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will in every case remain Scandinavian, or rather Northern. At the
same time I would recommend a closer study of the Dilavium in
Texel and Wieringen, in order to ascertain, whether it contains
erratics, the origin of which may be traced to other parts than
of those which are found in the eastern parts of our country.
What I consider to be very “doubtful” indeed, is the right to
trace the direction which the Northern glacial flow is supposed to
have taken, solely from the examination of erratics, found at such a
large distance from the rocks of their origin. In reference to this
matter, I would strongly recommend “revision” and would especially
suggest a wider field of investigation than the Hondsrug in Groningen.

Mathematics. —- “Huveens’ sympathic clocks and related phenomena
wm connection with the principal and the compound oscillations
presenting themselves when two pendulums are suspended fo
a mechanism with one degree of freedom.” By Prof. D. J.
KoRrTEwEe.

(Communicated in the meeting of October 2%, 1905).

Introduction.

1. When in February 1665 Curistiaan Huvemns was obliged to
keep his room for some days on account of a slight indisposition he
remarked that two clocks made recently by him, and placed at a
distance of one or two feef, had so exactly the same rate thatevery
time when one pendulum moved farthest to the left the other deviated
at that very moment farthest to the right'). Yet when the clocks
were removed from each other one of them proved (o gain daily
five seconds upon the other.

At first Huverns ascribed this “sympathy” to the influence of the
motion of the air called forth by their pendulums; but he soon
discovered the real cause — the slight movability of the two chairs

) ,Ce quayant fort admiré quelque temps'; he writes: ,j'ay enfin trouvé
2que cela arrivoit par une espéce de sympathie: en sorle que faisant batlre les
opendules par des coups enlremeslez; jay trouvé que dans une demicheure de
»temps, elles se remettoient tousiours a la consonance, et la gardoient par apres
»constamment, aussi longtemps que je les laissois aller. Je les ay ensuite eloignées
yl'une de Vautre, en pendant I'une & un bout de la chambre el Pautre & quinze
spleds de la: et alors j'ay vu qu'en un jour il y avoit b secondes de difference
»el que par consequent leur accord n'estoit venu auparavant, que de quelque
»Sympathie”. Journal des Scavans du Lundy 16 Mars 1665, Ocwvres de CrmisTIAAN
Huyeens, Tome V. p. 244.
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over the backs of which rails bad been placed with the clocks
suspended to them ).

Y, Pay ainsi trouvé que la cause de la sympathie .. . ne provient pas du
ymouvement de Pair mais du petit branslement, du quel estant tout a falt msen-
,sible je ne m'eslois par apperceu alors. Vous scaurez donc que nos 2 horoloAges
,chacune attachée a un baston de 3 pouces en quarré, ct long de 4 pieds estorent
,appuiées sur les 2 mesmes chaises, dislanles de 8 pieds. Ce qu’cs[ant., et les
,chaises eslant capables du moindre mouvement, je demonsire que 11eccss.au'emeut
,les pendules doivent arriver hientost & la consonance et ne s’en deparlir apres,
sel que les coups doivent aller en se rencontrani cl non pas paralleles, comme
,Vexperience desia I'avoil fait veoir. Iislant venu a la dite consonance les chaises
,ne se meuvent plus mais empeschent seulement les horologes de s'écarter par ce
,quaussi tost quils lachent a le faive ce pelit mouvement les remet comme au-
,paravant”. Lelter to Moray of March 6th 1665. Oeuvres, T. V. p. 256.

Compare Journal des Sgavans duw Lundy 25 Mars 1665, Gluvres'T. V. p. 301,
note (4), where Huverss withdraws his first explanation to replace it by the
correct one and likewise his “Horologium Oscillatorium” where his experiments
and his explanation are developed on one of the last pages of “Pars prima’.

A somewhat more delailed account of those observations is moreover found

Fg. Ia in one of his manuscripts, from which we
derive the diagrams found here and the expla-
S s nation Huverns deemed he could give of the

phenomenon :

) @ Fw ,Utrique horologio pro fulcro erant sedes duae

,quarum exiguus ac plane invisibilis motus pen-
sdulorum agitatione exitatus sympathiae praedictae
ycausa fuit, coegitque illa ut adversis ictibus sem-

Wig. 16 yper consonarent. Unumquodque cnil'n pendulum

ytunc cum per cathetum transit maxima vi fulera

C@‘é‘wﬂmﬂﬁﬁﬁ ssecum trahit, unde si pendulum B sit in BD

i ycatheto cum A4 tantum est in AC, moveatur

/@J ,r‘ yautem B sinistram versus et 4 dextram versus,
! ypunclum suspensionis A4 sinistram versus im-

D OFG %D K ,pellitur, unde acceleratur vibratio penduli 4. Et

yrursus B transiit ad BE quando 4 est in catheto
LA, unde tunc dextrorsum impellitur suspensio B, ideoque retardatur vibratio
ypenduli B. Rursus B pervenit ad calhetum [BD quando 4 est in 4G, unde
,dextrersum trahitur suspensio 4, ideoque accelevatur vibratio penduli 4. Rursus
,B esl in BK, quando 4 rediit ad cathetum AF, unde sinistrorsum trahitur sus-
,pensio B, ac proinde retardatur vibratio penduli B. Algue ita cum velavdetur
,Semper vibratio penduli B, acceleretur autem 4, necesse est ul brevi adversis ictibus
,consonenl, hoe est ut simul ferantur 4 dextrorsum el B sinistrorsum, et contra.
,Neque tunc ab ea consonanlio recedere possunt quia conlinuo eadem de causa
yeodum rediguntur. Et tunc quidem absque ullo fere motu manere fulero mani-
,festum est, sed si turbari vel minimum incipial concordia, tunc minimo motu ful
scrorum  restituitur, qui quidem motus sensibus percipi nequit, ideoque errori.
,cansam dedisse mirandum non est”.
We give this explanalion for what it is. Iluveens, who never published it, will
probably himself, at all events later on, not have been entirely satisfied by it.
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2. Although Huveuns’ observations were published in the Jowrnal
des Sgavans of 1665, and are moreover mentioned in his “Horologium
oscillatorium”, " they seem to have been forgotten when in 1739
correlated phenomena were discovered by Jons Frnicorr Y. What he
observed at first was this: of two clocks N°. 1 and N°. 2 placed in
such a way that their backs rested against the same rail ?), one, always
N°. 2, took over the motion of the other, so that after a time N°. 1
stopped even if at first N°. 2 had been in rest and N°. 1 exclusively
was set in motion. Later on he found that the muiual influence was
greatly increased by connecting the backs of the clocks by a piece
of wood?). He also made both clocks go on indefinitely by giving
their pendulums the greafest possible motion, when alternately they
took over a part of the motion from each other, according to a period
becoming longer as the clocks being placed without connection with
each other had a more equal rate*). At the same time he observed
that both clocks when connected with each other in the way described
above assumed a perfectly equal rate lying between those which
they had each separately.

3. Since then different mechanisms where suchlike phenomena

Indeed, it is nothing but the friction which can finally cause that of the three
possible principal oscillations only one remains. Every explanation in which friction
does not play a part must thus from the oulset be regarded as insufficient.

) Phil. Trans. Vol. 51, p. 126—128: “An Account of the Influence which two
“Pendulum  Clocks were observed to have upon each other,” p. 1928--135:
“Further Observations and Experiments concerning the two Clocks above mentioned.”

%) “The two Clocks were in separate Clases, and ... the Backs of them rested
“against the same Rail.”

%) “I put Wedges under the Bottoms of both the Cases, to prevent their hearing
“against the Rall; and stuck a Piece of Wood belween them, just tight enough
“to support its own Weight.”

4) “Finding them to act thus mutually and alternately upon each other, T set
“them both a going a second time, and made the Pendulums describe ag large
“Arches as the Gases would permit. Daring this Experiment, as in the former, 1
“sometimes found the one, and at other times the contrary Pendulum to make the
“largest Vibrations. But as they had so large a Quantity of Motion given them
“at first, neither of them lost so much during the period it was acted upon by
“the other as to have its Work stopped, but botli continued going for several
“Days without varying one Second from each other” ... “Upon altering the Lengths
“of the Pendulums, I found the Period in which their Motions increased and
“decreased, by their mutual Action upon each other, was changed; and would be
“prolonged as the Pendulums came nearer to an Equality, which from the Nature
“of the Action il was reasonable to expect it would.” Later on we shall sec that
there was probubly an error in these observations. The continual transmissions
of energy and the perfectly equal rate of the clocks exclude each other to my
opinion.
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of sympathy may appear have been investigated theoretically and experi-
mentally; among others by Hurur ') the case of two scales of a balance
of which Danmr, Brrnourri?) had observed that they in turns took over
each other’s oscillations; by Pomsson®), by Savarr?) and by Risan?)
the case of two pendulums fastened with Porsson to the extremities
of a horizontal elastic rod, or with Savarr and Riisat. to the horizontal
arms of a T-shaped elastic spring; by W. Dumas ) the case of a
pendulum, beating seconds, with movable horizontal cross rails, on
which other pendulums were hung; by Luciy pr na Rive’) and
Everwrr *) the case of two pendulums joined by an elastic string ;
whilst finally Crruirier, Furrwinerur and others developed the theory
of the motion of two pendulums of about equal length of pendulum,
placed on a common elastic stand, in order to determine experimen-
tally, and to take into account in this way the influence exercised
by the small motions of such a stand on the period of the oscillations *).

However, we see that the more recent investigations, with the
exception of the work of W. Dumas, who does not purposely mention
the phenomena of sympathy, relate to mechanisms where elasticity
plays a part; whilst it seems probable that this was not the case
or at least in only a slight degree in the experiments of Huyvemns
and HErricort.

1) Novi commentarii Ac. Sc. Imp. Petropolitanae, T. 19, 1774, p. 325—339.
Rovrs, Dynamics of o system of rigid bodies, Advanced part, Chapt. 11, Art. 94,
giving the right solution, has justly pointed out an error in Fuvier's solution and
likewise in the one signed D. G. S. appearing in The Cambridge math. Journ. of
May 1840, Vol. 2, p. 120—128. Eurer’s treatment of the phenomenon of the trans-
mission of energy is also defective, as he does not lay stress upon the necessity
of the two almost equal periods, in this case of his quadratic equation admitting
a root nearly equal to the length of the mathematical pendulum by which he
replaces the scales.

%) Nov. Comm. 1. c. preceding note, p. 281,

%) Connaissance des lems powr lan 1833, Additions, p. 3—40. Theoretical,
This memoir was indicated to me after the publication of the Dutch version of
this paper.

Y L’Institul, 1° Section, 7¢ Année, 1839, p. 462—464. Experimental,

8 Compt. Rend. T. 76, 1873, p. 76—76; Ann. He. Norm. @), 11, p. 455-—460.
Theoretical.

§) “Ueber Schwingungen verbundener Pendel”, Festschrift sur dritten Sdcular-
feier des Berlinischen Gymmasiums zum graven Kloster. Berlin, Wrmmany'sche
Buchhandlung. 1874. The investigalions themselves are according to this paper
from the year 1867. Theorelical and experimental,

) Compt. Rend. 'T. 118, 1894, p. 401—404; 522--525; Journ. de phys. (3),
Ul, p. 587—b6b. Experimental and theoretical,

8) Phil. Mag. Vol. 46, 1898, p. 236—238. Theoretical.

% See for this the Encyclopddie der mathematischen Wissenschaften, Leipzig,
Teubner, Band 1V, Iy, Heft 1, § 7, p. 20—29.
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- So it seemed worth while looking at the question from another side, and
studying the behaviour of a very generally chosen mechanism ) with
one degree of freedom, and with two compound pendulums attached
to 1t; noting particularly the case that both pendulums have about
equal periods of oscillation, whilst at the same time for the applica-
tion of the phenomena. of sympathy of clocks the intluence of the
motive works will have to be paid attention to.

Moreover it is worth noticing that the resulis obtained in this way
will also be applicable to the case that the connection between the
two pendulums is brought about by means of an elastic mechanism,
every time when practically speaking only one of the infinite number
of manners of motion is operating which such a mechanism can
have. Such a manner of motion will have a definite time of oscilla-
tion for itself, which will play the same part in the results as if it
belonged to a non-clastic mechanism with one degree of freedom.

Deduction of the equations of motion.

4. Let § represent for any point of the mechanism with one
degree of freedom, to be named in future the “frame”, the linear
displacement out of the position of equilibrium common to frame and
pendulums; let §™ be its maximum value for a definite oscillation to
be regarded as equal on both sides for small oscillations ; let §1’ and
& be its values for the suspension points O, and O, of the pendulums;
let M be the mass of the frame; let m, and m, be that of the
pendulums; a, an a, the radii of gyration of the pendulums about
their suspension points; ¢, and ¢, their angles of deviation from
the vertical position of equilibrium; =, v, and #,, y, the horizontal and
the vertical coordinates of O, and of O, /i the vertical coordinate of
the centre of gravity of the frame; taking all these vertical coordinates
‘opposite to the direction of gravitation.

So we begin by introducing for the frame a suitable general coor-
dinate u, for which we choose the quantity determined by the relation

M? ~—:~j‘§2 dm PR . . . B . . o (1)

where the integration extends to all the moving parts of the frame ;
this quantity might therefore be called the mean displacement of
the particles of the frame.

1) We assume with respect to this mechanism no other restriction than that the
motions of each of ils material parts just as those of the two pendulums take
place in mutually parallel vertical planes, i.o.w. we restuct ourselves to a problem
in two dimensions.

i
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For small oscillations of the frame we can put: u==nul™, ==nk0")
where n is a function of time, but the same for all the points of
the frame.

S0 we have for such vibrations:

Mu? — M (nu("l j (77@071))‘ dm A:j §2 dm ;

so that L Mu® proves to represent the vis viva of the frame.

For the vis viva of the first pendulum we find, if £, denotes the
distance between ils suspension point (), and its cenfre of gravity,
and if ¢, is reckoned (like ¢,) in such a way that a positive value
of ¢, increases the horizontal coordinate of the centre of gravity :

Ly B B by g g ] =

[ dg, . de L
= m, L(E’;) + 2 ko ZZul 9)1’];

therefore for the entire vis viva of the whole system:

M 1 dg .dg‘zrz ‘s 1 2, 2 1 3 2
T= g | M4m 4om, =) | b et e et 9

de, . . dz, « -
.erllcld—ulu(m~§—m2/cz~c~l;u(pg; I 9]

and further for the potential energy’)

o & dy, )
= %g[ﬂlzhzz '+‘ m _:"/va{ my dyg u? "i’ %mlgkl 2 ”}" %nlag]cz q)az‘ (3)

1
du®

5. To simplify further we introduce the new variable »’ determined by:

) g\ | |
M u® = [M |-y ((jii ) -+ m, (;Z%—) ]uz m= M +m 5 m, 8,0 (4)

where
M =M m +my - . . . . . . (5

represents the entire mass of the whole system; this variable «'

o db
is proportional to wu, because for small vibrations —- and —*, as
du du

indeed all such derivatives appearmg in the formulae, may be regarded
as constant.

U Indeed that potential energy amounts to Mgh i A Magyys — Mgl €08 @) —
— g gy €08 729 -+ a constant. By developing according to u, takmg note that on

i Cl? 1
account of the equilibrium M LH+ /"I “+m jﬁ is equal to O and by proper

choice of constant, we can easily dcduco (3) from it,
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Out of this proportionality follows easily :

M == [M - m (ﬁl—%)z - m, (f{gﬂ—YJ w? == Mu? - m, élg - m, é; . (6)
’ '\ du du -

which proves that y M'w'* vepresents the vis viva of what we shall
call the reduced system, which system consists of the frame and of the
masses of the pendulums each transferred to the corresponding
suspension point O, or 0.

If now likewise we introduce the vertical coordinate /' of the centre
of gravity of the reduced system, so that M == Mh - m, y, -+ m, Y,

497t

the first term of (3) transforms itself into & g M’ dmu? u®, for which,

. . + ; [
however, on account of the mutual proportionality of u and u' we
AR

may write: §g M T

So for the reduced system it holds that 1" == § M’ w and V=
25! )
=LgM Zi_TL“; «'*; if now we write for this system the equations of motion,
. 122
and if we then introduce the length /' of the simple pendulum which
is synchrone to this system ') we shall easily find :
dziL’ —1
=@ . . . . . . . . . (0
du'* @) ,
Thus we finally may write for (2) and (3):

. . le, « dawy » -
At ; . 2.0 3 oLt 20t o 1.
T==4 My Ymoap "+ fmaa” ¢, 4+ mk, o o', 4 m,k, o w @, . (8)

V= b M ()= Ly g by A ymag kgt o oo (9)

Application of the equations of Lacranes and substitution of the
exXpressions :

= "™ sin 1/;/— ty @, = %, sin ;/;{ £, == %, sin 1/}: t. . (10)

leads further easily to the equations

. de dwz
M — D ke b e =05 (1)
@l u,(m) “J[‘ fl_l_ o 2) %, == 0 ;‘ A (12)
du’ k,
,(f'fi ul(m) - (a_”_ —_— 2)%2: .. (1)
du' ](,‘2

1) Should the reduced system be in indifferent equilibrium as was prob.ably the
case in Frircorr’s experiments /' is infinite; if it were in unstable equilibrium this
would correspond to a negative value of . We shall again refer to these cases
in the notes. In the text we shall always consider I' positive, hence the reduced

system stable.
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where =, and 2, denoto the maximum deviations of the pendulums
and 2 the length of the pendulum synchrone to one of the principal
vibrations.

6. In order to put these equations still more simply, we

2 2

: a
first introduce the lengths of pendulum /, == - and [, = ;
Cl 2
two sugpended pendulums, secondly the maximum deviations in hori-

zontal direction of their suspension points:

of the

(m) 5@7_1 J(m) m)y ilﬁfz ICD)
§ = i ™ and §, == - u

It is then easy to find the following system of equations equivalent
to the equations (11), (12) and (13), namely :
Fa)ym= ((—2) (,—2) (l,—2) — ¢, 11, (b,—2) — 0,2 U1, (l,—2) == 0; (14)

7 (;
" mé}(,’i s g e éji . (15)
S T
where :
A
m, & ,(gl(m’)ia m, k, (§2(m))2
R T IE i I v T B M S . . (16)
ML () M"L, ()

We must notice here that ¢, and ¢, are numerical coefficients,
the first of which depends only on the first pendulum and its
manner of suspension, the second on the second pendulum.

Taking note 'of the signification of »' and §,, and observing that

. m m) "
for instance §](7) Ny &, :u' on account of the supposed small-
ness of the vibrations, we can write for the above after some reducing :
m,§,° k m, &2 k
Glz:: e -i, 0223 i —‘2(17)

v 'l
A N L m &t 6o [ 5 am g

holding at any moment of the oscillation, where § denotes the hori-
zontal, & the linear deviation out of the position of equilibrium of
an arbitrary point of the frame, and where the indices relate to the
suspension points (), and O,, whilst the integrations must be extended
over the whole frame.

If we finally remark that the relation between every § and every
§ is the same as that of the fluxions, we can give the significa-
tion of ¢,* and ¢,* also in the following words:

¢,’ s equal to the proportion, remaining constant during the motion,
between on one side the wvis viwa. of the horizontal motion of the
suspension point O, in which the mass of the first pendulum s con-

31
Proceedings Royal Acad. Amsterdam. Vol VIIL
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centrated and on the other side the entire vis viva of the reduced
system multiplied by the distance between suspension pomnt and
centre of gravity of the first pendulum and divided by its length of
pendulum ; and in the same way c,’.

Discussion of the general case.

7. Passing to the discussion of equation (14) we notice that
in the supposition [, >, we have: F (- o) neg.; /() pos.; F(1)
neg.; F(0)=1Ll(1—c*—¢), and therefore with reference to
(A7) where &, : [, and k,: [, <1, F(0) always positive.

So there are three principal oscillations. The slowest, which we
shall call the slow principal one bas a synchrone length of pendulum
greater than the greatest length of pendulum of both suspended
pendulums; of the inlermediate principal one the length of pendulum lies
between that of these two pendulums; of the rapid principal one it
is shorter than the shorter of the two'). Further we can note that
when [ >>7 "> 1, the length of pendulum of the slow principal
one is greater than /' and that for /, >/, > [ the rapid principal
onc has a smaller length of pendulum than /.

The '1"()110Whig graphic representation gives these results ?) for the
case ! > 1, >1{,, practically the most important.

) This is the case for 7' -positive and this proves that when the reduced system
is stable, this must also be the case for the original system with the two suspended
pendulums. If 7 is infinite, thus the reduced system at first approximation in
indifferent equilibrium, then the slow principal oscillation has vanished or rather
has passed into an at first approximation uniform motion of the entire system, which
would soon be extinguished by the friction. The two other principal ones remain
and their lengths of pendulum are found out of the quadratic equation:

(l=—2) (lg—2) — &2 [y (lg=—~2) — ¥ by (l,—2) = 0.

For I' negative I'(0) becomes negative too, bul F (— ) posilive, so then always
one of the principal lengths of pendulum is negalive. l'rom this ensues that when
the reduced system is unstable, this is also the case for the original one.

%) Of course these results are in perfect harmony with and partly reducible from the
well-known theorem ~according to which when removing one or more degrees of
freedom by the introduction of new connections the new periods must lie between the
former ones. To show this we can 1. fix the frame, 2. bring about two connections
in such a way that the pendulums are compelled to make a translation in a vertical
direction when the frame is moved. In the latter case it is casy to sce that the
time of oscillation of the reduced system must appear.

For the rest these same results are found back in the main, extended in a way easy
to understand for more than two suspended pendulums, in the work of W. Dumas,
quoted in note 6, page 439 which 1 did not get until 1 had finished my investi-
gations. By him also the length of pendulum of the reduced system is introduced.
However, he has not taken so general as we have done the mechanism of one
degree of freedom, on which the pendulums were suspended.

S ——
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lig. 2. 8. With respect to the manner of oscillating
A e of the two suspended pendulums we shall

call it the antiparallel mode when the simul-
taneous greatest deviations are on different
XKrapid principal sides as was the case in the observations of
oscillaion  Hyyenrns, in the reverse case we shall call it
® rapid pendulum % the parallel mode.

) It is casy to see then from (15) that the follow-
ing three possible combinations will always
L interm. principal appear, namely: for one of the three principal
oscillation  oscillations the mode of oscillating of the pendu-
lums is the antiparallel one, for the two other
ones the parallel one, but in such a way
that for a definite greatest deviation of the
pendulums in a given sense the frame takes
for each of these two other principal oscilla-
tions an opposite extreme position ?).

If thus for instance &0 and &, have
equal signs as was certainly the case in the
mechanism used by Huyeens (see fig. la)
X slow principal and also in that of Erwicorr, the antiparallel
oscillation N _

mode of oscillation observed by Huyerxs

belongs to the intermediate principal one.

AV 4

@ slow pendulum [

v reduced system

9. For the application to the behaviour of two clocks connected
in the manner described we first consider /, and /, as very different
from each other, and that neither ¢, nor ¢, is small. In that case
it is evident from the values of ['(/,) and /() differing greatly
from naught that neither of the principal lengths of pendulum nearly
corresponds to /[, or /,; however from (15) then ensues that the
oscillations of the frame are of the same order as those of the pen-
dulums "at every possible mode of oscillating.

Now it is of course not at all impossible that the principal oscillations
or certain combinations of them once set moving, might remain sustained
by - the action of one or of both motive works under favourable
circumstances with sufficiently powerful works and when means have

1) Dumas has: ,dass, wenn.... die Aufhingepunkte der Nebenpendel tiefer als
»dic Drehungsaxe des Hauptpendels liegen, alle Nebenpendel von kiirzerer als der
w2 erziclenden [principalen] Schwingungsdauer in gleichen Sinne mit dem Haupt-
spendel  Schwingen miissen, alle anderen im enigegengesetzen Sinne”. This too
follows immediately from the formulac (15) which, indeed, correspond essentially
to those of Dumas. -

B1%
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been taken (o decrease sufficiently the frictions in the frame. However
in such a case the behaviour of the two clocks would differ greatly from
what was observed concerning the phenomena of sympathy; and in
the more probable supposition that the motive works will prove to
be wunable to sustain a considerable motion of the frame, which
motion would absorb a great part of the encrgy, cach of the principal
oscillations as well as each combination of them will after a certain
time have to come to a stop. ’

So we shall leave this general case, and pass to the discussion of
three special cases, which are more important for the consideration
of the phenomena of sympathy, namely A4 the case that [, and /,
differ rather much, but where ¢, and ¢, are small numbers, /3 the
case, that /[, and [/, differ but liitle, but ¢, and ¢, are not small,
C the case where [/, and [, differ but little and ¢, and ¢, are
both very small. In all these discussions we shall suppose /' > 1, > [,
and [' differing considerably from [, and .. The treatment of other
special cases, e.g. ¢, small but ¢, not, will not furnish any more
difficulties if such a mechanism were to present itself ).

A, Discussion of the case that 1, and I, differ rather much but
where ¢, and ¢, are small*).

In this case [({"), L'(l) and F'(l) are all very small, from
which is evident that each of the three roots of equation (14) is
closely corresponding to one of these three quantities, so that the
graphic representation of Fig. 2 looks as is indicated in Fig. 3.

From this then ensues according fo (15) that for the rapid principal
oscillation the oscillations of the rapid pendulum are much wider
than of the slow one *), and that for the intermediate principal oscillation

1) Also the case I' =00 differs in nothing, as far as the resulls are concerned,
from the cases treated here but by the vanishing of the slow principal oscillation.

Y The smallness of each of these coeflficients may according to (16) be due to
three différent causes, namely 1. to the smallness of 7 : J; which will not easily
appear in clocks, 2. fo the fact that the masses of the pendulums are small
willy respect to that of the frame, 3. to the fact that the pendulums are suspended
to points of the frame whose horizontal motion is a slight one compared to that
of other points of that frame. It is remarkable that this difference of cause has
hardly any influence on the consideralions following here, and therefore on the
phenomera which will present themselves.

8) Then still when in (158) £, might prove to be very small compared to &, ;
for as a first approximation for ly—a we find: ¢l (I'—1L), and thercfore g —
— M (V1) (™) 2:mg Fig I' 50, So the motion of the frame determined by «/ ) is slight
compared to that of the rapid pendulum and consequently «, is small compared to xq.
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Fig. 3. the opposite is the case. For the slow prin-

A ? cipal oscillation the oscillations of both pen-

dulums are either of the same order as those

of the frame or smaller still; the latter is

the case when the third cause mentioned in
< rapid principal ose. note 2 of page 446 is at work.

rapid pendulum 7, Suppose now a’, v, and s, to be small oscilla-

tions Dbelonging respectively to each of the

three types of the principal oscillations, namely

the slow one, the intermediate one and the rapid

one, each having the same small quantity

¢ interm. principal osc, of total energy e== 7 - V; then every

¢ slow pendulum & compound oscillation can be represented by

o=K'n"+K n+Kx, and its total energy will
be equal to (K" 4 K* 4 K,*) &

Let us then start from an arbitrary com-
pound oscillation for which K', K, and K,
o reduced system have moderate and mutaally comparable
slow principal osc. values; it is then clear that the motion of

one clock, namely the one with the rapid
pendulum will be dependent almost exclusively on the rapid prin-
cipal oscillation, that of the other clock on the intermediate one.
It is true, that slight periodical deviations in the amplitudes will
present themselves, which are due to the two other principal oscil-
lations, but these can have no influence of any importance on the
periods according to which the motive works regulate their action;
so that therefore one of the motive works will be able to contribute
to the sustenance of the motion K, ., the other to the motion K, x,,
but neither of them to the sustenance of the motion K'a'. So this
will vanish first. ‘

What takes place furthermore will depend on the power of the
motive works, and on the frictions presenting themselves during
the motion of the frame. If those powers are great enough to
conquer the frictions when the pendulums deviate sufficiently to keep
the motive works in movement, a motion KX, =, 4 K, #, will remain,
where the values of A, and X, thus also of their proportion, will finally
depend exclusively on the power of those motive works and on the
frictions. A theorem the proof of which we shall put off to § 14, to
be able to give'it at once for all cases, shows that in general such
a motion can be sustained rather easily; it is the theorem that for
principal oscillations whose A differs but slightly from 7, or /, whatever
may be the cause, the kinetic energy of the motion of the frame

&M

AV

N
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will be small compared to that of the corresponding pendulnm. For
such a motion K, 7, -+ K, 7, remaining in the end, the two clocks
will each have their own rate®) whilst however slight periodic
variations in their amplitudes are noticed, caused by the cooperation
of the two remaining principal oscillations whose periods differ con-
siderably if [, and /[, are sufficiently unequal.

11. Let us now however suppose that /, and [, differing at first
considerably, are made to correspond more. and more, for instance
by displacement of the pendulum weights. The chief consequence will
have to be that, according to equation (15), the amplitudes of both
pendulums will become more and more comparable to each other,
for K7, as well as for K,n,, in consequence of which to obtain
their motion for the compound oscillation K @, + K,7, we shall
finally have to compose for cach of them two oscillations with com-
parable amplitudes, and whose periods of oscillation differ but slightly.
As is known this leads for both pendulums alternately, to periods

of relatively greater and smaller activity, i.0. w. to the phenomenon -

of transference of energy of motion from one pendulum lo another
and back again; the period in which this alternation of activity
takes place will be the longer according as /, and [, differ
less ™).

‘Now however a suchlike behaviour-of the two pendulums accord-
ing as it gets more and more upon the foreground when /, and /,
approach each other, becomes less and less compatible with the regular
action of the two clockworks. For, during the period of smaller activity
of one of the pendulums the motive work corresponding to it will
finally, when the remaining activity has become much smaller than
the normal, come to a stop. Then one of the two will take place :
either the prinecipal oscillation which is sustained particularly by this
work is powerful enough to keep on till the period of greater acti-
vity has been entered upon, and this will be deferred the longer
according as [, and /, differ less, or it is not so. In the first case
the clock can keep going with alternate periods in which it ticks and
in which it does not tick, which phenomenon may of course present

% These phenomena remind us of what Erricorr observed later on (see note(4)
p. 438). However the correspondence is not complele, as in the case treated here
both clocks retain their different rate, whilst Eruicorr mentions emphatically that
the two clocks did not differ a second for many days. We shall therefore have
to again refer to these observations al case €.
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itself in both  clocks'). In the sccond case the clockwork stops

entirely ; the corresponding principal oscillation vanishes, and the

pendulum performs only passively the slight motion which is its
due in that principal oscillation, which can now be sustained indefi-
nitely by the other motive work.

This is the phenomenon remarked by Brricorr in- his first expe-
riment when the clock n® 2 regularly made n® 1 stop.

We have now gradually reached case € where ¢, and ¢, are small
and where /, and /, differ but slightly ; this case demands, however,
separate treatment, for which reason we shall discuss it later on.

B.  Discussion of the case that I, and [, dijffer but very little,
but where ¢, and ¢, are not small*).

Before passing to the case C we shall treat the simpler case now
mentioned which will lead us to phenomena corresponding to those
found by Huyenns.

To this end we put /, =/, 4+ A, and substitute this in the cubic
equation (14). Then by writing for one of the roots of that equation
[, -} d and by treating A and ¢ as small quantities we shall easily
find for the length of pendulam of the intermediate principal
oscillation the value

¢,”

e
from which is evident that this length of pendulum divides the
distance between [/, and /, in ratio of ¢,*:¢,”

The two other roots satisfy approximately the quadratic equation:

=20 —0— @ +e)ll,=0 . . . . (19

N o)

1) This was really observed by Euucorr (L c. p. 132 and 133) for both clocks,
however only temporarily, for at last the work of the first clock came entirely
to a stop. Compare for the rest the experiment of Danmr Branouur with the two
scales mentioned in § 3.

-4 If I is perfectly equal to 4 =1, then of course (14) has a root A =1 for
whose principal oscillation according to (15) the frame remains in rest. The remaining

- roots are found by means of the quadratic equation (I'—a) (- A)—(c,%}-cp¥ 1=0.

One of them will nearly correspond to 7 if ¢ and ¢, are hoth small fractions. All
this in accordance with Rourr’s solution (Lc. note (1) page 439) which refers
exclusively to this case and also to that of Evier (barring what is remarked in

that note).
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- Fig. 4.
4 They correspond to the slow and the
+ rapid principal oscillation differing considera-
bly in general in length of pendulum from /
and /,) and therefore by reason of (15)
erapid principal giving rise to oscillations of the frame which
oscillation  are of the same order of magnitude as those
of the pendulums.
rapid pendulum So unless special measures are taken with
mierm. princip. 0sc. . o A
slow pendulum 7,  respect to the decrease of the friction of the
frame, these oscillations will have to stop,
the more so as they are not sustained by
the action of the motive works.

So the only oscillation which will be able
to continue for some fime is the intermediate
principal one whose length of pendulum is lying
between [, and [ ; entirely in accordance with

& reduced systom the observations of HUY'GENS 2) and also with

those of Euricorr described in note (4) p. 438
when for the latter we overlook for a moment
the observed periodic transference of energy.

A4

pY4

<slow prineip. osc.

C.  Discussion of the case that [, and 1, differ but very little and

that at the same time ¢, and ¢, are small numbers.

13. The remarkable thing in this case is that now the remaining
guadratic equation (19) is also satisfled by a root differing but little
from {,. So there are now {#wo roots of the original cubic equation
situated in the. vicinity of /,, one found just now and expressed by (18)
and the other which is likewise easily found by approximation and
represented by the expression '

Wt o) U |
g, j:z) A 1)
2

This root is, at first approximation, independent of A =1 — [ ;
so when the lengths of the pendulums approach each other suffi-
ciently, it is, though small, yet many times larger than 4. These

1) See the graphic representation of Fig. 4.
%) See however mote (3) p. 462; from which is evident that the case which

really presented itself in Huveens' experiments is probably not the one discussed

here, but the more complicated case C.
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Fig. 5. conditions are represented by Iig. 5, where
4 " we have morcover to notice that the third
root belonging to the slow principal oscillation
differs but little from /.

We can now show that for the rapid prin-
cipal oscillation as well as for the intermediate
sk vapid principal ose.  one, although  mot in the same measure, the
& rapid pendulum I, oscillations of the frame remain small com-
T o o bmepal 05¢ pared with those of the pendulums.

Generally this is already directly evident
from the equations (15); this is however
not the case when the pendulums are suspend-
ed to points of the frame whose horizontal
motion is an exceptionally slight one?). In
that case we refer to the general theorem to
be proved in the following paragraph, and
from which what was assumed ensues im-

i veduced system mediately.
slow prinecipal osc. Let us note before continuing that now
for the rapid as well as for the intermediate
principal oscillation the two pendulums possess amplitudes which
are mutually of the same order of magnitude.

14. The indicated theorem can be formulated as follows: when
the length of pendulum of a principal oscillation approaches closely to
l, of I, then the wvis viva of the reduced system, thus a fortiori of
the frame alone, is continually small with respect to that of the pens
dulum corresponding to 1, or [,

To prove this we compare in formula (&) the three terms:

XA 1 P .
s M u'*y my k, g Y@, and §m, a* ¢ For the proportion of the

de, . .
second to the third can be written 2;5271 w': [, or on account

. de, (m ; i
of equation (10), 2 —* " ) [y, ==2 g}’” tlow,=2@—1{):1,.The
{
second is therefore, when A approaches /, closely, small with respect
to the third, which can thus be regarded in such a case to represent
at first approximation the vis viva of the first pendulum.

1) That is to say, when the third cause mentioned in note (2) p. 446 has given
rise to the smallness of ¢; and ¢.




(452)
For the proportion of the vis viva of the reduced system to that of
the pendulum referred to we can write ') :
. . (m
M u®m,a @ = M (" ))2 fmy et w =
= M @™y —  my a @ ) =, — Dierl . (21)
If now ¢, is not small, as in case /3, thén we have in this manner

already proved what was put. In case A we substitute 2 =1, — d

“in the cubic equation (14) after which we find easily at first appro-
ximation, ¢, being likewise small ®), d=/,—A==c,*/{:(/—1,), by which
what was put is likewise proved.

In case (' finally, which occuples our affention at present, ensues
from (20) for the rapid principal oscillation /, — 7= (¢,*-¢,*) I, : (I—1,);
from which is evident after substitution of l, and ¢, for [, and ¢, in
(21) the correctness of the theorem also for this prineipal oscillation,
hence a fortiori for the intermediate one : unless ¢, be small but yet
much larger than c¢,, which restriction does not exist for the infer-
mediate principal oscillation.

15. From these results must be inferred that in the case € under
consideration the rapid principal oscillation as well as the intermediate
one when once get in motion will cach be able to maintain them-
selves under the influence of the motive works, when the condi-
tions of friction in the frame are not too unfavourable. However, the
intermediate principal oscillation will have, if the difference in rate
between the two clocks was originally very slight, a considerable
advantage on the rapid one, the motion of the frame being much
slighter still in the former case than in the latter. And this will
probably be the reason that in the experiments of Huverns as well
as in the later ones of Krricorr evidently the intermediate principal
oscillation exclusively *) or at least chiefly %) presented itself.

) According to (10), (15) and (16) taking at the same time note of the sig-
nification of 1, a; and %, )

%) For ¢ small and -y, not, the prosf runs in the same way, although the
expression for 3 becomes a little less simple.

%) With Huvenns. In his experiments the masses of the pendulums were certainly
slight with respect to those of the frame, so that without doubt ¢, and ¢, were
small and the case ¢ was present.

% With Eruicorr, where at least al first according to the observed transferences
of energy also the rapid principal oscillation must have been present. Although
sacorr used according to his statement very heavy pendulums, we have probably
also the case € with him. [I ‘we do not assume this then it is more difficult
still to make the perfectly equal rate of his clocks tally with the observed trans-
ferences of energy. The presence of two principal oscillations evident from these
would have been continued indefinitely in case B, so the clocks would have
retained an unequal rate.
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SAVART on the contrary has effected with the aid of his T -shaped
spring at whose ends almost equal pendulums were attached both
principal oscillations ).

But besides these two principal oscillations which deviate in their
periods of oscillation, and moreover by the civcumstance that the pendu-
lums will move in a parallel mode for one and in an antiparallel
mode for another, there is still a third manner of motion which
must be able to continue indefinitely.

16. To prove this let us again start from an arbitrary compound
oscillation @ == K'a' -+ K,r, + K,v,; then unless the friction in the
frame be extremely slight the oscillation X'z’ will soon disappear,
When however in the remaining motion K, : is much smaller than K,
it is clear that as the intermediate principal oseillation is then the chief
one for fthe motion of the two pendulums, the motive works
of both clocks will regulate themselves according to it, so that they
will not be able to contribute to the sustenance of the principal
oscillation K,7, which will thus likewise have to die away, so that
finally only a pure oscillation K,7, will be left, for which both
clocks will follow the rate of the intermediaie principal oscillation.

If ‘on the contrary after the disappearance of the slow principal
oscillation X is much smaller than X,, it will have to be the inter-
mediate principal oscillation, which dies away, whilst the rate of the
clocks will finally regulate itself entircly according to the rapid oue.

But in the intermediate case, when the proportion of K, {o K, lies
within certain  limits, also a manner of motion will be able to
appear under favourable circumstances where both principal oscillations
are sustained for indefinite time, whilst each of them will ‘govern
the behaviour of one of the two clocks; for from the equations (15)
it is easy to deduce that in general the proportion between the
amplitudes «, and %, is different for both principal oscillations *).
Then the values of K, and K, and so also their proportion will in the
long run be entirely governed by the power of the motive works,

1) le. mnote (4) page 439. Savarr had however 7' < hy = ly; therefore with him
it is the slow principal oscillation which plays the part given here in the supposition
>0 > 1 to the rapid one.

#) By substitution of the value (18) for A we find for the intermediate principal
oscillation  »y 1wy = ¢;=2 £,00) : ¢;—2 E,n); whilst the substitution of (20) furnishes
for the rapid principal oscillation

- L A+ ,(flzf};c‘zwz,J 451("1) : L(@g[’i%%l;l ?2(7”) :
2

so for very small values of A we have for this one w1t rg == Ey(m): Eolmy,
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connected with the frictions presenting themselves, i. e. these valuoes
will be independent of the initial condition. At the same time the
two clocks will show a different rate 1), of which clocks one thercfore
will have to sustain the rapid principal oscillation, the other the
intermediate one. Periodic transterence of energy will then take place.

Probably it will not be easy to realize this condition, character-
izing itself particularly by the fact, that one of the clocks goes consi-
derably faster than would be the case when placed independently 2).
The initial conditions will then have to be chosen in such a manner
that from the very beginning one oscillation will predominate for one
clock, the other for the other clock. And this will become all the
more difficult as ¢, and ¢, become more and more equal, therefore
according as the two clocks become more and more alike and
are suspended in a more symmetric way. For, so much smaller
will, according to what was mentioned in note (2) p. 453 be the
difference in proportion of the amplitudes x, and %, at each of the
oscillations. *)

17. Finally we wish to point out how we must represent to our-

) So this differs again from what Euircorr observed in his last experiments,
so that these cannot be regarded as the realisation of this case, though they have
the transferences of energy in common with it. However, between the fact of
those transferences and the assurance that both clocks have entirely the same
rate exists’ a contradiction, as we have already seen, which is not to be solved.
Indeed, those transferences can be explained by interference only, so they require
the cooperation of two oscillations of different periods; but these oscillations must
hoth be sustained if the state is really to continue indefinitely, and then each
of them by one of the'motive works where the oscillation referred to will predominate
the other one. See also the last note. .

To me it seems most probable that with Eiricorr the transferences of energy existed
only at first indicating the temporary presence of the rapid principal oscillation,
Ervicorr’s wording is not emphatically against this convietion,

%) The difference from case 4 is of course only quantitative. In hoth cases the clocks
go faster than when placed independently, but in case C the acceleration of the quickest
clock becomes much greater than that of the less rapid one (sce §13). A gradual
transition presents itself then, and the case of Erucorr was probably situated on
that transition-line.

#) The idea that perhaps each of the motive works might be able to take over
one principal oscillation and the other in turns had to be set aside after a closer
investigation. If we compose in the well-known graphical way two oscillations of
unequal amplitudes and of periods of oscillation differing but little, it is evident
that the motive work will go alternately somewhat quicker and somewhat slower
than will correspond to the period of oscillation of the greatest amplitude, but this
can never go so far thal the rate of the smaller amplitude is taken over, not even
for a short time.
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selves the transition of case A info case C. In case A in which the
rafe of the clocks differs greatly, the manner of motion which is most
difficult to realize in case C, namely the one, where the clocks have
cach their own rafes, is the normal one. Yet the two other manners
of motion also are possible, i.e. those where exclusively one of the
principal oscillations appears ; however in these cages, the pendulum of
the least aclive of the two clocks will still perform a slight oscillation
though not sufficient to set its motive work in motion.

If now starting from case A we reach case €, i.e. if the rate of
the clocks is faken more and more equal, the state of motion with
mutually different rate of the clocks becomes continually more diffi-
cult to realize, finally perhaps impossible ; whilst for the two other
possible manners of motion the pendulum of the second clock too
keeps performing greater and greater deviations ill these deviations
are finally sufficient to set its motive work also in motion, so that
both clocks go quite alike, either with the rate belonging to the rapid
principal oscillation or, what is more easily realized, with that or
the intermediate one.

Chemistry. — “The different branches of the three-phase lines for
solid, liquid, vapour in binary systems in which a compound

occurs.” By Prof. H. W. Bakruis Roozrsoon.

(Communicated in the Meeting of October 28, 1905)

A chemical compound, formed from two components, need not to
be regarded as a third component, when this compound is somewhat
dissociated, at least when it passes into the liquid or gaseous state.
Instead of the triple point we then get a series of triple points, the
three-phase line, indicating the co-related values of temperature and
pressure at which the compound can exist in presence of liquid and
vapour of varying compositions!) This was advanced for the first
time in 1885 by vaN pErR Waars. The equation for that line was
deduced by him *) and shortly afterwards *) applied by me in a few
instances where it was always admitted that the vapour tension of
the liquid mixtures gradually diminished from the side of the most

volatile (4) towards that of the least volatile component (B).

In the first considerations as to the course of the three-phase line
1) There exist several other three-phase lines which are not considered here.

) Verslag Kon. Akad. 28 Fehr, 1885.

% Rec. Tr. Chim, 5, 334 (1886)





