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and  the planes of equal amplitude run parallel to the bounding
plane.  This is necessary as it is assumed that the light enters the
metal from the outside. 7
The planes of equal phase are represented by:
b=pu~+qe=0C . . . . . . . (12)
It we introduce again n, : &, = cot v, then according to (10)

0 cos(t+w
0y, Tt

Y P e oL (1)
by sing
Qo == .. (1)

03 sinv
4. Lel « be the angle between the normals of the planes of
equal amplitude and phase. The former ranning parallel to the
bounding plane or the YZ.plane, « is the angle of the normal of the
planes of equal phase with the X-axis. Thus cos ¢ =— e Vpt g}
or if we introduce the values p, and q, from (13) and (],4j:
08 ¢ == @ cos (v -} w): l/gf‘ cos® (v - w) -+ szﬁl .o (15)
From this follows:

sin ¢ = S—mz—y 11 0% cos® (v -+ w) + sini ' 6
ne=—c:l oo 7{21 .. 16)
« being the angle of refraction corresponding to plane waves with

an angle of incidence 7 (see § 2 of the preceding paper), we get:
n? == sin® i sin® @ = 6% 9% c0s* (w 4 ¥) -} sin?i. . . (17)
et the coefficient of absorption belonging to n be %2 Normal fo
the planes of equal amplitude the amplitude decreases over a distance
@ in ratio 1 to ¢k Ag ¢ =0, we gel according to (8) and (9) :

2ok 2mon . ‘
— == e (g sin @ A= &y cos o)

A 2
from which again follows, when cot = is substituted for Mot kg
k ==tk 0 sin (v 4 w):sinr

or on account of (3): I
k=ogsin(v4 o . . . . . . . (18)
5. The fundamental equations follow immediately from the values
found for the index of rvefraction and the coefficient of absorption.
The equations (17) and (18) lead immediately to:
n' — k¥ == 6% 0% cos 2 (v + w) + sin® ¢ .
According to (1) the second member of this equation is equal fo
0® cos 2x or according to (3) to n,* —£," In this way the first

fundamental equation is obtained.
/
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Further follows from (15), (17) and (18):
1
n k cos @ = g % ® sin 2 (v 4 o).

According to (2) the second member is equal to ¢* s 2r and so
according to (3) to m, k,, and thus the second equation has also
been derived. '

To conclude we may remark, that here the reversed course has
been taken from that by which in the preceding paper the occur-
rence of the so-called complex index of refraction was derived from

the two fundamental equations *).

Mathematics. — <A tortuous surface of order swe and of genis
zero in space Sp, of four dimensions.”” By Prof. P. . Scuours.

1. We begin by putling the following question :

“In space Sp, are given three planes «,, ¢,, ¢, and in these arc
“agsumed three projectively related peneils of rays. We demand the
“locus of the common transversal of the triplets of rays corresponding
“to each other.”

Notation. We indicate the vertices of the rays of pencils by
0,, 0,, O,, three corresponding rays and their transversal by /., /,, [,
and /, the points of intersection of / and [/, /,, [, by S,,S,, S, and
the pencils of rays by (4), (4,), (4,). Let further P,,, P,,, P,, indicate
the points of intersection of the planes e, ¢,, ¢, two by two, and «
the plane £2,, P, P, which has a line in common with each of
the planes «,, e,, ¢, namely with «, the line 7, P,, ==«a,, with «, the
line P, P,, =a,, with e, the line P, P, =a,, We take for
granted that not one of the three vertices 0,, O,, O, coincides with
one of the points P,,, P, I,,.

2. The answering of the given question offers no more difficulties,
as soon as the locus of point .S, in @, is known; so we shall first
find this. Kach ray /, of pencil (/) furnishing a single point S,, it
is a rational curve, whose degree surpasses the number of times a
transversal [ passes through O, with unity. Now two transversals
[ pass through O,. For the pencil of planes (0, /,) with (0, a,) as
bearing space and (), (), as axis marks on the line of intersection
moof (0, e) with e, a series of points (/”) projectively related to
the pencil of rays (/,), from which ensues that there are two rays/,
passing through their corresponding point /2 and that therefore there

1y See loc. cit. § 5.
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are two lines (), I” cuiting the corresponding line /,, i.e. that two
transversals [ pass through (),. So the locus of S, is a cubic curve
s," having 0, as node, and so we find for the loci of S, and S,
in «, and e, in the same way rational curves 5,0 and s* with
0, and O, as nodes.

3. To determine the degree of the seroll of the lines I we first
investigate what this scroll has in common with an arbitrary space
through «,. Fach point @ lying outside «, which this space has in
ccommon with the scroll gives a line / having two points in common
with that space, therefore lying entively in that space. So that space
an contain  besides s* only a certain number of generalrices [ of
the scroll. As the line of intersection of «, with the assumed space
through «, has three points in common with s> the number of
generatrices to be found is three and the seroll, having a system of
lines of order six in common with the assumed space, must be o
tortuous surface O° of order six. So it is cut by an arbitrary space
according to a twisted curve of order six; this section in general
not degenerating is rational, its points corresponding one by one
to the lines / and therefore to the rays of each of the pencils
(), (1), (1) So the surface is of genus zero.

We call the locus just found — however not yet what was meant
in the title — a surface, o show hy this that the number of points

s twolold infinite; by the predicate “tortuous” we express that it
is not situated in a threedimensional space.

4. By considering the three projective series of points (A4,), (4,), (4,
marked by the three projective pencils of rays (1), (1), (/) on a,, a,, a,
we easily prove that the plane e« contains three generatrices of (J°,
For it happens, we know, three times that three corresponding points
Ay, 4, 4, of the projective seriés of points (4,), (41,), (4,) lie in a
same right line, which then becomes a generatrix / of 0°; for, the
conics enveloped by the lines A, A, and 4, A, connecting each point
A4, with the corresponding points A4, and A, have besides a, still
three common tangents.

To the rule that the tangents in a point of ' drawn to 0 are
situated ‘in a plane, the points of intersection of two non-successive
generatrices / form an exception. In such a point, through which
the surface passes twice, a tangential plane will belong to each of
the two lines /; so it can be called a “biplanar node”. From the
above is evident that () possesses six biplanar nodes, the three
points O, 0J,, O, and the three points of intersection of the genera-,
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trices lying in a; moreover we shall see directly that the number
of those nodes is in general six, becoming infinite when it surpasses
six, as takes place in the surface to be considered presently and
which is indicated in the title.

5. We point out the fact, that the found surface O°is determined
by the projective correspondence of the curves s, and s,* in”a, and
a,, and we now show that this correspondence, (:]’1at"acterj§e(1 by the
particularity of the corresponding triplets lying on «, and;e,, isnot
the most general one can think of. To that end we take two rational
curves s,° and s,* in two planes ¢, and «,, which planes for convenience’
sake we assume for the present to be lying in our space, and which
carves with the nodes O, and (), we suppose to be brought into
projective correspondence in the most general manner. Are there
then — we ask — to be found on s,° three collinear points to which
on s,° three likewise collinear points correspond? The answer runs
affirmatively ; what is more: each point of s,° forms one time a
part of such a triplet and the bearing lines form a pencil of rays.
If namely the point A, of s,* corresponds to the point 4, taken
arbitrarily on s,°, and if the central involution of the points B,, C
of s,* collinear with A, is represented by (B, (), the non-central
involution of the corresponding points B,, C, of s,* by (B, C)) and
the central involution of the points B,, C,' of s," collinear with A,
by (B, (,), then the two involutions (B, C\), (B, C,) have a pair
of points in common. If B,°, C\,° is this pair and B,°, C° ons,® the
pair corresponding to it, then A,, B,°, C;° and A4,, B,°, C.° are two
corresponding collinear triplets. If now (J, is the point of intersection
of two such like lines /', /" in «, and @, the point of intersection
of the corresponding lines /', /," in a,, then the triple involution
(4, .8, C,) marked by the lines through @, in s, must correspond
to the firiple involution (4, B, C;) marked by the lines through
Q, in s,°, with which we have proved what was asserted above.

With the aid of the preceding it is easy to show in how far the
particularity of the corresponding triplets lying on a, and a, is a
real one or an apparent one. With respect to the planes &, and a,
placed in our space it is evidently an apparent one; for not one time
but an infinite number of times it happens that three collinear points
of s, correspond to three likewise collinear points of s, If the
planes e, and e, are placed in Sp, in such a way that an arbitrary
point 2, of «, coincides with an arbitrary point P, of «,, then
however the three points in which s,* is cut by the line P, Q, will
correspond to three collinear points of s,%, but the line through Q
‘ 34
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bearing the last three points will in general not pass through
P, ="P,. So then there ave no lines a, and a, to be drawn through
the point of infersection P,, of the planes «, and «, cutting s,” and
s, in corresponding triplets. '

6. We shall now consider the more general case of two projectively
related curves s,° and s,* lying in such a way in e« and «, that
through the point of intersection 7’ no triplets of corresponding

oints bearing lines @. and a. are to be drawn. The areument leading.
o 1 2 >

to the order of the scroll, which is the locus of the line connecting
the corresponding points of those curves, retains here its force. So
we have but to determine the number of nodes. Of course 0, and
0, arc nodes. If farthermore 4,4, and BB, are two generatrices
cutting each other outside «, and «,, then A.B, and A,B, pass
through 7,,, as they must cut each other. So we consider the central
triple involution (4, B, C\) marked by the pencil of rays with P,
as vertex in s° and the non-central triple involution (4, B, C)) of
the corresponding triplets of s,3; then the latter furnishes as envelope
of the sides of the triangles 4, B, C; a definite curve of involution
which makes us acquainted by the number of ifs tangents through
L, with the number of nodes not lying in «, and e, of the new
surface  0". Now the class of the indicated curve of involution is
four ; for evidently four tangents pass through the node O, of s,%
If to the two points of s,° coinciding in O, the points M,, V, on
s,* correspond, and if 7, M, and P,, N, cut the curve 8,* still in
the point M,', M," and N,', N,", then the lines connecling P,, with
the corresponding points M, M., N, N, are the only tangents of
the curve of involution passing through P,. So 0° has here also
six nodes.

7. It is now easy to see that the first surface (0 of the three
projective pencils of rays is found back, if the correspondence of
the curves s,° and s, is given in such a way that through the point
of intersection £, of «, and e, lines a, and a, pass bearing two
triplets of corresponding points. The plane a,a, is then again a plane
« through three generatrices of O and the line a, represents three
of the four tangents to be drawn through P, to the above found
curve of involution, whilst the fourth tangent causes us to find a
node not lying in a, e, or « If we now cut the surface by the
space defermined by « and this node, the section will consist of the
three generatrices in ¢ and a curve of order three with a node,
i.e. a rational plane cubic curve. The plane of that curve is then
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the plane ¢,, the node of that curve the point O, of the first generation.

8. We now ask whal arises when the planes e, and «, are
placed in such a way in Sp,, that the points (J, and @, coincide Ehl’.ld
therefore each line drawn through the point of coincidence /72, in
a, is to be regarded as line «,. We then find that to every line «a,
through 2, in e, a definite line «, through /7, in «, corresponds,
so that there is an infinite number of planes «. The locus of these
planes. ¢ is a quadratic conic space With P, as verte.x; for the
pencils of rays of the lines «a,, ¢, through P,, corresponding ‘to ezw.h
other in «,, a, are evidently projectively related. This quadratic conic
space must contain, as it contains all gencratrices of (°, this torituoug
scroll itself.

Now that the genecratrices of this particular surface (%, being the
surface indicated in the title, group themselves into triplets lying in
a plane, there must be a locus of nodes. This is of order four. If
namely we project the surface O by means of the just found qua-
dratic conic space out of %, on to an arbitrary space not containing
Py, the projection is a quadratic scroll having the projections of the
planes e as a system of generatrices. Of this surface (O* the projec-
tions of e, and e, form thus two lines of the other system ; for each
of those two planes has a line in common with each of those planes
a and from this ensues that the scctions of «, and e, with the space
of projection must have a point in common with the sections of the
planes e with that space of projection. So in that space of projec-
tion each plane through one of the two lines contains a line of the
system corresponding to the planes @ and therefore the projections
of four nodes, namely one on the first line and three on the second.-
So the projection of the nodal curve out of P, on to the assumed
space of projection is a cnrve of order four lying on (%, which hasg
one point in common with each of the generatrices of one system,
and three points with each of the generatrices of the other gystem.
S0 the mnodal curve itself is a tortuous curve of order four; it is
rational as its projection is.

Considering the surface O we see at the same time that the sur-
face () admits of an infinite number of planes cutting it according to
a rational cubic curve, namely each plane through 2., and one pf’
the lines of the system to which the projections of e, and e, belong.

So we find the following theorem :

“If we assume in two planes e, and ¢, two projectively related
“rational cubic curves, if in these planes we determine the vertices
“Q, Q, of the corresponding central triple involutions on those

34
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“curves and if now we place those planes in S, in such a way that
“@, and (), coincide in the points of intersection P, of the planes,
“the locus of the line connecting the pairs of corresponding points of
“the cubic curves forms a tortuous surface with the following properties :

a. “It is projected out of P,, by a quadratic conic space, on
“which two systems of planes are lying;

b. It is cut by each plane of one system according to a cubic
“curve with a node, by each plane of the other system according
“to three generatrices; :

¢. “The cubic curves in two planes of the first system have no
“point in common, neither have the triplets of lines in two planes of
“the second systems; cach cubic curve, however, is cut by each
“oeneratrix ;

d. “The gencratrices cause a mutual projective correspondence
“among all cubic curves and the cubic curves among all the gene-
ratrices.”

9. From the preceding ensues immediately that the tortuous scroll
with a nodal curve £* can be represented on a plane. If in a plane
o we assume arbitrarily two pencils of rays with different vertices
T, T,, and if we allow three arbifrary rays a,, b,, ¢, of the former

2
to correspond to three rational cubic curves s?a>, .s?b), s(?’c\ of (°, three
. )

arbitrary rays a,, 0,, ¢, of the second to three generatrices la, ls),

liy of O°, then to each rational cubic curve s?p)

ray p, of the first pencil, to each generatrix [,y corresponds a definite
ray ¢, of the second; so we can assign the point of intersection of

‘9?,;) and /gy to the point of intersection of p, and ¢,. The elements

of exception of that representation are immediately found. If to the
line connecting the vertices of the pencils of rays counted with the
first pencil the curve s* corresponds and counted with the second pencil
the generairix /, and if S is the point of intersection of s* and /,
then to point 7', corresponds the line /, to point 77, the curve s* and
reversely to point S the line 7', 7. To each point F° of the nodal
curve &' correspond two points ', P" of ¢ collinear to 7, because

in the correspondence of S?p‘ to Iy the node of 3(3})) represents two
/7

different points and two points of [, correspond to this point. As
T, forms part of two representing pairs, the pairs belonging to the
nodes of the generatrix / belonging to 7', this point is node and
the curve of order four. This is also evident when we consider the rays
of the other pencil. On each ray ¢ lie two points of the curve forming

corresponds a definite -
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part of pairs corresponding to the points of the nodal curve lying
on [y,, whilst 77, corresponding to the node of the curve s* is
likewise node of the curve. So in ¢ to the nodal curve A corresponds
a curve £ (772, T,*, having 7', and 7, as nodes and being of genus
unity. And to the rational space sections £° of O° correspond in @
curves A" (7, 7,%) through 7', with 7', as triple point, which is
found immediately when we remember that an arbitrary space has
three points in common with each of the rational cubic curves of O°
and one point with each generatrix of (). As is proper each of
those rational curves &' (7', 7',") has with the representation £*(7*, 77,
of the nodal curve £* hesides 7, and 77 four pairs of points in
common, corresponding to the four points of the nodal curve lying
in the selected space, whilst two carves &* (7, 1.%) cut each other
besides in 7, and 7' in six points corresponding to the six points
of intersection of () with the plane of section of the two spaces.

10.. The locus of the bisecants of a tortuous curve of order four
is a curved space of order three having the indicated curve as nodal
curve. For the twolold infinite number of bisecants furnishes a triple
infinite number of points and three of these lie on an arbitrary right
line /, because the curve projects itself out of / on to a plane not
intersecting / as a rational curve of order four and this plane curve
possesses three double points. If we apply this to the nodal curve
k* of (O, taking into consideration that the generatrices of this scroll
are all bisecants of 4!, we find :

“The tortuous scroll O° with the nodal curve %* is the complete
section of a quadratic conic space with a curved space of order three,
of which the first passes once, the second twice through A*.”

Whilst the cubic space is the locus of the bisecants of %*, the
quadratic conic space with P,, as vertex is the locus of the planes
containing three points of £* and passing through P,,.

The tortuous surface O° with a nodal curve %' is determined by
this curve and the point /°,. As P, lies arbitrarily with respect to

k* each tortuous curve £* in Sp, is nodal curve of a fourfold infinite

number of surfaces O°.

11. We observe that the case just considered of the correspon-
dence of the curves s* and s,°, where a tortuous scroll with a
double curve £*is formed, is not the most particular one that one
can think of. If for instance -— instead of starting from two rational
curves s,* and s,° taken arbitrarily in «, and e, — we start by making
the pointfields «, and «, to be in projective correspondence and then
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‘continue to assume two rational curves s and s,° edrresponding
to each other in this manner, then of course to every three col-
linear points of s* correspond three likewise collinear points of
s,", and therefore we can take for the above determined pair of
points (,, (), any corresponding pair of points of «,, e,. In this
special case a plane « through three generatrices will present itself
already for arbitrary position in Sp, and the position, that an infinite
number of those planes present themselves, will be able to be brought
about in a twofold infinite number of different ways; in the last
case however the three generatrices lying in a plane e pass through
a point, as the series of points lying on the lines of intersection
@, a, of this plane with «,, «, are perspectively related, so that the
locus of the nodes becomes a conic instead of a 4. In both cases
surfaces (' are formed differing from the above also in this respect
that they admit not only of a single but of a twotold infinite
number of spaces through three generatrices.

12. Also when we start from two projective rational curves
s,°, 8, in not projectively related fields a great number of special
cases are left for consideration. So the point of intersection /%, of
the planes «,, &, can lie

a. on one of the eurves 8%,

b. on both curves s°, ‘

¢. on the two curves s* and correspond to itself,

d. it can be the node of one of the curves &°,

¢. it can be the node of one of the curves and lying on the other,

/. it can be the node of one of the curves and forming on the
other part of the two points corresponding to this node,

¢. it can be the node of both curves,

h. it can be the node of both curves and in such a way that one
pair of points coinciding in this node has a point in common with
‘the other,

¢. it can be the node of both curves and in such a way that the
pairs of points coinciding in this point correspond to each other.

Of course the number is still increased if we further permit
the pointfields e, , «, to be projectively related. We do not wish to
investigate more closely all these special cases. Neither do.we intend
to investigate here the scrolls presenting themselves in both cases
of projective or non-projective pointficlds «, , ¢, as the locus of the
line /°,I°, connecting corresponding points P°,, °, of other curves
of the same genus and of the same order, which are projectively
related. We only wish to observe that these scrolls will lie in the

5

e
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case of the projectively related pointfields «,, e, on the locus of

the line P P, connecting corresponding points /2, , P, of the planes

a,, a,, which is a quadratic or a cubic space according to the point

of intersection P, of &, and e, corresponding to itself or not.

13. We conclude with- the deduction of the equations of the above
found "ecabic and quadratic spaces which have in common the
sur [{Lce 0" with -the nodal curve £* and to this end we start from
this curve. If the curve 4* is given by the system of equations:

Qo == A, (t=0,1, 2, ‘3, S @3]
—— and in this way the simplex of coordinates can always be taken —,
and if the point which is the vertex of the quadratic conic space
with respect to that samo simplex has the coordinates (1/0, Yis Yor Yas Ya),
then tho equations

By &, B, @, {

&, &y @y |
By By &y @, :
x, w, | =0 , =0. . . (2)
Jo Y1 Ys Ys
yl y? .7/3 y4
represent those two spaces. We sce namely immediately that the
first determinant by insertion of the relations (1 shows three equal
rows, i.e. that the cubic space represented by the first equation must
have the points of the curve %' as nodes, and must thus contain each
bisecant of £*. Further it is equally clear that the second deter-

s om
&, By Ly

minant by insertion of the relations (1) shows two equal rows and

that, when substituting y; for a;, two pairs of equal rows appear, from
which ensues that the quadratic space represented by the second
equation passes through £ and has a node in y.

A more direct deduction - of the equation of the locus of the
bisecants of the curve &' was communicated formerly (LProceedings
of the February meeting of 1899 vol. I, page 313). It.is founded
on the wellknown lemma, according to which the product of two
matrices M,* and M ,»% with » rows and £ columns, taken according
to the rows, vanishes identically for » > £ This same lemma leads
to the deduction of the equation of the locus of the planes con-
taining. three points of 4%, and passing through (y,, v,,v,, v,, 7). An
arbitrary point P of the plane [, I, P, through the points P, P,, P,
of &' corresponding to the pammetervalues 4., 4,, 2, 18 represented by

Qui=p ki o, A b A, (=0,1,2,8,4) . . . (3)

It the plane /7 ,Z’z P, passes moreover through the given poing

Yor Yis Ya> Yy Y4), also the relations
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oYi=q, ’1‘12—1"92)’2{’{_,(13]'32‘7 (75:0’ 1’2’3’4) ot (4)
hold, and now the equation sought for is found by eliminating the
nine quantities 2, 2,, 4,, P Pas Pss 15 ¢ss @5 0out of the ten equations
(3) and (4). This takes place by inserting the values given by (3) and (4)
in the left hand member of the second equation (2). For by this we find

&y @ @, @, I 1 1 ) Pr Pe Py

o o vow, o, @, _ AL A, A, . Pihy paA, Pl o
Yo Y1 Y3 s OO AR
A B PR E Nty Gady Quks

We considered in the above cited communication equations forming |

the extension of the first of the equations (2) to the curve A% of
the space Spy,. In connection with this we shall notice that the second
of the equations (2) admits of corresponding extensions, in which
those of the first are included. However, these will be developed
elsewhere.

Mathematics. — «The Pricrr equivalents of a cyclic point of a
twisted curve.” By W. A. Versnuys. (Communicated by Prof.
P. H. Scuours.

- If a twisted curve (' admits of a higher singularity (cyclic point)
of order n, of rank r and of class m, it is to be represented accord-
ing to Harpuex') in the vicinity of this singular point M by the
following developments in series:

@ = ",

y =t [¢],

z = trtr-bm (],
where [¢] represents an arbitrary power series of ¢, starting with a

constant term.
If n, » and m satisfy the conditions that

10 n and 7,

20 r and m,

. ) (4)
3 n and r-+m,

4° n-+r and m

are mutually prime, then this higher singularity M (n, r, m) for

N Bull. d.1. Soc. Mat. d. France t. VI p. 10.
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the formulac of Caviey-Prickir and for the genus is equivalent to
the following numbers of ordinary singularities :
n—1 cusps B,

gtl)_@jf_ffﬁ nodes H A

m—1 stationary planes «,

(m—1) (ZH‘T“?)) double planes @, (B)

r—1 stationary tangents @,
(r—1) (r+m—3)
2
(r—1) (r+n-—38)
2
For a curve with only ordinary singularities we always have

double generatrices w,,

double tangents w,.

W, == w,.

If the curve admits of higher singularities, then the tangents in
these singnlar points will not have to count for as many double
tangents to the curve as they must count for double generatrices of
the developable belonging to the curve. The number o will then be
different for the formulae of CayLey-Pricker, velating to a section
and for those formulae relating to a projection, i. 0. w. the singularity
o of a twisted curve appearing in a term (# + @) is not always the
same as the one appearing in the term (y + w).

So the formula

Yy =rv—p’)
is no longer correct as soon as the curve has higher singularities
for which order and class are unequal.

The above as well as the following results do not hold for a
common cusp #(2,1,1) and for a common stationary plane « (1, 1, 2,
the conditions (4) not being satisfied for these cyclic points.

Through the singular point M (n, », m) pass

n (n4-2r--m-—4)
2
branches of the nodal curve of the developable O belonging to the
curve (. ‘

All these branches touch the curve ('in M and have in M with

the common tangent

(n+7) (n4-2r+m—4)
2

coinciding points in common.

1) Sawmon. 3 Dim. § 327.






