Huygens Institute - Royal Netherlands Academy of Arts and Sciences (KNAW)

Citation:

Vries, H. de, Central projection in the space of Lobatschefsky (1st part), in: KNAW, Proceedings, 8 I, 1905, Amsterdam, 1905, pp. 389-394

This PDF was made on 24 September 2010, from the 'Digital Library' of the Dutch History of Science Web Center (www.dwc.knaw.nl)
> 'Digital Library > Proceedings of the Royal Netherlands Academy of Arts and Sciences (KNAW), http://www.digitallibrary.nl'

KONINKLIJKE AKADEMIE VAN WETENSOHAPPEN TE AMSTERDAM.

PROCEEDINGS OF THE MEETJNG

 of Saturday October 28, 1905.(Translated from: Verslag van de gewone vergadering der Wis en Naturrkundige Afdeeling van Zaterdag 28 October 1905, Dl. XIV).

```
                    CONTEMNTS.
    H. de Vries "Central Piojection in the space of Lobarscmefski",(1st Patt). (Communicated by Piof. J. Cardiadal), p 389
H. J. Hanburger "A method for determining the osmotic pressure of veiy small quantities of ligud ', p. 394.
Evgen Fiscier. "On the pumodial cianum of Taysius spectium". (Communioated by Piof. A A. W. Hubrecitr), p \(39 \%\).
H. A. Lorentz. "On the radiation of heat in a system of bodnes having a uniform tem, peature", p 401.
H. Zwampemaker. "On the ability of distingurshing intensities of tones, Repoit of a reseapeh made by A. Deenik", p. 421.
Eriatum, p. 426.
```

The following papers were read:
Mathematics. - "Central Projection in the space of Lobarschersky". (1 ${ }^{\text {st }}$ part). By Prof. H. de Vaies. (Communicated by Prof. J. Cardinall).
(Gommunicaled in the meeting of September 30, 1905).

1. Let an arbitrary plane $\boldsymbol{\tau}$ be given in hyperbolic space; let the perpendicular be erected in an arbitrary point O_{1} of τ, and let finally an arbitrary point O be taken on this perpendicular. We can now ask what we can notice if we project the figures of space out of O as a centre of projection on τ as a plane of projection or picture plane, and inversely, how the exact position and situation of the figures in space can be determmed by means of their projections.

Proceedngs Royal Acad. Amsterdam. Vol. VIII.

In the following a few observations will be given on these two questions.
Let us suppose an arbitrary plane ε through the line $O O_{1}$, standing therefore at right angles to r; in that plane we can draw through O two straight lines p_{1}, p_{2} parallel to the line of intersection e of ε and τ passing ihrough O_{1}, therefore also parallel to \boldsymbol{r} itself. The augles formed by p_{1} and p_{2} with $0 O_{1}$ are equal; they are both acute, and their amount is a function of the distance $0 O_{1}=d$. Lobatschiessy has called each of these two angles the parallel angle ${ }^{2}$) belonging to the distance d, and has indicated them by $\Pi_{(d)}$; if d is given, the parallel angle is found out of the relation

$$
\operatorname{tg}^{1} / 2 \Pi_{(d)}=e^{-d},
$$

in which for the number e the basis of the natural logarithmic system may be taken, if only the unity of length by which $O O_{1}$ is measured be taken accordingly ${ }^{2}$). As far as the range of values of $\Pi_{(d)}$ is concerned, \bar{I} only observe that the parallel angle $=1 / 2 \pi$ for $d=0$, decreasing and tending to 0 if d increases and tends to ∞.

If the plane ε rotates round $O O_{1}$, then p_{1} and p_{2} will describe a cone of revolution round $O O_{1}$ as axis; this cone is the locus of all straight lines through O parallel to τ, and distinguishes itself in many respects, in form and properties, from the cone of revolution of Euclidian Geometry; the plane τ is an asymptotic plane, to which its surface tends unlimited, and from the symmetry with respect to O follows easily that another plane r^{*} like this exists, also placed perpendicularly on $O O_{1}$, but in the point $O_{1}{ }^{*}$ situated symmetrically to O_{1} with respect to O. So the cone is entirely included between the two planes $\boldsymbol{\tau}$ and $\boldsymbol{\tau}^{*}$, and these two planes laving not a single point in common (neither at finite nor at intinite distance), are divergent; 'however, they possess the common perpendicular $O_{1} \mathrm{O}_{1}{ }^{*}$, and their -shortest distance is $2 d$. The cone discussed here will be called for convenience, sake the parallel cone x belonging to the point 0 .
2. The parallel cone divides the space into three separate parts; let us call those two parts, inside which is the axis $0 O_{1}$, the interior of the cone, the remaining part the exterior; it is then easy to see that the points of space behave differently with respect to their projectability áccording to their lying inside or outside the cone; for a point P inside the cone the projecting ray $O P$ forms with

[^0]$O O_{1}{ }^{1}$) an acute angle smaller than the parallel angle, from which ensues that $O P$ (or perhaps the prolongation of $P O$ over O) must meet the picture plane; the point of intersection P^{\prime} is the central projection of P. However, for P outside the cone the acute angle between $O 1 P$ and $O O_{1}$ is greater than the parallel angle; so now $O P$ is divergent with respect to τ, from which ensues that points outside the cone possess no projections at all; points on the cone on the contrary do, but these projections lie at infinity.

From the fact that points outside the parallel cone are not projectible we need not infer that these points, cannot be determined by Central Projection; if such a point is regarded let us say as the point of intersection of two straight lines, and if these can be projected by Central Projection, their point of intersection will also be determined in this indirect way.
3. Let a straight line l be at right angles to τ in a point D of τ. As the line $O O_{1}$ is also perpendicular to τ, it is possible to bring a plane through l and $O O_{1}$, the trace of which connects O_{1} .with D. This plane will intersect the cone x in two generatrices, p_{1}, p_{2}; we now assume that l cuts these two lines in two points P_{1} and P_{2}, and - to fix our thoughts - that P_{1} lies between D and P_{2}. The line l possesses two points at infinity, $V_{1 \omega}, V_{3 \infty}$, which both lie inside the parallel cone; let us suppose that $V_{1 \infty}$ lies under the picture plane and $V_{2 \infty}$ above it, then the succession of the points on l is this: $V_{1 \infty}, D, P_{1}, P_{2}, V_{2 \infty}$.

The projecting ray $O V_{1 \infty}$ cuts τ in a point V_{1}^{\prime} of e lying between D and O_{1}; we shall call it the first vinishing point of l. In like manner the ray $O V_{2 \infty}$ prolonged over U will cut the line e in a point V^{\prime}, lying in such a way that O_{1} lies between V_{1}^{\prime} and V_{2}^{\prime}; we shall call V^{\prime} : the second vanishing point of l. The point O_{1} does not lie in the middle between V^{\prime}, and V_{2}^{\prime}, on the contrary it is closer to V_{1}^{\prime}; if namely we let down the perpendicular $O S$ out of O to l a quadrangle is formed with three right angles, namely at O_{1}, D and S, and from this ensues that the fourth $\angle S O O_{1}$ is acute. Now $O S$ is the bisectrix of $<V_{1 \infty} O V_{2 \infty}$, and therefore the perpendicular in O on $O S$ the bisectrix of $\angle V^{\prime}{ }_{1} O V^{\prime}$; this perpendicular must be placed, as $\angle S O O_{1}$ is acute, between $O O_{1}$, and $O V^{\prime}$, and from this ensues $\angle V^{\prime}{ }_{1} O_{1}<\angle V^{\prime}{ }_{2} O O_{1}$. If we now let the rectangular triangle $V_{1}^{\prime} \mathrm{OO}_{1}$ rotate about the side $O O_{1}$ till it lies on the triangle $V^{\prime}{ }_{:} O O_{1}$, then we can immediately find that $O_{1} V^{\prime}<O_{1} V^{\prime}{ }_{2}$.

[^1]It is clear that the central projection l^{\prime} of l coincides with the trace e of the projecting plane $O l=\varepsilon$, and at the same time that l is determined by its point of intersection and by one of the two vanishing points; the second will be fornd by letting down the perpendicular $O S$ out of O to l, and by setting off at the other side of $O S$ an angle equal to the parallel angle, formed by $O S$ and the only existing ray parallel to l. But further can be remarked that l is also determined by its two vanishing points, or what comes to the same by its two points at infinity; to find l we should bat have to bisect the angle formed by the iwo projecting parallel rays of l, to mark on the bisecting line a segment $O S$ corresponding to $1 / 2 \angle V_{1 \infty} O T_{2 \infty}$ as parallel angle, and to erect the perpendicular in S on OS.
The line l is divided into four segments by its iwo points al infinity, its point of intersection and its two points P_{1}, P_{2} (whose projections lie at infinity), and l^{\prime} in like manner by its points at infinity $P^{\prime}{ }_{1 \infty}$, $P^{\prime}{ }_{2 \infty}$, the point D, and the two vanishing points $V_{1}^{\prime}, V^{\prime}$ of l; the connection between these different segments of l and l^{\prime} is as follows. To the infinite segment $V_{1 \infty} D$ corresponds the finite segment $V^{\prime}{ }_{1} D$, and to the finite segment $D P_{1}$ the infinite segment $D P^{\prime}{ }_{10 \infty}$; to the points between P_{1} and P_{2} no projections correspond, because the projecting rays of these points are divergent with respect to τ; to the infinite segment $P_{2} V_{2_{\infty}}$ on the contrary a segment of l^{\prime} again corresponds, namely the infinite segment $P^{\prime \prime}{ }_{20} V^{\prime}$. There now remain on l^{\prime} only the points between the two vanishing points, to which also belongs O_{1}; to these no points of l correspond, their projecting rays being divergent with respect to l.
§4. If a line $l_{\perp} \tau$ is to cut the surface of the parallel cone in two points, the length of $D O_{1}$ may not exceed a certain upper limit, so that the results just found do not hold for all lines $\perp \mathrm{r}$. Let us again suppose through $O O_{1}$ an arbitrary plane ε, and let us now first regard. $O O_{1}$ itself. If we let down out of O_{1} on to p_{2} the perpendicular $O_{1} T$, then because p_{2} is parallel to e, the angle $T O_{1} P_{3 \infty}^{\prime}$ is the parallel angle belonging to $O_{1} T$, and therefore angle $T \mathrm{O}_{1} \mathrm{O}$ is smaller than this parallel angle, becanse $\mathrm{O}_{1} \mathrm{O}$ euts the line p_{1} (namely in $\angle O$); and $O O_{1} P^{\prime}$, boing equal to 90°, the parallel angle $T O_{1} P_{2 \infty}^{\prime}>45^{\circ}$, and angle $T O_{1} O<45^{\circ}$. If in ε we move l, first coinciding with $O O_{1}$, in such a way that it remains in D perpendicular to e, namely towards the side of $P^{\prime}{ }_{10}$ (therefore from $P^{\prime}{ }_{2 \infty}$), then the perpendicular $D T^{\prime}$ on p_{2} becomes continually greater, and so (sce N^{0}. 1) the parallel angle $T D P_{{ }_{2 \infty}}$ continually smaller; as soon as the perpendicular DT' has attained such a leingth that the
parallel angle corresponding to it is precisely 45°, the complement becomes 45° too, and thereforc l parallel to p_{2}, but on the other side of DT' compared to e; l will still intersect p_{1} in a finite point P_{1}, for as it enters the triangle $0 O_{1} P_{1 \infty}^{\prime}$ at D, does of course not contain the point $P_{1 \infty}$, and is divergent with reference to $O O_{1}$, it can leave the triangle only in a finite point of p_{1}; but it will cut p_{2} in an point at infinity $P_{2 \omega}$, being at the same time $V_{2 \infty}$. So its projectio . consists of the segment of the line e of $V^{\prime}{ }_{1}$ over D to $P_{1 \infty}^{\prime}$, and the isolated point $P_{2 \infty}^{\prime}$ is equal to $V^{\prime}{ }_{2 \infty}$; now too it is determined ${ }^{\prime}$ by two of the three points $D, V^{\prime}, V^{\prime}{ }_{3 \infty}$.

The point D lies at a certain distance r from O_{1}; if we describe a circle in τ about O_{1} as centre and with r as radius, and if we erect in all points of that circle the perpendiculars on τ, a surface appears which may be called a cylinder of revolution, of which the circle just mentioned is the gorge line; the lines $l(\mathbf{L} \tau)$ lying inside that cylinder have two different vanishing points (with the exception of $O O_{1}$, whose projection is a single point), the lines l on the cylinder have a finite and an infinite vanishing point, and the lines l outside the cylinder miss the second vanishing point.

As for the shape of the cylinder it is easy to see, that the plane τ^{*} (see $\mathbb{N}^{0} .1$) is an asymptotic plane; and τ itself being eridently a plane of orthogonal symmetry, the plane $\tau^{* * *}$ normal to $0 O_{1}$ in the point $O_{1}{ }^{\text {*** }}$ symmetrical to $O_{1}{ }^{*}$ with respect to τ will be a second asymptotic plane; so the distance of these two planes is $4 d$.

5 . In Euclidean Geometry' the lines 'ir are at the same time those which are parallel to $O O_{1}$, but in Hyperbolic Geometry this is different; here we have to regard the lines baring in common with $O O_{1}$ the point $V_{1 \infty}$ lying under the picture plane at infinity, and those having with $O O_{1}$ in common the point $V_{2 \infty}$ lying above r. A line l of the former kind lying in the vicinity of OO_{1} has a picture point D, two points P_{1}, P_{2}, and a second point at infinity lying inside the cone x; its first vanishing point coincides with O_{1}, whilst the second lies on $D O_{1}$ in such a way, that O_{1} lies between D and that point.

If the perpendicular $O S$ let down out of O to l becomes continually larger, the first particularity appearing here is that l becomes parallel to the generatrix p, of cone $\%$ lying in the plane $O l$; then it is at right angles to the bisectrix of the obtuse angle formed by p_{2} and $O O_{1}$. All lines having this property form an asymptotic cone of revolution ${ }^{1}$) with vertex $V_{1 \infty}$, whilst $\tau^{* *}$ is an asymptotic plane;

[^2]as base circle we cen obtain a circle with finite radins in τ. For the generatrices of this cone the second point P_{2} coincides with the second point at infinity; so the projection consists of the infinite segment $O_{1} D P^{\prime}{ }_{1 \infty}$ and the isolated second point at infinity of this line.

For lines l outside this cone this isolated point vanishes, and on account of this the second vanishing point; for its determination remain however D, and the first vanishing point O_{1}. Now however, the perpendicular OS still increasing, l can become parallel to p_{1}, and hence parallel to e or to τ; it is then at right angles to the bisectrix of the acute angle between p_{1} and $O O_{1}$, as well as to that of the right angle between e and $O_{1} V_{1 x}$, which bisectrices are respectively divergent. All lines showing this property form a second asymptotic cone of revolution; for which however τ is now the asymptotic plane; they-have a picture point at infinity, but are no less determined by this point and the first vanishing point O_{2}.
If l also lies outside this second cone, it becomes divergent with respect to τ, so it loses its picture point D; but now its second point at infinity lies again inside the cone $\%$, which makes it projectible, so that in this case l has two vanishing points but no picture point; however, the two vanishing points are sufficient for its determination (see N^{0}. 3). The originals at infinity corresponding to it are both under the picture plane; in connection with the preceding it would be preferable, in order to avoid confusion, to, say that l has in this case two "first points at infinity" and therefore also two "first vanishing points".
The lines containing the second point at infinity $V_{2 \infty}$ of $O O_{1}$ behave in like manner; we again find two asymptotic cones of revolution, one with the asymptotic plane τ, a second with the asymptotic plane τ^{π}, and we terminate with lines with two "second vanishing points" and without picture point.

Delft, September 1905.
Physiology. - "A method for determining the osmotic pressure of very small quantitics of liquid." By Prof. H. J. Hamborgar.

It not unfrequently happens that one wishes to know the osmotic pressure of normal or pathological somatic fluids of which no more than $1 / 2$ or $1 / 4$ cc. are available. I recently had such a case when an oculist asked me what should be the concentration of liquids used for the treatment of the eye. It seemed to me to be rational - and the investigations of Massart ${ }^{2}$) justified this opinion - to prescribe
${ }^{1}$). Massart, Archives de Biologie 9 1889, p. 335.

[^0]: ${ }^{1}$) F. Engel: ${ }^{\text {NN. I. Lobatschefsky. Zwei geometrische Abhandlungen'. Leipzig, }}$ -Teubner, 1899, p. 167.
 $\left.{ }_{2}\right)$ F. Engel, l. c. p. 214,

[^1]: ${ }^{1}$) $\mathrm{By} \mathrm{OO}_{1}$ we understand the straight line prolonged at both ends unlimitedly, by $O P$ however a semi-ray starting from 0 .

[^2]: i) H. Liebmann, "Nichteuklidische Geometrie", Collection Schubert XLIX, page 63.

