Huygens Institute - Royal Netherlands Academy of Arts and Sciences (KNAW)
Citation:
Versluys, W.A., On the number of common tangents of a curve and a surface, in: KNAW, Proceedings, 8 I, 1905, Amsterdam, 1905, pp. 176-184
This PDF was made on 24 September 2010, from the 'Digital Library' of the Dutch History of Science Web Center (www.dwc.knaw.nl) > 'Digital Library > Proceedings of the Royal Netherlands Academy of Arts and Sciences (KNAW), http://www.digitallibrary.nl'

Mathematics. — "On the number of common tangents of a curve and a surface." By Dr. W. A. Versluys. (Communicated by Prof. D. J. Korteweg).

§ 1. Let C_1 be a plane algebraic curve of class r_1 and S_2 an algebraic surface of class m_2 . Every tangent of C_1 touching S_2 is a tangent of the section s of the surface S_2 with the plane V of C_1 . Conversely, each common tangent of C_1 and s is a common tangent of C_1 and S_2 . The curves C_1 and s being of the class r_1 and m_2 respectively, they have $r_1 m_2$ common tangents. Hence, S_2 and C_1 have $r_1 m_2$ common tangents too.

Let the plane V of C_1 occupy the particular position of touching S_2 in σ points of ordinary contact and in χ points of stationary contact, the class of the section s is now

$$m_2 - 2d - 3\chi^1$$
).

Hence, the curves s and C_1 have now

$$r_1 \left(m_2 - 2d - 3\chi \right)$$

common tangents. Every tangent of C_1 passing through one of the points of contact σ and χ is a common tangent of C_1 and S_2 , without being a common tangent of C_1 and s. In §8 will be proved, that, if D_1 be the developable formed by the tangents of C_1 , each generating line of D_1 touching S_2 in a point σ counts for two common tangents of C_1 and C_2 and each generator of C_1 touching C_2 in a point σ counts for three common tangents of C_1 and C_2 . If C_1 be a plane curve, the developable C_1 is the plane C_2 counted C_2 times. Every ordinary contact σ gives thus σ gives σ common tangents of σ and σ and σ and σ and σ thus, the total number of common tangents is

$$r_1 (m_2 - 2 \delta - 3 \chi) + 2 \delta r_1 + 3 \chi r_1 = r_1 m_2.$$

If the plane V of C_1 and the surface S_2 touch along a line, then every tangent of C_1 touches S_2 and the number of common tangents becomes infinite. This case presents itself if S_2 be a developable and V one of its tangent planes. Every tangent of C_1 touches S_2 twice, if S_2 be a torus and V be one of the planes touching S_2 along a circle.

If C_1 be a curve in space the number of common tangents of C_1 and S_2 is still $r_1 m_2$, where r_1 is the rank of C_1 . This will be proved first for some special curves and surfaces and afterwards for the general case.

§ 2. Let S_2 be a cone with vertex T; the projection of a common

¹⁾ VERSLUYS, These Proceedings. May 27, 1905.

tangent of C_1 and S_2 on an arbitrary plane V, not passing through the centre of projection T, is a common tangent of the projection p_1 of C_1 and of the section s of S_2 with V. The converse is equally true. The class of p_1 and s being r_1 and m_2 respectively, the number of common tangents of p_1 and s and thus of C_1 and C_2 is C_2 and C_3 is C_4 and C_4 and C_5 is C_4 and C_6 is C_7 and C_8 is C_8 .

If S_2 be a developable D_2 , a tangent t of C_1 touches D_2 if a tangent plane of D_2 pass through t, and conversely. Let D'_1 and C'_2 be the polar reciprocals of C_1 and D_2 . To a plane of D_2 passing through a tangent t of C_1 corresponds a point of C'_2 on a generator t' of D'_1 , and conversely. The number of these intersections of C'_2 and D'_1 is $r_1 m_2$, for the curve C'_2 is of order m_2 and the developable D'_1 of order r_1 . Then, since there are $r_1 m_2$ planes of D_2 passing through tangents of C_1 , these are $r_1 m_2$ common tangents of C_1 and S_2 .

We can show in a very simple way, that if the curve C_1 be an arbitrary algebraic curve of rank r_1 , and the surface S_2 be an arbitrary algebraic surface of class m_2 , the number of common tangents is still $r_1 m_2$. For the tangents to S_2 form a complex of order m_2 , and the tangents of C_1 form a ruled surface of order r_1 . Now according to a theorem due to Halphen 1) the number of their common rays is $r_1 m_2$, which proves the proposition.

§ 3. Some theorems concerning the contact of a developable with an arbitrary surface will be deduced from the theorem proved above. Let C_1 be a twisted cubic C^3 and D^4 the developable formed by its tangents. Let S_2 be an arbitrary surface of order n_2 , having a cuspidal and a nodal curve respectively of order v_2 and ξ_2 and let D^4 and S_2 have an ordinary contact in σ and a stationary contact in χ points, whilst none of the tangents of C^{*} is an inflexional tangent of S_2 and C^3 does not touch S_2 . The number of common tangents of C^3 and S_2 is now also for this particular position $r_1 m_2$ or $4 m_2$. These common tangents of C^3 and S_2 are: 1^{st} the tangents of C^3 touching the curve of intersection s of D^4 and S_2 and 2^{nd} the tangents of C^3 touching S_2 in the points of and χ where the surfaces D^4 and S_2 touch. Let every common tangent of C^3 and S_2 passing through an ordinary point of contact of count for a common tangents and let every common tangent through a stationary point of contact χ count y times.

The number of common tangents of C^* and s will be

$$4 m_2 - x \sigma - y \chi$$
.

¹⁾ R. STURM, Linien Geometrie, I p. 44.

Let K be the developable formed by the tangents of s. Let l be a common tangent of C^3 and S_2 , touching C^3 in R and s in P. One of the tangents of C^3 consecutive to l meets S_2 in two real points of s, consecutive to P, as l is supposed to be no principal tangent of S_2 . The osculating plane V of C^3 in R contains therefore four consecutive points of s, so it is a stationary plane a of s in P. Consequently the plane V is also a stationary tangent plane of K along the generating line l. So C^3 has in K three consecutive points in common with K and no more.

The $3n_2$ points where C^3 meets S_2 are cusps β of s^1), so they are triple points on the developable K.

Each of these $3n_2$ points β counts at least for three points of intersection of C^3 with K. Each of these points β counts for not more than three points of intersection, as we have assumed that C^3 does not touch S_2 , and the tangent in β to C^3 does not lie in the triple tangent plane of K in β , which triple tangent plane coincides with the osculating plane of s in s, i. e. with the tangent plane of s in s.

The curve C^3 meets K only in the $4 m_3 - x \sigma - y x$ points R and in the $3n_2$ points β , as every tangent to s lies in an osculating plane of C^3 , and through a point of C^3 no plane can pass osculating C^3 still elsewhere. The order of K or the rank of s is

$$r = 4m_2 + 3n_2 - 2\sigma - 3\chi^2$$
).

So the number of points of intersection of $C^{\mathfrak{s}}$ and K is

$$3(4m_2 + 3n_2 - 2\sigma - 3\chi).$$

As the only points of intersection of C^3 and K are the points R and β counted three times, we find the relation

$$3(4m_2 + 3n_2 - 2d - 3\chi) = 3 \times 3n_2 + 3(4m_2 - rd - y\chi)$$
 from which ensues

$$x=2, y=3,$$

or in words:

If the developable D^4 and an arbitrary surface S_2 have an ordinary contact, two consecutive generating lines of D^4 touch S_2 .

If the developable D^4 and an ordinary surface S_2 have a stationary contact, three consecutive generating lines of D^4 touch S_2 .

These theorems hold good too in the case that the developable is a cone 3).

¹⁾ Versluys, Mém. de Liège. 3me série, T. VI, 1905. Sur les nombres Plückériens etc.

²⁾ Versluys, These Proceedings May 27, 1905.

³⁾ Versluys, These Proceedings May 27, 1905.

The two theorems mentioned above and their reciprocals and some special cases will now be treated algebraically.

§ 4: Let C_1 be a rational twisted curve of rank r_1 and S a surface of order n, possessing no multiple curves. Let

$$ax + by + cz + d = 0$$

represent the osculating plane of C_1 , a, b, c, d being integer rational algebraic functions of t. Differentiating we find for an arbitrary tangent of C_1 equations of the form

$$a_1 x + b_1 y + c_1 z + d_1 = 0,$$

 $a_2 z + b_2 y + c_2 z + d_2 = 0.$

Solving y and z in function of x and t we find:

$$y = \frac{Ax + B}{C}, z = \frac{Dx + E}{C}, \dots \dots (A)$$

in which A, B, C, D and E are functions in t of order r_1 . If we substitute the values (A) in the equation of the surface S, we arrive at an equation (B), which is in x of order n and in t of order $n r_1$. For every value of t this equation (B) furnishes the n values of x belonging to the points of intersection of a tangent l to C_1 . If two of these values become equal, the tangent l will meet the surface S in two consecutive points and as S is supposed to have no multiple curves the tangent l will also be a tangent of S. Those tangents of C_1 are excluded which are at right angles with the X-axis, all points of intersection with S possessing the same x; so all roots x coincide, without the points of intersection coinciding. Every line being at right angles with the X-axis meets the line at infinity in the plane x = 0. So the number of these particular tangents of C_1 is r_1 .

The equation (B) has two equal roots in x for a certain value of t, when this value of t causes the discriminant of (B) to vanish. The discriminant is in the coefficients of (B) of order 2(n-1) and as the coefficients of (B) are of order $r_1 n$ in t, the discriminant is of order $2r_1 n$ (n-1) in t.

By a parallel displacement of the axes the plane x=0 can be made to pass through one of the tangents of C_1 which is at right angles with the X-axis.

Writing t+q for t, we can take q in such a way that this tangent of C_1 lying in v=0 corresponds to the value t=0. The equation (B) has then passed into an equation (B') where for t=0 all roots x vanish.

The first equation (A)

$$y = \frac{A x + B}{C}$$
 or $x = \frac{C y - B}{A}$

must now pass into x = 0 for t = 0, so that C and B must contain, after the change of variables, t as a factor, A not being divisible by t. As the projection on the plane x = 0 of the tangent lying in this plane can be any arbitrary line and as C vanishes for t = 0, D and E must also vanish for t = 0. In the equation (B') the coefficient of x^n will be divisible by t and the coefficient of x^i divisible by t^{n-i} .

According to Salmon 1) the discriminant of equation (B') will be divisible by $t^{n(n-1)}$. For each one of the r_1 particular tangents of C_1 which are at right angles with the X-axis n (n-1) roots of the discriminant of equation (B) become equal. That discriminant possessing $2r_1$ n (n-1) roots, there are left r_1 n (n-1) roots, to each of which corresponds an equation (B), possessing two equal roots. So there are r_1 n (n-1) tangents of C_1 which also touch S. As S possesses no multiple curves the class m is n (n-1). The number of common tangents of C_1 and S is thus as before mentioned

§ 5. So far we have supposed that C_1 occupies no particular position with respect to S. For particular positions of C_1 two or more of the common tangents of C_1 and S can become consecutive tangents of C_1 . Let t be a tangent of C_1 touching S in P, and let a tangent of C_1 consecutive to t be also a tangent of S. The developable D_1 formed by the tangents of C_1 and the surface S will touch in P? We shall now investigate when the contact is ordinary and when stationary.

For simplification I assume for C_1 the twisted cubic C^3

$$(x = p + t, y = t^2, z = t^3).$$

The equation of the developable D_1 or D^4 is now:

$$z^{2} - 6(x + p) y z + 4 y^{3} + 4(x + p)^{3} z - 3(x + p)^{2} y^{2} = 0$$

O1

$$0 = z - \frac{3}{4p}y^2 + etc. (A)$$

If we choose for point P where the surface S touches D^4 the origin of the coordinates the equation of S is

$$0 = z + ax^2 + 2hxy + by^2 + etc. (B)$$

The surfaces D^i and S have stationary contact in the origin when

¹⁾ Modern Higher Algebra, § 111, note.

$$a\left(b + \frac{3}{4p}\right) - h^2 = 0.1$$
 (C)

The equation of an osculating plane of C^3 is

$$t^3 - 3(x + p)t^2 + 3yt - z = 0.$$

The equations of a tangent to C^* are

$$t^2 - 2(x+p)t + y = 0$$
, $(x+p)t^2 - 2yt + z = 0$,

 \mathbf{or}

$$y = 2(x + p)t - t^2$$
, $z = 3(x + p)t^2 - 2t^3$.

Substitution these values of y and z in the equation of S, we find an equation of order n in x

$$0 = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + \text{etc.}$$

where

$$a_0 = 3 pt^2 + 4 bp^2 t^2 - 2 t^3 - 4 bpt^3 + \text{etc.},$$

$$a_1 = 4 hpt + 3 t^2 - 2 ht^2 + 8 bpt^2 - 4bt^3 + \text{etc.}, \quad (D)$$

$$a_2 = a + 4 ht + 4 bt^2 + \text{etc.}$$

The discriminant of this equation is of the form

$$a_0 \varphi + a_1^2 \psi^2$$
, 2).

As a_0 and a_1 contain respectively t^2 and t as a factor, whilst φ and ψ are in general not divisible by t, the discriminant is divisible by t^2 or the discriminant has two roots t=0. As to every root of the discriminant (except the particular n (n—1)-fold ones) corresponds a common tangent of C^3 and S, the X-axis counts here for two common tangents of C^3 and S, or the two consecutive tangents of C^3 lying in the common tangential plane of D and S both touch also S.

The discriminant is a determinant, which gives when developed according to the elements of the first two columns

$${}_{1}$$
 {2 $na_{0} a_{2} - (n-1)a_{1}^{2}$ } $\varphi_{1} + n^{2} a_{0}^{2} \varphi_{2} + na_{0} a_{1} \varphi_{2} + a_{1}^{2} \varphi_{4}$. (E)

§ 6. If the X-axis does not coincide with one of the inflexional (or principal) tangents of S in the origin P, then the Y-axis can be taken so that h=0; to this end we have but to take for Y-axis the diameter of the indicatrix conjugate to the X-axis. The expressions for the coordinates of a point on C^* will not change if we now also take for plane x=0 the plane determined by the new Y-axis, and one of the two tangents of C^* meeting the Y-axis outside P, and for plane at infinity-the osculating plane of C^* in the point where C^* touches the new plane x=0, whilst for plane y=0 is taken the

¹⁾ Salmon, Three Dim. § 204.

²⁾ Salmon, Modern Higher Algebra. § 111.

plane determined by the X-axis and the point where C^{z} touches x = 0. When h = 0 the terms of the lowest order in t in the coefficients a_{0} , a_{1} and a_{2} are respectively of order 2, 2 and 0.

The terms of the lowest order in t of the discriminant appear in the first term of the equation (E) at the end of the preceding \S , namely in the term $2na_0a_1\varphi_1$. So the terms of the lowest order in t are

$$Ca (3p + 4bp^2) t^2$$

where C represents a constant. The discriminant possesses three roots t=0 or the X-axis counts for three common tangents of C^3 and S, if

$$a\left(3p + 4bp^2\right) = 0$$

or if

$$a = 0$$
, $3 + 4bp = 0$, $p = 0$.

If 9+4bp=0, the surfaces D^4 and S have according to (C) a stationary contact, as h is also equal to nought. The origin P is now an ordinary point (not a parabolic or double point) on the surface S and the common tangent (the X-axis) does not coincide with one of the inflexional tangents of S in P.

This furnishes the theorem:

If an arbitrary surface S and a developable D^4 have a stationary contact in an ordinary point P of both surfaces and the generating line l of D^4 through P is neither of the two inflexional tangents of S in P, then l counts for three common tangents of the cuspidal curve C^3 and of S.

If a = 0 the surfaces D^4 and S have according to (C) still a stationary contact, as still h = 0. The origin P is now a parabolic point of S whilst the X-axis is the only inflexional tangent. The coefficients a_0 , a_1 and a_3 all contain the factor t^2 . So the discriminant possesses the factor t^4 , so that now the discriminant has four roots t = 0. So the X-axis now counts for four common tangents of C^3 and S.

If p=0, then C^3 touches S in the origin P, whilst the osculating plane of C^3 in P coincides with the tangent plane of S in P. The terms of the lowest order in t in the coefficients a_0 , a_1 and a_2 are now respectively of order 3, 2 and 0. So the discriminant (E) is divisible by t^3 , so that C^3 and S now have in the origin P three common tangents. Writing in the equation (B) of the surface S for the coordinates of a point on C^3 the expressions $x=t,y=t^2,z=t^3$, we obtain an equation in t, containing t^2 as a factor. The curve C^3 has thus in the origin only two points, but three tangents in common with S.

If h = a = p = 0, then C^{*} touches the surface S in a parabolic

point P, the tangent in P to C^3 coincides with the principal tangent in P of S, whilst the osculating plane of C^3 in P coincides with the tangent plane of S in P. From the expressions (D) for a_0 , a_1 and a_0 follows that the discriminant (E) is divisible by t^4 , so that C^3 and S have now four common tangents in common in the point P.

If h=b=p=0 then C^3 touches S still in a parabolic point; the only difference to the preceding case is that C^3 no longer touches the principal tangent. From the equations (D) and (E) ensues that C^3 and S possess only three common tangents.

If h = b = 0 and $p \ge 0$, then P is a parabolic point for which the principal tangent does not coincide with the tangent to C^3 . From (D) and (E) ensues now readily that the X-axis counts but for two common tangents of C^3 and S.

§ 7. When the X-axis coincides with one of the principal tangents of S in P then the axes cannot be taken in such a way that h = 0; but we have now a = 0. The terms of the lowest order in t in the coefficients a_0 , a_1 , a_2 (D) are now respectively of degree 2, 1. 1. So the discriminant (E) is only divisible by t^2 , so that now the X-axis counts for two common tangents of C^3 and S. The X-axis itself has now with S in P three consecutive points in common, so it counts already for two common tangents. A tangent of C^3 following the X-axis does not touch S any more.

The term of the second degree in t of the discriminant (E) has now for coefficient $16 C h^2 p^2$, where C is a constant. So the discriminant has three roots t = 0, when h = 0 or p = 0. The case h = 0 is just the one treated in § 6.

If p=a=0 then C^3 touches in P one of the principal tangents of S in P, whilst the osculating plane of C^3 in P still coincides with the tangent plane of S in P. Out of the expressions (D) for a_0 , a_1 and a_2 it is evident that these coefficients are respectively divisible by t^3 , t^2 and t. So the discriminant (E) is divisible by t^4 or it has four roots t=0. The X-axis counts thus for four common tangents of C^3 and S. By substitution of x=t, $y=t^2$, $z=t^3$ in the equation (B) of the surface S we find that C^3 and S now have in the origin three consecutive points in common.

§ 8. Let C_1 now be an arbitrary twisted curve and D_1 the developable formed by its tangents and let D_1 touch the arbitrary surface S in P. Let I be the generating line of D_1 touching S in P and let R be the point, in which it touches C_1 . Let V be the

osculating plane of C_1 in R. Through R and five points of C_1 consecutive to R a twisted cubic C^3 can be brought, on the condition that R, l and V are an ordinary point, an ordinary tangent and an ordinary osculating plane of C_1 . The developable D^1 formed by the tangents to C^3 and the developable D_1 have in common the line l and four consecutive generating lines.

If l must count for 2, 3 or 4 common tangents of C^3 and S, this is also the case for C_1 and S. The theorems proved in § 6 and 7 for C^3 hold good for any twisted curve. This gives rise to the following theorems:

If the developable D_1 corresponding to curve C_1 touches any surface S in point P whilst the generating line l of D_1 through P is no inflexional tangent of S, the line l counts for two or for three common tangents to C_1 and S according to the surfaces having in P an ordinary or a stationary contact.

If the point of contact P of D_1 and S be a parabolic point on S, then l counts for four or for two common tangents of C_1 and S according as the inflexional tangent of S in P coinciding with l or not.

If the point of contact P of D_1 and S be a hyperbolic point on S and if the tangent l of C_1 coincides with an inflexional tangent in the point P of S, then l counts for four or for two common tangents of C_1 and O according to R coinciding with P or not.

If C_1 touches S in P, whilst the osculating plane of C_1 in P coincides with the tangent plane of S in P, then the tangent l in P to C_1 counts for four or for three common tangents of C_1 and O, according to l being an inflexional tangent of O in P or not.

The theorems proved here for curves in space hold with a slight modification (see § 1) still for plane curves. They can be easily proved by taking for C_1 first a parabola p^2 after which they can be directly extended to an arbitrary conic section and after this to an arbitrary plane curve.

Delft, June 1905.

Physics. — The shape of the sections of the surface of saturation normal to the x-axis, in case of a three phase pressure between two temperatures." By Prof. J. D. VAN DER WAALS.

In these Proceedings of March 1905 I have (fig. 4, 5 and 6) represented in a diagram some sections of the (p, T, x)-surface normal to the T-axis for three temperatures, at which three phases can exist simultaneously. The three temperatures chosen were: 1^{st} the