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osculating plane of C, in R. Through R and five points of C, con-
secutive to R a twisted cubic C® can be brought, on the condition
that R, [ and 7 are an ordinary point, an ordinary {angent and
an ordinary osculating plane of C). The developable D! formed by
the tangents to C* and the developable D, bave in common the
line / and four consecutive generating lines.

If 7 must count for 2, 3 or 4 Gommon tangents of C* and S,
this is also the case for C, and S. The theorems proved in § 6
and 7 for C® hold good for any twisted curve. This gives rise to
the following theorems:

If the developable D, corresponding to curve C, touches any—
surface S i point P whilst the generating line [ of D, through P
s no inflexional tangent of S, the line I counts for two or for three
common tangents to C, and S according to the surfaces having in P
an ordinary or a stationary contact.

1f the point of contact P of D, and S be a parabolic point on S,
then 1 counts for four or for two common tangents of C, and S
according as the inflexional tangent of S in P coinciding with [ or not.

1f the point of contact P of D, and S be a hyperbolic point on
S and if the tangent 1 of C, coincides with un inflexional tangent
i the point P of S, then [ counts for four or jor two common
tangents of O, and O according to R coinciding with P or not.

If C, touches S in P, whilst the osculating plane of C, in P
coincides with the tangent plane of S in P, then the tangent | in P
to C, counts for four or for three common tangents of C, and O,
according to 1 being an iflexional tangent of O i P or not.

The theorems proved here for curves in space hold with a slight
modification (see § 1) still for plane curves. They can be easily
proved by taking for C, first a parabola p* after which they can
be directly extended to an arbilrary conic section and after this to
an arbitrary plane curve.

Delft, June 1905.

Physics. The shape of the sections of the surface of saturation
normal {0 the x-azis, in case of a three phase pressure between
two temperatures.” By Prof. J. D. van pEr WaaLs.

In these Proceedings of March 1905 I have (fig. 4, 5 and 6)
represenied in a diagram some sections of the ( p, 7', x)-surface normal
to the ZTtaxis for three temperatures, at which three phases can
exist simultaneously. The three temperatures chosen were: 1st the
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temperature which we might call the transformalion temperature and
which I shall indicate by 73, (fig. 5), 274 a temperature a little
below the transformation temperature (fig. 4) and 3'¢ one a litile
above .Th-.

In the case that these scctions are kmown for all possible tem-
peratures, the saturation surface is of course quite determined and
known, and so all other sections e.g. those normal to the .r-axis,
are also determined. DBut it appears from the given figures, that
though the realizable part of the satnration surface has a compara-
tively simple shape, the non-realizable part has a fairly intricate
course — and that it is necessary to know also that intricate portion
if we wish to get an insight into the course of the part that is to
be realized.

To the intricacy of the hidden part it is due that though all the
sections normal to the z-axis are given by those normal to the 7-
axis, the shape of the (p, 1').-sections will not always be easy to
derive. Now that I for myself have obtained an insight into the
course of these sections I have thought it not devoid of interest to
try and make clear the properties of this curve by means of a
series of successive figures.

If we wish to vepresent thesc (p, 1"). figures in a diagram, all
the surface must of course be known — in other words according
to the course of our derivation from the (p,2)r sections — al/ the
(p, ®)r sections must be known.

Between two temperatures which are known by experiment, see
fig. 4, 5 and 6 lLc., such a (p, @) section has two tops, viz. P and
Q. It T is raised, the part that has P as top, is narrowed, and
the part that has @ as top widens, and the reverse. This property
is perhaps not quite fulfilled in the schematical figures of the paper
mentioned, but it follows immediately from the fact that with con-
tinued rise of temperature the top P vanishes, whereas with sufficient
lowering of 7" the top @ vanishes. Let us call the temperature at
which P vanishes 7, and that at which @ disappears 7. I choose
these symbols 7}, and 7%, because I think of the mixture of ethane and
alcohol as an example for the shape of the (p, 7’ x)-surface discussed
here. Of these mixture the plaitpoint circumstances have been deter-
mined by Kuvevzex and Rosson. At 77 the whole top the plaitpoint of
which is P, will have confracted, and the only trace left on the
outline of the (p,®)-figure of the complication found atlower values
of 7', is a poin{, at which the tangent is horizontal, while al that
place there must be an infleclion point in {he (p, v)-curve, which
has for the rest a continuous course. For 7' equal to 7, this is the
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case for the point @ vanishing on the outline. Just as experiment
yields the values of 7 and 7, il also gives us the values of =,
and 2, at which the tops P and Q will disappear. For temperatures
higher than 7, and lower than 7% the (p,)r-curves have lost
the complications which they had for values of 7" between 7, and
T,. Only at temperatures which lie little above 7% or little below
7., there is still a deviation to be found from the well-known
looplike shape of these figures, as there are inflection points to be
found. So at 7, and 7, the complications which I shall call exter-
nally visible complications, have disappeared. But before we can
say we know all the particularities of the whole (p, 7, «)-surface,
among which I also reckon the lidden complications, the question
is to be settled whether the disappearance of the exiernal complica-
tions involves the disappearance of the hidden complications, whetber
perhaps the hidden complications may continue to exist long after
the external complications have disappeared. Figures (1) and (2)
make clear between which two alternatives a choice must be made.
According to fig. (1) the disappearance of the external complications
would involve the disappearance of the hidden ones. According to
fig. (2) the hidden ones continue to exist when the external ones
have disappeared. And even when 7’ rises above 7, they arve still
there. At higher values of 7' the hidden complicalion gets detached
from the outline. The spinodal curve — — — retains its maximum
and minimum, and there are still two plaitpoints, viz. at this maxi-
mum and minimum. And only at a certain value of 7" lying above
T, thal maximum and minimum have coincided to a double point
and the hidden complication is about to disappear.

For the point () a similar question occurs. Have all the complications
disappeared at 7%, or is it required that 7" descends below 77 before
the hidden complications have also disappeared on this side?

I must own that I have long been in doubt on this point, as will
appear when we compare the answer I shall now give to this
question with remarks I made previously on the experiments of
KurNen and Rossow.

According to Korrewre’s result a double plaitpoint will always
originate on the spinodal curve. But in itsclf this does not seem
decisive. For according to both figures, to fig. 1 as well as to fig. 2,
a double plailpoint disappears or appears on an existing spinodal
carve. But in fig. 1 this takes also place on an existing binodal
curve. And now it is Korrewee’s opinion, that such an appearance
of a double point, viz. on an existing binodal curve, would be such
a special case that we musi nol conclude {o il bul in the utmost
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necessity. This is in fact an argument that speaks for fig. 2, but
which did not seem {o me perfectly conclusive. For who warrants us, that
these very special circumstances do not occur here? It is chiefly to
decide this point, that I have also examined the course of the (p,7"),-
lines. And this examination has taught me, that the particularities
which occur in these lines, do not clash with the assumption which
leads to fig. 2 — whereas we should be confronted with difficulties,
when we concloded to fig. 1.

Then fig. 3 is drawn up on the supposition that there are still
hidden complicalions beyond the values of 7, and 77%. In this figure
is drawn in the first place the projection on the (7 2)-plane of the
phases coexisting at the three phase\pressure, viz. the continuous
curve DEAC. So this line represents the locus for the points 4'4A4" of
the figs. 4, 5, 6 of the paper of March 1905. The value of 7 for
the point Z is therefore 7%, and for the point A4, 7" has the value
of T, That this broken line consists of three almost straight pieces
is not essential, but it Ahas been assumed that it does not change its
direction continuously at the points Z and A4.

In the second place the projection of the plaitpoint line has been
given by: — .. It consists of a piece which may be considered as
the projection of the points P of the figures of March 1905, i.e. the
left part up to the point E. The pari lying on the right from the
point A represents then the projection of the points @ of the figures
I.e. Every part of this line lying belween I and A is projection
of the hidden plaitpoints.

As we make one double plaitpoint disappear at 7'> T¢, and
the other at 7" < 7, this iiddle part starts on the left still
running to higher values of 7', (the piece ZM) and on the right
there is a piece md, that also runs to higher values of 7" The remaining
part of this plaitpornl projection curve, viz. the piece Mm descends
therefore with increasing value of z. That this plaitpoint curve
possesses a maximum and a minimum value will be shown presently.
This middle piece is the locus of the plaitpoints R of the figs. 4, 5,
61 c. The part belween Z and A/, and also the part between A
and m is the projection of the higher plaitpoint of the hidden
complication in the cases that this complication still exisls either
above 7% or below T.

In the third place the three phase pressure is traced. In the points
of the line DE thinner lines have been drawn parallel to the p-axis,
increasing in length as we veach the point Z. The three phase

pressure itself is denoted by — — — —. We must, of course, take
care that points of the branch of the three phase pressure lying
) 13
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above KA, and also of the branch lying above AC must fulfil the
condition that for the same value of 7' the pressure must have the
same value for the three branches. -

In the fourth place for some values of 7' sections parallel to
the (p,r)-plane are given and those parts of these sections are
drawn which correspond to the pieces A4'PA and AQA" of the figs.
4,5,6 1.c. We must then, of course, take care that the maxima of
the curves fall above the projection of the plaitpoint curve. It is
hardly necessary to remark that at any rate aslong as 7'lies between
T, and 7. the plaitpomnt pressure for the left-hand branch, and
also for the right-hand branch is greater than the three phase pressure._
But if we want to compare the value of the plaitpoint pressure and
that of the three phase pressure at the same value of », we have
to carry out another construction. Let G' be a point of the projection
of the three phase pressure. Let us draw the line GH parallel to
the T-axis, then H (a point of the projection of the plaitpoint ¢urve)
has the same value of x, and so above H a point must be sought
of the plaitpoint curve itself. How Ingh this point lies depends on the
value which the plailpomt pressure has for this value of z. In the
point H a somewhat thicker line has been drawn parallel to the
p-axis, whose length would have to denote the value of this plait-
pomnt pressure. This length is left undetermined in the figure —
but 1s clear that it wall be smaller than the amount of the three
phase pressure for the same value of z For at the value of
T, as it is for the point G, the pressure above G in the section
for the chosen value of @ is equal to the three phase pressure.
The value of T for the point I/ is smaller than that for G. Between
these two values of T the (p,T).-section of the (p,Tx)-surface has
a continuous course, and in such a (p,7")-curve the pressure rises
with the temperature. Only in the case that a maximum in the (p,&)7-
curve occurred, the pressure above H, so the plaitpoint pressure could be
smaller than that above (. But in our diagrams we shall assume the
more general case. Themodifications which would ensue from the
assumption that in the region discussed here a maximum pressure occurs,
would render numerous new figures necessary, and it ‘will not be
difficult to give them when the more common case has been understood.

According to fig. 3 there is in our case a maximum and a

< L. ATy
minimum for 7,;, so that there are values of « for which 74—”—_—_ 0.
&£

2

For a plaitpoint (3—) is equal to 0, because it is a point of the
L/ T

3

spinodal curve, and at the same time (d_.ﬁ) is equal to 0.
3 o

-10 -
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The differential equation of the spinodal curve is

a'g d*v diy
dw dp — [ — ) dT'=0. . . . (1
(clo, ),,1' v (dm" );;T P dm”)pT @)

The differential equation of the plaitpoint curve is

d4 l:l
——g) da +( ) dp—(‘_ﬂ> dir=0. . . . (2
da' )y da’ Jpr da?® JpT

From (1) follows:
(d’ﬂ
(dﬁ _\da, /T

dT )spm (cl“V
d&‘z pT

1If we d 1, , we find:
d?v asg
aT (—ZE pT @ »T
o B /L .®
dz Jpi (d v) d 71) d v) d 7;)
da® J,1 \ da® »T da® Jpr\da® )T
and
(d%}) ( ‘5
dp da*
(?) = . ()
@ Jpl

.. -0,E,
»T T de®)pr\da' JpT

ar
From this equation (3) follows that ( o ) can become O when
pl

d* /)
— 0. In this case | =) is not equal to 0. A similar case is
da? L az /i

found, for, substances, for which no three phase pressure occurs when
there ex1sts a minimum critical temperature. It is wellknown that
in tlns case the binodal curve splits up, and that there 1s a point of
mﬂechon Jfor the isopiest in this point. There is a double plaitpoint
also then, which originates or disappears at a cerlain temperature ;

but though we can speak of a double plaitpoint, the value of

d* v
__Q is not — O then.
da' Jyr

q
In the case under consideration the value of (—d 4) s equal to
p1

0 in the point at which a double plaitpoint appears or disap-
13*

-11 -
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pears, as may be derived from the figs. 1, 2, 3, l.c. Between

certamn values of p and at suitable values of 7 there are isopiests,

2 3

.. 4%
on which — is four times equal to 0. On such 1soplests—3 is

3,
&l T
1

. a's .
three times and Frg. twice equal to 0. We now can choose

the value of p fmd T such, that these two points in which
4 2

EZ~—§ is 0, coincide. As then two values of # in which — -—O
sty da’,

also coincide, such a point is a plaitpoint. For such pomts
. and (d—ag) and &' is equal to 0. These thr: ti
(dw“),,T a 75 ),z al (dn,) q . These three equations
determine then the value of @, p and 7 at which such a double

plaitpoint appears or disappears.
d4
If in (3) and (4) we put the quantity (cﬁf) =0, then both
& pT

daT clp
(7> and will also be equal to 0, from which follows that
& Jpl

&/ pl
not only the plzutpomt temperature, but also the plaitpoint pressure
will present a maximum and a minimum. As we only assume the

there will be found at the same time a

case th

maximum value or a minimum value for the two curves. In the
points I/ and A there is therefore no maximum or minimum for
the plaitpoint curves, and this is also to be expected for the curve
of the {ilree phase temperature, though this perhaps might call for
further examination. For the properties which are to be derived by
us this is, however, not of great importance.

Let us now proceed {o describe the properties of the. sectlons of
the (p, T, x)-surface normal to the z-axis or in other Wmds the
course of the (p, 1"),-curves.

We remark then in the first place that for values of @ below
#p and above a¢ the (p, T)-curves will present their usual slnpe
without any complication. For values of # between ap al}g ar and
also for values of # between a4 and x¢ there is.a complication in
these (p, T').-lines. For values of @ between xp and xp the three
phasc temperature lies higher than the plaitpoint temperature; the
reverse is the case for z belween 24 and z¢c. On such (p, T),-
curves the usual plaitpoint occurs, but at a plaitpoint such curves,
considered in themselves, do not present any particularity. But a
point also occurs on them at which the three phase pressure is reached,

-12 -
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and at such a point the curve suffers an abrupt change of direction.
As for every value of z the line DEAC is met only once, this
sudden change of direction occurs only once in a (p, T'),-curve.
This determines the exlernal course of such a section sufficiently.
Beyond the point of change of direction the points for which 1V,
and V,, are equal to O will give rise {o a maximum value and {o
a critical point of contact. But we confine ourselves here to the
modifications which are the consequence of the three phase equilibria.

In the points, at which such an abrupt change of direction
occurs, a part of the internal or hidden course of such a (p, 7').-
curve begins and the series of figures (a, 8, ¢, d eic.) indicates
this hidden course for the values of z, for which the three phase
curve is met. Scen on the (p, 7').-curve such a point presents itself
as a node. The part of the curve coming from below continues
through the node, also the part coming from above, while there
is a third part which joins the points, where this onward course
stops. The temperaiure of the node is, therefore, quite determined
by the point at which DEAC is cut by a line parallel {o the 7-
axis with the given value of 2 as ‘abscis. But the size of the hidden
part is very different. As it has quile isappeared beyond zp and
&g, it is bul small for values of @ only liltle greater than &#p or
only little smaller than zc. But chiefly the different hidden paris
are distinguished by the occurrence or non-occurrence of a plail-
point and when it occurs by the place where it occurs.

In what precedes it has already been remarked that the plaitpoini
does not lie hidden for values of x beyond xr and a4. But for all
values of @ between xp and x4 it lies on the hidden part, so on that
which might be called the loop when the (p, T'),-curve is drawn.
This appears at once when the (p, 2)7-figures are consulted l.c. But
depending” upon the value of x the plaitpoint can have three different
places. It may either lie on that part of the loop which may be
considered as the continuation of the lower part of the (p, T'),-curve
~— or it may lie on the branch of the loop joining the points at
which the onward course from below and above stops — or it may
lie on the part which may be considered as the continuation of
the part coming from above.

The first case occurs for @ between @z and z;; the second when
& lies between @y and @, and the third case when 2 lies belween
an and z4. So if we have drawn a (p, 7').-curve, e.g. one of {he
figures of the series (a,0,c, d etc.), and when we proceed in the
same direction in such a part, also following the loop, we follow
the motion which the plaitpoint has when & changes continuously.

-13 -
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A plaitpoint always being a point where the stable and unstable
region meet, it would be incorrect to speak of slable, metastable and
unstable plaitpoints. But when we pay altention {o the coexisting
phases in the neighbourhood of the plaitpoint, the preceding names are
appropriate for such phases according to the described situation of
the plaitpoints. As long as the plaitpoint lies on the external part
of the (p, 7 x)-surface, the coexisting phases in its neighbourhood
are slable; as long as it lies on those parts of the loop which
may be considered as a continuation of the exlernal branches, the
coexisting phases in its neighbourhood are metastable, and when
the plaitpoint lies on the remaining part of the loop, the coexisting
phases in its neighbourhood are unstable,

In the series of the figures (a,d, ¢, d ete.) is, besides the loop
of the (p, T').-curve and the place of the plaitpoint, also the shape
of the spinodal curve indicated. This spinodal curve is the section of
the spinodal surface with the plane which has the chosen value of 2.
All the points of the loop which lie below the spinodal curve 1epresent
unstable phases and those which lie above it, metastable or stable ones.
Thus e.g. in fig. 4, in which the plaitpoint lies on the retrograde
branch of the loop, the spinodal curve is a curve which cuts the
loop in two more points. In concordance with the figures 4, 5,6 1. c.
are the poinis of intersection indicated by the letters D and C. By
raising the teinperaturc in these figures, the point € is moved to the
left, and when the temperature is lowered, DD moves to the right,
which makes it possible for them to come into the chosen a-plane.

If from a (p, T').-curve for a chosen value of 2 the curve is derived

dp
which helongs to a value of z-+dz, the value of (EJ—) must
. T

i

be known for every value of 7.

p ,
If (_]2) is=0, the (p,T),-curve for the values & and z -} dx,

dx
must have the same value for p. If we draw both the (p,T"),-curve

and the curve (p7')z4 4 as has been done in the figures4, 5 and 6,
there will be intersection of these two (p,T")-curves in all the points in

ld N N
which (di]) = 0. In the figures mentioned the curve for 2 - dzis
X )T

represented by — .-— ., and now the iwo (p,T")-curves will cut every-

where where the spinodal curve cuts the first (p,7")-carve, according to
d, a

the property that for coexisting phases (ZIZ)T: 0 when (E;; pT: 0.

Also in the point where the spinodal curve touches the curve ( p,7T"),, so

in the plaitpoint, such an intersection of the two following (p,7").-curves

-14 -
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takes place. This may be assumed as alveady known from the prope: ties

of a (p,1)-curve, when there are no complications by hidden

equilibria. It might possibly be expected that in a plaitpoint, where

besides (fl—g—- , also (ﬁ is equal to O, double intersection and so
dz* ), 7 da?®

contact would take place. If however, we develop the equation

d
which teaches us the value of (_p) viz.
de Jp

dp a'g
;) = (v, — ) (E_—g)

for the case of a plaitpoint in the form :

d'v\  (w,—ay) (dp ('”ﬂ 1')2 g

@) 5 (@) e P (3

dz,* »T 2 de, )T da,* »T
a*§

(dp (d’ﬁ)

- = @,
dz’b'l T ( 2 1)

or

(d[‘ﬁ )PT

: . e . dp
it appears that in the case of a plaitpoint, the quantity T
@ )T

is only once equal to O on account of the factor 2, — a,.

It may be remarked here for the betler understanding of the series
of figures (a, b, ¢ ete.) that the first set of four viz. a to d holds
for values of a lying between a point halfway ag and 24 and the
point [ itself, # moving to conlinually smaller values. Fig. d
holds for ~zz. The second set of four values holds for @ between
xp and @p, and Fig. ¢ is the representation for 7'= T,.

The remaining figures (0',¢' ete.) :hold for values of z lying on
the right side. Fig. ¢' is the representation for 7'= 7}, on the right
side and fig. d' holds for & = z4.

Physics, — “The (Tx)-equilibria of solid and fluid phases for variable

values of the pressure”, by Prof. J. D. vaN per Waars.

In two communications (October and November 1903) I discussed
and represented in diagrams for the casc of equilibrium between a
solid and a fluid phase 1st the (p, @)-figures for constant value of
T und 274 the (p, T)-figures for constant value of . So only the
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