 2,37 and T~ = 5,33. Now Tl is higher than To• 

b. Same matlwmräical ancl nume1'ical details. 

Much having already been derived in § 4, it will suffice to give 
some few values. 

Of the two plaitpoint curves the following points were calculated 

p=2 

1:=0 0,15 0,2 0,3 0,4 0,5 0,6 07 0,8 0,9 

~~. ( CUffi. w = 0333 0395 0403 0,41+ 0,41- 040 039+ 03";4 0,359 0,347 

-r= 237 287 3,04 3,38 370 4,00 428 460 4,87 5,10 5,33 CIC, 

1t=1 1,46 162 1,90 _211 2,25 2,32 2,37 2,36 2,33 2,25 

1:= ° 0,01 0,1 0,2 0,3 0,4 

w= 1 O,CJl 0,81 0,18 0,80 0,85 
0,5 ( 
0,9333.nd 1 C C 

U'l've oA. 
-r= 0 0,156 0,81 1,23 1,35 1,26 1,04 3.nd 1 

1t = -27 -173 -1,90 -5,16 -4,62 -3,98 49 and 00 

The separation between the negative and 
spinodal curves is given by 

positive pl'eSSUl'es on the 

w = 1 0,9 0,894 

.'IJ = I ° 0,31'-. 0,40 
1 0,50 0,4:0 

0,606 0,6 0,5 

0,40 0,31 ° 
0,40 0,50 1 

The pI aces where tV has here two equal values, are easily found 
from the value of tV given m § 4. Evidently we must have then 
f) = (1 - w) (2 w --1) = 1/12' This gives w = 0,894 and 0,606, = 
1/4 (3 ± 1/8 V3). For p = 1 f) would have to be 1/4, and there are 
no values of w which satisfy this condition. 

For the calculation of the different spinodal curves it is convenient 
to lmow the limiting values of 't' again. We find for tV = ° : 

v/6 = l/~l = 1 1,25 1,50 1,75 2 2,25 2,50 ~ 2,75 3 
't' = ° 0,51 1,19 1,68 2 2,20 2,30 2,36 2,37 

Fo!' ,'IJ = 1 these values are all 21/4 times greatel'. 
For tV = 1/2 we find with the same value& of w: 

't' = 1 1,60 2,53 3,20 3,63 3,88 3,99 4,04 4,04 
w = 1 yields the same values as in § 4 for (jJ = 1. 
w = 1/. yields: 
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x '0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1 
-;: = 2,37 2,73 3,08 3,41 3,73 4,03 .,1,33 4,59 4,86 5,10 5,33 

6. We may now detel'mine, where the trfinsition l'epresented in 
fig. 4:, takes place. (The p}fice of the point P is also drawn in 
figs . .L and 2 1»). 

If we put 1 - ro = y in the equation (2b) of the plfiitpoint curve, 
then 

(1- 2,'11) + (a: + p) y2 (3 + (,v + p)' y (3Y-2») = O .... (a) 
,'11(1-,'11) 

af af 
Now in the double point sought -a must be ° and -a must beO, 

a: y 
when f denotes the first membel' of (a). This gives: 

- 2a: (I-a:) + (1-2a:y + 3y2 )(1-2a:) (,v+p) + ,v(I-,V)~ + 

+ 3 (a: + p)2 yB (3y-2) = 0 , 

and aftel' division by 6y (x + p) : 

a: (1-,'11) + (,v + rp)2 Y (2y-l) = 0 

SubstitutioD of the value of x (i-x) fi'om (C) in (a) gives: 

(1 - 2,'11) + (,v + p) y2 3 + = 0, ( 
3y -- 2) 
1- 2y 

or 

(b) 

.' (c) 

1- 3y 
(1 - 2,1:) + (,'I) + p) y2 ---' = 0 • . • . . • (a') 

1-2y 

So we have to solve y, x and (jJ from (a'), (b) and (c). Substitution 
of 1- 2x from (a'), and x (1 - tv) from (c) in (b) gives, aftel' 
division by (a: + cp)'y : 

(
1 3y)2 

- 2 (1 - 2y) + y3 1 _ 2y + 

+ 3y2 1\ - y 1 - 3y + (1- 2y)! + 3ys (3y - 2) = 0, 
1- 2y \ 

i. e. aftel' multiplication by (1 - 2y)2 : , 1 

- 2 (1 -:- 2y)3 + y3 (1 _ 3y)2 + 
+ Sy' (1 - 2y) t - '11 (1 - 3'11) + (1 - 2'11)2 t + 3y2 (3'11- 2) (1-2'11): : 0, 

from which y may be solved. The above equfition givès: , I 

1) This point must be thought more lo the left. In fi~. 4· no contact but intflr­
section takes place in the double point P. 
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_ 2 (1 - 221)8 + y~ (1 - 3y)2.+ 3y2 (1 - 2y) (y2 + 2y - 1) = 0, 
or 3y6 - 15y4 + 29y3 - 27y2 + 12y - 2 = 0, 

i. e. aftel' division by (:y _1)3 : 
3y2 - 6y + 2, 

yielding: 
y = 1 ± 1/8 VS. 

As it is obvious that y cannot be larger than 1, only: 
y = 1 - 1/8 VJ = 0,4226 

satisfies here. 
If we substitute the value {IJ + tp from (d) into (0), we get: 

(1-2y)3 
IV (1 - :v) - (1 - 2.V)2 = 0. 

yB (1-3y)2 

In this the last fraction passes into 1/4 (1 + V3), aftel' substitution 
of y = 1 _1/3 V3, so that we get for x: 

lV (1- .v) - 1/4 (1 + V3) 11 - 4:v (1- 'V)f = 0, 

hence: 
:v( 1 - .1:) = 1/4 (- 1 + V3), 

giving: 

.v = 1/2 ~ 1 ± 1/2 (V6 - V2) \ = 0,2412 or 0,7588. 

It is obvious from the figure, that only the first value satisfies, 
viz.: 

:v = 1/211 - 1/2 (V6 - V2) t = 0,2412. 

The value of tp is finally found from (0): 
lIJ (l-.v) 

(.v + cp)2 3/4 (2 + V3), 
Y (1-2y) 

giving .v + cp = 1/4 (3 V2 + V6), hence cp=1/2( -1+ V2+ V6)=1,432. 

As y = 1 - 1/8 V3, (0 = l/S V3, i. e. the intersection takes place 
at 'IJ = b V3 = 1,732 b. 

As mentioned before To = Tl for cp = 1,30 (see ~ 3). For cp = 1,43 
To is already < '1\. For 1"/To = 16/27 rp2 we find easily the value 
1,215, while 2,887 is found for T2/Tl '== (1 + l/cpY. 

7. Besides the cases, given in figs. 1 and 2, l'epresenting the 
principal types I and lIl, there is anothel' important type, viz. lI, 
of' which I also gave a f'ull descl'iption iJl my pl'evious paper, which 
I have al ready cited several times 1). The p, T-diagram of th is case 

1) 1. c. p. 663-667. 
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is given in fig. 4a. KUENEN met with it, among others, in the case 
of mixtures of 02Ha with ethyl- and some higher alcohois. Also 
tl'iethylamine with water is a well-lmown instanee. . . 

This case is evidently found, when the plaitpoint CUl've Cl C2 of fig. 2 
assumes the shape drawn m fig. 3. We may namely imagine that 
when the two curves Cl C2 and CoA- approach each other, a deviation 
from the straight course may be found on the left side of Cl C2 , 

specially if bI should not be = b2 , by which the point Co would 
therefore be shifted to the left, to the side of the small volumes. At 
all events the anomaly of one of the two components can give 
rise to the occurrence of this second principal type, as I showed in 
a preceding paper. 

From the shape of the different spinodal curves it is' obvious that 
from Cl the temperatures first increase, as far as the point of contact 
at Rl' The temperature is then T' (see fig. 3a). But between Rl and 
R2', where the plaitpoint curve is again touched by one of the 
spinodal curves, the tempeI'ature dec1'eases, and so also the pressure, 
so that in the p, T-diagram of fig. 3a the line Rl R,' mns back 
again, as in fig. 1a 1he line Rl A and in fig. 2a the line R 2 A, having 
in this case two cusps in RI and R 2'. 

Here the points between Rl and R 2', and also those on Cl Rl and 
C2R 2 ' in the neighbourhood of Rl and R 2 ' can again not be realized, 
and the consequence will be the occurrence of a three phase 
equilibrium 1). 

As lalready observed in one of my previous papers (l.c. p. 646), 
aftel' t!le two liquid phases 1 and 2 have coincided in the neigh­
bom'hood of the point R'2' here too, sepal'ation of the two liquid 
phases must take place again - provided the temperature be sufficiently 
lowered - and this will take place in the neighbourhood of the 
point, w here one of the spinodal curves in R, touches the plaitpoint 
curve Co A. This is also represented in the p, T-diagrarn of fig.3a. 

When comparing figs. 1, 2 and 3, we see clearly the connection 
between the three principal types and their transition into each other. 
The connection is given by the different course of the two plaitpoiut 
curves in figs. 1 a,nd 2, which (see fig. 3) may pass continuousl!J 
into each other with changed circumstances of critical data of the 
two components. 

1) Cf. VAN DER WAALS, Continuital lI, p. 187, and These Proceedings V, 
p. 307-11 Oct. 25, 1902. 
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