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Physics. — “On the radiation of heat in a system of bodies having
a uniform femperature”. By Prof. H. A. Lorentz.

(Communicated in {he meetings of Scptember and October 1903),

§ 1. A system of bodies surrounded by a perfectly black enclosure
which is kept at a definite temperature, or by perfectly reflecting
walls, will, in a longer or a shorter time, attain a state of equi-
librium, in which each body loses as much heat by radiation as
it gains by absorption, the intervening transparent media being the
seat of an energy of radiation, whose amount per unit of volume
is wholly determinate for every wave-length. The object of the
following considerations is to examine somewhat more closely this
state of things and to assign {o each element of volume its part in
the emission and the absorption. Of course, the most satisfactory
way of doing this would be to develop a complete theory of the
motions of electrons to which the phenomena may in all probability
be ascribed. Unfortunately however, it seems very difficult to go as
far as that. I have therefore thought it advisable to take another
course, based on the conception of certain periodic eleciromotive
forces acting in the elements of volume of ponderable bodies and
producing the radiation that is emitted by these elements. If, without
speaking of electrons, or even of molecules, we suppose such forces
to exist in a matler continuously distribuled in space, and if we
suppose the emissivity of a black body to be known as a function
of the temperature and the wave-length, we shall be able to calculate
the intensity that must be assigned to the eleciromotive forces in
question. The vesult will be a knowledge, not of the real mechanism
of radiation, but of an imaginary one by which the same effects
could be produced.

§ 2. For the sake of generality we shall consider a system of
aeolotropic Dbodies. As to the notations used in our equations and
the units in which the eleciromagneiic quantilies are expressed,
these will be the same that I have used in my articles in the
Mathematical Encyclopedia. We may therefore starl from the following
general relations between the electric force €, the current €, the
magnetic force H and the magnetic induction
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In these formulae ¢ denotes the velocity of light in the aether. ™

In the greater part of what follows, we shall confine ourselves to
cases, in which the components of the above vectors and of others
we shall have occasion to consider, are harmonic functions of the
time with the frequency n. Then, the mathematical calculations can
be much simplified if, instead of the real values of these components,
we introduce certain complex quantities, all of which contain the
time in the factor e™ and whose real parts are the values of the
components with which we are concerned. If Y., A, A, are com-
plex quantities of this kind, relating in one way or another to the three
axes of coordinates and in which the quantity ¢ may be multiplied
by complex quantities, the combination (¥, A, %) may be called a
complex vector ¥ and Ay, Ay, A, its components.

By the real part of such a vector we shall understand a vector
whose components are the real parts of A, A, Ao It will lead to
no confusion, if the same symbol is used alternately to denote a
complex vector and its real part. It will also be found convenient to
speak of the rotation and the divergence of a complex vector, and
of the scalar product (¥, ¥) and the vector product [U.B] of two
~eomplex veetors A and D, all these quantities being defined in the
same way as the corresponding ones in the case of real vectors.
B. g, we shall mean by the scalar product (¥. ¥) the expression
By + AB, U D...

It is easily seen that, if €, $H, € and B are complex vectors,
satisfying the equations (1) and (2), their real parts will do so
likewise. The denominations eleciric force, ete. will be applied to
these complex vectors as well as to the real ones.

One advantage that is gained by the use of complex quantitics
lies in the fact that now, owing to the factor ¢, a differentiation
with respect to the time amounts to the same thing as a multiplication
by in; in virtue of this the relation between € and € and that
between D and B may be expressed in a simple form. Indeed, we
may safely assume that, whatever be the peculiar properties of a
ponderable body, the components of € are connected to those of € by
three linear equations with constant coefficients, containing the com-
ponents and their differential coefficients with respect to the time.
In the case of the complex vectors, these equations hmy be written
as linear relations between the components themselves; in other
terms, one complex vector becomes a linear vector function of the
other. A relation of this kind between two vectors ¥ and 9 can
always be expressed by three equations of the form

(4) by
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By == v, e -+ v, Q[;,/ -+ v, A,
By = v, U v, Uy 2y, U,y
B, = vy, U 4 vy, Uy 4 vy, Yoy
which we shall condense into the formula
o D= () AU

According to this notation we may put € = (p) ¥, or, as is more

convenient for our purpose, ’
C=p6, . . . .« . . . . . (3

the symbol (p) containing a certain number of cocfficients p which
are determined by the properties of the body considered. As a rule,

‘these " coefficients are complex quantities, whose values depend on

the frequency n. ‘
As to the relation between B and H, we shall put

or

H=@B .. . .. @)

We have further to introduce an electromotive force which will
be represented by a vector €, or by the real part of a complex
vector €, The meaning of this is simply that the current 6 is sup-
posed to depend on the vector € 4 €, in the same way in which it

~depends on € alone in ordinary. cases, so that

E+C=m@E . . . . . . . . ®
Similarly, we may assume a magnetomotive force 5y, replacing

H+De=@d. . . . . . .. (6)

This new vector $, however, does not correspond to any really
existing quantity ; it is only introduced for the purpose of simp]ifying
the demonstration of a cerfain theorem we shall have (o use.

As to the coefficients we have taken tegether in the symbols ()
and (q), we shall suppose them to be connected with each other in
the way expressed by

Prs == Parr Pas = Paar Pa1 = Py e« + o . . (7)
and :
Te = a1 P23 = Qaar Qo1 =15 « - . . . . (8)
The only case excluded by this assumption is that of a body

placed in a magnetic field.

For isotropic bodies we may write, instead of (5) and (6),
CAC=pC . . . . . . . .
D+ De=qg¥d . . . . . .. . (10)
with only one complex coefficient p and one coefficient ¢.
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¢ 3. Before coming to the problem we have in view, it is necessary
to treat some preliminary questions. In the first place, we shall
examine the vibrations that are set up in an unlimited homogeneous
and isotropic body subjected to given electroxnotiVeTLnd magnetomotive
forces, changing with the frequency 7n. This problem is best treated
by using the complex vectors.
We may deduce from (1)
rot rot 8 == — rot €,
¢
or
. 1
grad div ) — L H=—-rot € . . . . . . (11)
p ) ;
and similarly from (2)
2 ' 1 :
grad div € — L€ = — —20tH., . . . . . (12)
¢
Again, always using the equations (1), (2), (9) and (10), we find
'  div D=0 , div € =0,
div ) = — div H,, div T = — div ’C‘e,
1 1
rot € = —(rot € - pot &) = — B ~}~ — 7ot &,
P :

po

;&IZ(D 4 He) + — 7ot &,

o1, U T
rot D == — (rot -+ rot He )= — € -} — rot £,
7 q¢ (_]

=—(& 4 &) + ~mt D

opge
so that (11) and (12) become
1 . 1 1
LH— = — grad div H, ~}— — [3,1 e ——pot &,
PQC ]7
LACG — = (]md dw €, + — & + e 706 He-
pge

The solution of these equatlons may be put in a ('onvoment form
by means of two auxiliary vectors % and ). If these are determined

by

1 .

AW — = €y o . .. (18)
|

AD — = Puy v o . .. (14)
pqc

we shall have

I
$ == grad div  — —— + — 7ot A, o o o0 (15)
P ; . :
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9

(16)

| Pt g
Finally, putting ‘
ve=ipgnd, . . . . . . . . (17
we get instead of (13) and (14)

AQl««—-—JlleCe,
1 .
AQ—‘TQ:‘:"“‘.@E,

k)

for the solution of which we may take

wzﬁf%@e(t ,,,,,, . )dS, C ... (18)
Q““Zl;f"“@“(t““) d8. . . . . . (19

Here 48 denotes an element of volume situated at a distance »

from the point for which we wish to calculate ¥ and £, and the

/r, » . 3
index (t — ) means that, in the expressions representing €, and D,
. ]

»
for that element of volume, ¢ is to be replaced by ¢— —.
v

The algebraic sign of v is left indeterminate by (17). We shall
choose it in such a way that our formulae represent a propagation
of vibrations issuing from the elements of volume in which €, and £,
are applied.

1
For aether we have ¢ ==1 and, as may easily be shown — ==1in, v==c.
: p

§ 4. We have next to establish the equation of energy. The calcu-
lations required for this purpose, as well as those we shall have
to perform later on, may be much simplified; if we replace all
discontinuities at the limit of two bodies by a gradual transition
from one to the other; this may be done without loss of generality,
because, in our final results, the thickness of the boundary layers
may be made to become infinitely small. A further simplification is
obtained by leaving out of consideration the imaginary magnetomotive
forces, and by supposing the coefficients u and ¢ to be real. The
coefficients p,,, p,, ete. however will always be considered as complex
quantities. We shall decompose them into their real parts, which
we shall denote by e, ¢;,, etc., and their imaginary parts, for which
we shall write — ¢ 8,,, — ¢, etc., so that p,, = a,, —i8,,, ete.

28
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The equation (5) now becomes :
| 6 =@E—i@®¢ . .« « . . . (20
or, if we define a new vector © by means of the equation
=29, . Ce (21)
E+C=@C€+n@®»D. . . . .« - (22)
In the deduction of the equation of energy we haveto understand
by €, ¢, H and D the real vectors. For these we have the formulae
(), (2) and (21), and besides, since ¢, @ and g arc real, the relations
(4) and (22). ‘
From (1) and (2) we may draw immediately
o§(H . rot €) — (E.rot H)f = — (D B) — (€. @),
the left-hand member of which is
div €,
if we define the vector & by the equation
{.e., if we understand by it the vector product of & and H, multiplied
by ec.
In the right-hand member we have in the first place

as may be seen from (4), if (8) is taken into account, and further,
in virtue of (7), (21) and (22),
1 0 )
(€.6) = ((«)€.6) + §n5f~((ﬁ)®®)~(€e . 6).

Our equation therefore takes the following form, in which the
meaning of the different terms is at once apparent,

1 0 19
(€ €)= ((a) €.C) + ~2n&(((3’)® . ®)+§é?(© . B) -+ div &,

The first member represents the work done by the electromotive
force per unit of volume and unit of time; in the second member
w={((@¢C¢€ . . . . . . (24)

is the expression for the quantity of heat that is developed per unit

' 1 ,
of space and unit of time. Further, g (H. B) is the magnetic and

1
;&—n
The vector & denotes the flow of energy, s0 that the amount of
energy an element of volume dS loses by this flow is given by
div ©dS.

((8) . D) the electric energy, both reckoned per unit of volume.
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§ 5. We may now pass {0 2 theorem which T have formerly
proved in a somewhat more cumbrous and less gemeral way. In
order to arrive at it, we have to use the complex vectors, supposing
at the same time the existence of magnetomotive forces; we have
therefore to apply the formulae (5) and (6).

We shall consider fwo different states with the same frequency #,
both of which can exist in the system of bodies. The symbols €, D,
ole. will be used for one. state and the corresponding symbols,
distinguished by accents, for the other. We shall proceed in a way
much like the operations of the last paragraph, with this difference
however, that we shall now combine quantities relating to one state
with quantities belonging to the other.

We shall start from the relation

C{ (D). not ) — (&, vot D)} = — (9. ) — (€. €).
Here the expression on the left is equal to
odiv[E. H']
and on the other side we may pub
(5. B) == in (9. B) == in ((g) D B) — (V. B,
(E. €)= ((p) €. ¢)— €, ¢,
so thal we find
o din [&. 5] = — in (() ¥ D) — ((PE . €) & (8o B) 4 (€. €)-

The theorem in question is a consequence of this formula and the
corresponding one that is got by interchanging the quantities belonging
to the two states; we have only to subtract one equation from the
other. Since, by (8) and (7)

((g) V. D) = ((9) 3. ¥) and ((p) €. €)= () € ¢),
we find in this way

ofdiv [ £ 97 — div [€. Bl = (e B) — (He. ) + (€o €) — (Fe. ©).

We shall finally multiply this by an element of volume dS, and
take the integral of both sides over the space within a closed surface
6. If we denote by n the normal to the latter, drawn outward, the
result will be '*

cf{ [€. 0, — [€. D]u}do= f{ (90 B)—(96.B) +(80.€)) —(€e- €)} S (25)

§ 6. There are a number of cases in which the first member of
this equation is zero.

a. B. g. we may suppose the sysiem to be limited on all sides
in such a way that it cannot exchange rays with surrounding bodies;
we can vealize this by enclosing the system in an envelop that is

28% '
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perfectly reflecting on the outside. If, under these circumstances, the
surface ¢ surrounds that envelop, we may put in every point of it
€=0,¢=0,H=0,H=0.

b. If the envelop is made of a perfectly conducting material,
both the electric force € and the force € will be normally directed
in every point of its inner surface. Consequently, if the latter is
chosen fov the surface ¢, we shall have

[£.95], =0 and [€.H], =0.

¢. TFinally weé may conceive a system lying in a finite part of
space and surrounded by aether, into which it emits rays travelling
outwards to infinite distance. Taking in this case for ¢ a sphere of
infinite radius, we shall show that for each element do the factor
by which it is multiplied in the equation (25) vanishes. The direction
of the axes of coordinates being indeterminate, it will suffice to
prove this proposition for the point P in which the sphere is cut
by a line drawn from the centre O in the direction of the axis of «.

Now, if we confine ourselves to those parts of €, H, € and H'
which are inversely proportional to the first power of 0P, as may
obviously be done, we may consider the state of things near the
point P as a propagation of vibrations in the direction OPF, the
electric and magnetic force being perpendicular to that direction and
to each other. Denoting by « and 6, «' and &' certain complex
guantities, we may write

€, =0, €, =adn, ¢, = bent,
Dy =0, ‘@y = - beint, D = ae,
€y =0, €' == da'e, €', = ein,
H'e =0, 9", == — beint, H', = alein,

and we have at the point P, since in it the normal to the spherical

surface is parallel to the axis of a,

[Q D]n “”“[U J:-’Jn ~—~(€ Dz“““g @J)M(GIY/J:DZ“L @,/)_0
These considerations show that in many cases the equation (25)

reduces. to

fg(@'e. © — (0, . ) as ﬁ(@q.@)m(@e.@);ds . (26)

§ 7. It is particularly interesting to examine the effects produced
by an- electromotive or a magnetomotive force which is confined
to an infinitely small space S. Let P be any point of this region,
a a real vector having everywhere the same direction 4 and the
- same magnitude ||, and let us apply in all points of S an electro-
motive force a ™. Then we shall say that thereis an “electromotive
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action” at the point /2 in the direction 2. We may represent it by
the symbol

a8 eint
and we may consider its intensity and its phase to be determined
by the real part of |a| S et

In a similar sense we can also conceive a “magnetomotive action”
existing in some point of the system. '

These definitions being agreed upon, equation (26) leads to the
following remarkable conclusions.

a. Let there be, in the first of the two cases we have distinguished
in the preceding paragraph, an electromotive action a S ¢t at the
point P in the direction %, and in the second case an electromotive
action o’ S’¢t at the point /” in the direction %/, there being in
neither case a magnetomotive force. Then the integrals in (26) are
to be extended to the infinitely small spaces S’ and S and the result
may be written in the form

(@.€p)S =(a.€p)8,
if we represent by ¢p the current produced in P’ in the first case
and by €’p the current existing in P in the second.

Hence, assuming the equality

[a]S=]a|¥,
we conclude that
‘ , Cp=Cp . . . . L L. L@
The full meaning of this appears, if we write the two quantities
in the form
Cup = peilntt,y and €hp = u ¢ilu),
Indeed, (27) requires that
=g,y =,
and we have the theorem :

If an electromotive action applied at a point P in the direction A
produces in a point P a current whose component in an arbitrarily
chosen direction %' has the amplitude p and the phase », an equal

- electromotive action taking place at the point /' in the direction %'

will produce a current in [, whose component in the direction %
has exactly the same amplitude u and the same phase ».

b. Without changing anything in the circumstances of the first
case, we shall now assume, that in the second the vibrations are
excited not by electromotive forces, but by a magnetomotive action

a'S'ent, at the point ' in the direction 4. We then find

(@ Bp) S = (3. €p)

and, if we put
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8 = [a] &,
——’;).j],'p/ =Chp, « . . . . . . . (28)
a theorem similar to the former.

§ 8. The absorption of rays being measured by the amount of
heat developed, the expression (24), in which € is the real current,
will be often used in what follows. It may be replaced by

w = (§.¢),
if we write § for the vector (a) €, so that
Fe=0, €&+ 0, € ;€ ete. . . . . (29)

Now, by a well known theorem, the axes of coordinates may
always be chosen in such a way that the coefficients a,,, @,,, ¢,; in
these equations become zero. Denoting the remaining coefticients by
we have for the relation between § and ©

B == a, €4y %y =, €y Fz=oa, €, '
and for the development of heat -
w==a, € e, € 4, €00 L L0 0L (30)

The directions we must give to the axes in order to obtain these
simplifications, may properly be called the principal directions; in
- general, they will not be the same for different frequencies. This is
due to the fact that the coefficients in (29) depend on the value of n.

It is also to be noticed that by this choice of the axes of coor-
dinates, the coefficients B,,, B, 8;,, and p,,, P,y p,;, Will not, in
general, be made to become zero. :

In the case of an isotropic body we may take as principal direc-
tions any three directions perpendicular to each other.

a, a,, o

22 82

§ 9. Thus far we have only prepared ourselves for our main
problem. In the next paragraphs we shall first consider the absorption
by a very thin plate surrounded by aether on both sides, and receiving
in the normal direction a beam of rays. Combining the result with
the ratio between the emissivity and the coeflicient of absorption of
a body, we shall be able to determine the amount of energy, radiated
by the plate in a normal direction, and our next object will be to
calculate the intensity we must ascribe to electromotive forces acting
in the plate (§ 1), in order to account for that radiation. This will
lead us to a general bypothesis concerning the electromotive forces
acting in the elements of volume of a ponderable body and we shall
conclude by showing that, if these electromotive forces were applied,
the eondition required for the equilibrium of radiation would always
be fulfilled.

@
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§ 10. Tef the plate be homogeneous, with its faces parallel to the
first and the second principal direction. We shall take these for the
axes of # and y, placing (he origin () in the front surface of the
plate, i.c. in the surface exposed to the rays, and drawing the axis of
z toward the outside. As has already been said, the absorption will
be calculated by means of the formula (30); it will therefore be deter-
mined by the components of € and by those of €, on which they
depend. Now, our problem is greatly simplified, if we suppose the
thickness A of the plate to be infinitely small and if, in calculating
the absorption, we confine ourselves to quantities of the first order
of magnitude with respect to A. The quantity w relating to unit
volume, we may then neglect all infinitely small terms in € and €;
consequently, we need not attend to the changes of these vectors in
the plate along a line perpendicular to its faces. Moreover, in virtue
of the well known conditions of continuity, the values of €, and €y
within the plate will. be equal to those existing in the aether imme-
diately before it; also, €. will be 0, because it is so in the aether.
For €, and €, we may even take the values, existing in the inci-
dent beam, the reason for this being that the values belonging to the
reflected rays, (the vibrations reflected at the two sides being taken
together) are proportional to the thickness, if the plate is infinitely thin.

It is seen by these considerations that in the ca’sel of a given
incident motion, €,, €,, €. are the only unknown quantities in the
three equations connecting the components of € and €. We need not,
however, work out the solution of these equations.

Finally, it must be kept in mind that, in the case of harmonic
vibrations, the mean value of w for a lapse of time comprising many
periods is given by

1
w=sfa @ Fa @ b o @, . 6l)

if (€2), (€,), (€.) are the amplitudes of the components of the current.

§ 11. We shall in the first place assume that in the incident rays
the electric force is parallel to the axis of z. Let its amplitude be a.
Then, an element o of the front surface will receive an amount
of energy ' '

1
gca”w...,‘,...(32)
per unit of time.

Within the plate, there will be electric currents in the directions
of # and y. These will have amplitudes proportional to a, and for
which we may therefore write :
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Cy=ga , (€)=yga
denoting by 7 and g two factors, which it will be unneccessary to
caleulate. IFrom  (31) we deduce for the heat developed in the part
o A of the plate,

1
s/t ageob
and, dividing this by (32), for the coefficient of absorption
) .
A.zz(«"tlf“»{—a?g“)[k B G 1))

Our next step must be to obtain a formula for the emission. For
this purpose we fix our attention on a surface-element «’ parallel to
the plate and situated at a large distance » from it, at a point of
0Z. The electric vibrations issuing from the plate may be decom-
posed in the first place into vibrations of different frequencies and
in the second place into components parallel to OX and OY.

After having effected this decomposition, we may attend to the
amount of energy travelling across o' per unit of time, in so far
as it belongs to vibrations having the first of the two directions and
to frequencies lying between the limits n and n + dn. Now, if the
plate were removed, and if instead of it a perfectly black body of
the same temperature were placed behind an opaque screen with an
opening coinciding with the element w, the radiation might be repre-
sented by

koo dn

2

N € 79

r
an expression which may also be regarded as indicating the ratio
between the emissivity of a body of any kind under the said cir-
cumstances and its coefficient of absorption. The experimental inves-
tigations of these last years have led to a knowledge of the coeffi-
cient £ for a wide range of temperatures and frequencies.

By Kircgnorr’s law, the flow of energy across the element o,
originated by the part

wlh=S15
of the plate, in so far as it is due fo vibrations of the said direction
and frequency, is found by multiplying (34) by (33). Its amount is
therefore J ’
kS (a, f* + a, 9*) ' dn
er

and we have now to account for this radiation by means of suitable
electromotive forces applied to the plate.

N 1)

o N RN
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§ 12. We shall first put the question what must be the amplitude
a, of an electromotive force acling in the direction of OX with the
frequency n, if this force is to produce, on account of the electric
vibrations parallel to OX, a flow of energy

kSefoide (36)
across the element o' at the point . Since this flow may be
represented by :

—¢ b ',
2
if & is the amplitude of €, at the point /7, we must have
b= VITe .
cr

The amplitude of the current ¢, = ¢, must therefore be

B e

»»i/fl/QlcSaldn B (1))

cr

At this stage of our reasoning we may avail ourselves of the
theorem of § 7, @. Indeed, if the electromotive force €, in the part S
of the plate must have the amplitude a, in order to call forth at
the point P a current ¢, whose amplitude has the value (37), a,
will also be the amplitude we must give to an electromotive force
€, acting in an element of volume S of the aether near P, if we
wish to bring about by its action a current with the amplitude (37)
in the plate. This is the condition by which we shall determine the
value of «,.

§ 13. The solution is readily obtained by means of the formulae
(18) and (16). If, in an element of volume S of the aether, €., = a, ¢,
€y =0, €. =0, we shall have

alg z'n(t-w*:‘)
Hy = e Uy =0, U == 0,0 =0

and
, A m
@x = ""‘? "i‘ — Uy
0 & o !
as may be easily seen, if the equations
p=-— q=1, 92(x:in9[w
wm

are taken into account.

In the differential coefficients of A, we may omit all terms con-

- ) 1
taining the square and higher powers of —. Hence, in a point of the
¢ P - B
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az 0(7 — 0,
()zuz
In this way, the clectric force in the aether immediately before
the plate is found to be

o Ci . _r
G antS “’(t p)

@ TE e

axis of z, which passes through the point 7,

Its amplitude is

J

LR N 159

and that of the current €, within the plate
a,n*Sf .

4wty

This must be equal to the expression (37). The solution of onr

problem is therefore
0 — 4me l/z ke, dn e
n S

In the preceding formulae S means the volume of the portion of
the plate we have considered. Now, after having decomposed this
portion into a large number of elements of volume 8, we may bring
about just the same radiation by applying in each of these an
electromotive force in the direction of OX with the amplitude

4dme 2k a, dn
ay=— l/*slv ,,,,, L. (D)

provided only we suppose the electromotive forces in all these
clements s to be independent of each other, so that their phases are
distributed at random over the elements.

Indeed, from the fact that the force whose amplitude is (39),
acting in the space S, gives rise to a radiation represented by (36),
“we may conclude that an electromotive force with the amplitude
(40), when applied to the element s, will produce a flow of energy

ksa ftowdn
across the element '. A similar expression holds for each element s
and, on account of the circumstance that the vibrations due to the
separate elements have all possible phases, we may add to each other
all these expressions. We are thus led back to the result contained
in (36). ‘

§ 14. Whatever be the nature of the processes in the interior of
an element of volume, by which the radiation is caused, they can

]
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undoubtedly be considered as determined by the state of the matier
contained within the element; for this reason an electromotive force
equivalent fo those processes can only depend on quantities deter-
mined by that state; it cannot be altered by changing the state of
the system outside the clement considered, or the form and magnitude
of the whole body. The formula (40), which indeed is determined
by the state of things within the element s, must therefore be applied
to an element of volume of all ponderable maftter. It will be clear
also that we have to add the following formulae for the amplitudes
of the electromotive forces in the directions of y and z,

4 2hka,dr 4ve 2ka,d
4y = [/ 2hadn A |/ 2hadn
n 8 ) n 8

As to the phases of the three electromotive forces, we shall suppose
them not only to change irvegularly from one element to another,
but also to be mutually independent in one and the same element,
so that the phase-differences between the three forces have very
different values in neighbouring infinitely small spaces. In virtue of
this assumption the intensities of the radiation due to the different
causes may be added to each other. ‘

Till now we have only accounted for the flow of energy (36), a
part of the fotal flow represented by (35). We shall show in the
next pm‘agrdph that the remaining part

e )

is precisely the radiation brought about by the clectromotive forces
we have supposed (o exist in the direction of O F, and that the forces
acting in that ot (OZ cannot give rise to a radiation across the
element '. After having proved these propositions, we may be sure
that, as far as the electric vibrations parallel to OX are concerned,
the plate has exactly the emissivity that is required by KircHHOPP'S
law. Of course, the same will be true for the vibrations in the
direction of OY.

§15. It may be immediately inferred from the theorem of § 7, a
that the clectromotive forces applied to the plate in the direction of
07, i. e. perpendicularly to the surfaces, cannot contribute anything
to the radiation we have considered. Indeed, we know already that
an electromotive force €, existing in the aether at the point [’ can
produce no current €. in the plate; consequently, an electromotive
force €,, in the plate cannot cause a current €, at the point .

As to the effect produced by the eleciromotive force with the
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amplitude a, acting in the direction of OV, this may be found by a
reasoning similar to that we have used in §§ 12 and 13. Iet us
suppose for a moment an electromotive force of the same direction
and intensity to exist in an element of volume s of the aether near
the point /. The amplitude of the electric force €, in the aether
immediately before the plate will then be (cfr. 38)
dactr’

and that of the current €, in the plate

4 c*p )

If follows from this that, if the element s in the plate is the seat
of an electromotive force €,,, with amplitude a,, the current
€, = ¢, at the point P will have this same value. The amplitude
of the electric force €, will be

yo= 2220 I s dn
4wt r o
and the corresponding radiation across the element w'
kgea,q* o dn

—eb'? @ == —2
2 ert

This leads immediately to the expression (42).

§ 16. We are now in a position to form an idea of the state of
vadiation in a system of bodies of any kind. After having divided
them into eclements of volume s, and after having determined the
principal dirvections at every point, we conceive in each element the
electromotive forces whose amplitudes are determined by (40) and
41), the phases of all these forces being wholly independent of each
other. In representing to ourselves the state of things obtained in this
way, we must keep in mind: ‘

1st. that the principal directions and the coefficients e,, «a,, a,
will, in general, change from point to point and will depend on the
frequency n.

2rdly | that for each frequency n or rather for each interval dn of
frequencies, we must assume electromotive forces of the intensity we
have defined in what precedes, all these forces existing simultaneously,

We shall now show that, if the temperature is uniform throughout

the system, the condition for the equilibrium of radiation will be
fulfilled in virtue of our assumptions. Of course, it will suffice to
prove this proposition for a single interval of frequencies d .
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Let s and s be two elements of volume, arbitrarily chosen, /4
one of the principal directions of the first element, 4 one of the
principal directions of the other, a; and o'y the coefficients relating
to these directions. ,

In virtue of the electromotive force €, acting in 8 in the direction
h, there will be in &' in the direction /' a current €, with a certain
amplitude (€;); by (31) the development of heat corresponding to
this current will be per unit of time

1 .

Ea’/l/(@/u ) S C 53]
Similarly, we may write

1

5 (€)s. . . . oL (49

for the heat developed in s on account of the current €' produced
in this element in the direction 2 by the electromotive force acting
in 8" in the direction A’

Since each of the three electromotive forces in 8 calls forth a
current in the element & in each of its principal directions, there
¥ will be in all nine expressions of the form (43). These must be
| added to each other, as may be seen by observing that the total
development of heat, represented by (31), is the sum of three parts,
each belonging to one of the components of the current and that
the three electromotive forces in 8 are mutually independent. The
sum of the nine quantities will be the total amount of heat s receives
from &, and in the same way we must take together nine quantities
of the form (44), if we wish to determine the amount of heat
transferred from s to 8. We shall have proved the equality of
the mutual radiations between the two elements, if we can show
that for any two principal directions, the expressions (43) and (44)
have the same value.

Let us call a4 and &'y the amplitudes of the electromotive forces
originating the currents whose thermal effects have been represented
by (43) and (44). Then, in accordance with (40) and (41),

dae 2hapdn |, 4w 2k dydn
T — s 5
@y = - ey (@ == , .. (43)
n ) n s

Now, by the general theorem of § 7, a the amplitudes (€)) and
(€'}) in (43) and (44) are proportional to a8 and a'ys. Taking
into account the formula (45), we infer from this '

€)@ =a s 1 dy* s =ap5: dp 8,

an equation, which leads directly to the equality of (43) and (44).
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If the system of bodies is entirely shut off from its surroundings,
the equality of the mutual radiation between any iwo elements
implies that the state is stationary. ‘

In order to show this, we fix our attention on one particular
element 8, denoting all other elements by s. By what has been
said, the sum w, of all quantities of heat which s receives from
the clements s will be equal to the sum w, of the quantities of
heat it gives up to them. But, if the system is isolated from other
bodies, each quantity of energy lost by s will be found back in
one of the elements s'; w, is therefore the total amount of energy
radiating from 8 and the equality w, = w, means that s gains as
much heat as it loses.

§ 17. We shall finally assume that the system contains a certain
space which is occupied by an isotropic and homogeneous body 1.,
perfectly transparent to the rays; we shall examine the electro-
magnetic state existing in this medium, if all bodies are kept at the
same temperature. To this effect, we must begin by a discussion of
the radiation that would take place, if the body I extended to
infinity, and if it were subjected to an electromotive or magneto-
motive action (§ 7) at a certain point O.

A perfectly transparent body is characterized by the absence of
all thermal effects. This means that the coefficient e is zero, as
appears by (30). We have therefore

p==—if, . . . . . . . . (46)
the coefficient ¢ being real and positive, and the equation (17) becomes
v=cl/ Bgn, . . . . o . . . (47)

I shall take here the positive value. |

Let us first apply to an element of volume S at the point O,
which T shall take as origin of coordinates, an electromotive force
== ae', but no magnetomotive force. Then
A,y == g~S—em(t v), Q[y::::(), N, == 0, £ == 0.

4 mr '

What we want to know, is the amount of energy radiating from
O, i. e. the flow of energy through a closed surface surrounding
this point. In calculating this flow, the form and dimensions of the
surface are indifferent; we shall therefore consider a sphere with O
as cenfre and with an infinite radius ».

Then we may omit all terms in € and $ containing the square

1
and higher powers of —, and we find from (15) and (16), aitending
r .
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to (46) and (47) and taking the real parts

¢ aSnt y ) r
- . cosnlt — — |
4o 7t v

aSn®  wy r aSn®  wz r
Cy= — meosnlt ——] , €= — s m |t —— |,
' drrv? 2 v daerv?  p? v
aSn 2 7 adn y r
D=0, Hym=—e—cosn |t —— |, He== — o Sos | b |
arfev r v daerBevr v

The electric and magnetic force being known, the flow of energy
through the sphere may be calculated by means of (23). Its value is

............ o (48

If we perform a similar calculation in the assumption of a magne-
tomotive force with amplitude @, acting in the space S, the resultis
2 2 4
L (49)
12 o ¢ o°

§ 18. Let P be a point of the body L mentioned at the beginning
of the preceding paragraph, / an arbitrarily chosen dircction and let
us seek the amplitude (€/) of the eleciric current, or rather the
square of the amplitude, produced by the radiating bodies, confining
ourselves to the interval of frequencies dn.

We shall divide the bodies into elements of volume s and we shall
denote, for one of these clements lying at the point @, by A oneof
the principal directions, by ez the coefficient relating to it, and by
ap (cfr. (45)) the amplitude of the electromotive force acting in that
direction.

The amplitude (€¢;) produced by this force at the point P is equal
to the amplitude of the current €, existing in the element s, if an

. . . ars .
electromotive force &, , having the amplitude g 18 applied to an

element of volume S of the aether near P. In order to express myself
more briefly, 1 shall understand by A the radiation that would be
excited by an electromotive action at the point 7 in the direction
[ of such intensity that the product (&) S has the value 1. The
amplitude (€) in P, of which we have just spoken, will be found
if we multiply by a8 the value which, in that state, (€;) would
have in the element s. Hence

2t kays dn (Q’/IIXQ)2

%

: A
€rp) == an® 8" (€10)* =

n

64 etk d
L AL
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;\ for the development of heat in the element 8, which,

in the state A, is due to the current in the principal direction 4.
Now, starting from the expression (50), we shall obtain the toFal
value of (€;p)* by an addition, in which all elements 8, each with
its three principal directions, must be taken into ac:count. .In a
system, completely shut off from surrounding bodies, = w}’l\ will be

if we write w

the total amount of energy, emitted by P in the state A;, we can
therefore determine it by the formula (48), putting a8 ==1. This

leads to the result

(@ p 16 ke ndn
(Cp) =

In the same way, using the theorem of § 7, b and the expression

49), 1 find |
16 7k c® n’ dn
(Brp) = ————

These results being independent of the place of the point I’ and
the choice of the direction I, we come to the conc.lusiqn that the
stale of things is the same in all parts of the medium Z and that
both the electric and the magnetic vibrations take place with equal
intensities in all directions. The amount of the electric and magnetic
energy per unit of volume is now easily found. Aﬂccolrding to § 4

the first is ;
Ln BT+ (@ + @)

for the value of which one finds
4 akectdn

¢
,US

by remembering that for every direction /,
1
DN? e @ 7,
@) =— (©)

The magnetic energy may likewise be determined. Referred to unit
volume it has the value

L g1+ @ + 1,

and this is easily calculated, since for every direction /,
1 .
() = ) (By*.
The vesult is that the dwo kinds of energy are distributed over
the body [ with equal densities. This has been known for a long
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time, as has also been the rule implied in our formulae, that these
densitics are inversely proportional to the cube of the velocity of
propagation ». It must further be noticed that, if the medinm 1 is
aether, the density of the energy of the radiation becomes
’ 8% kdn
. e |

This agrees with the meaning we have originally attached to the
coefficient £ (§ 11).

§ 19. There is one point in the foregoing considerations that may
ab first sight scem strange, viz. that the intensity of the electromotive
forces we have imagined should depend on the magnitude of the
elements of volume 8. It must be kept in mind however, that these
forces have no real existence, and that we do not pretend to have
found something concerning the causes by which the phenomena are
produced. That the magnitude of the electromotive forces must be
taken ‘inversely proportional to the square root of the volume of 8
is simply a consequence of our assumption that the force has the
same phase in all points of such an element. For a given amplitude
of the electromotive force, the radiation would therefore be propor-
tional to 8%, and we had to make such assumptions concerning that
amplitude, that the radiation became proportional to 8 itself.

In connection with these remarks it must be observed that we
have no reasons for ascribing to the dimensions of the elements

of volume some particular value. These dimensions arve indifferent as

long as we consider only the wadition at finite distances and the
transfer of cnergy between neighbouring molecules lies outside the
theory I have here developed. ‘

Physiology. — “On the ability of distinguishing intensities of tones”.
By Prof. H. ZwaarpeMakirR. (Report of a research made by
A. Drenik.)

The “Unterschiedsschwelle” for impulsive sounds (dropping bullets
and hammers) has been studied frequently and many-sidedly, but
regarding the “Unterschiedsschwelle” for infensities of tone we have
had at our disposal till now only some information communicated
by M. WieN in his thesis.

M. Wiy found the value of the “Unterschiedsschwelle” for the
three tones, to which he limited his investigation to be as follows:

for a average 22.5°/, (with 18.2 and 27 for extremes) for ¢’ 17.6°/,

29
Proceedings Royal Acad. Amsterdam. Vol. VIIL






