Huygens Institute - Royal Netherlands Academy of Arts and Sciences (KNAW)

Citation:

P.H. Schoute, On the equation determining the angles of two polydimensional spaces, in: KNAW, Proceedings, 7, 1904-1905, Amsterdam, 1905, pp. 340-341

This PDF was made on 24 September 2010, from the 'Digital Library' of the Dutch History of Science Web Center (www.dwc.knaw.nl)
> 'Digital Library > Proceedings of the Royal Netherlands Academy of Arts and Sciences (KNAW), http://www.digitallibrary.nl'
development from the brain of the Insectivores, it is clear that the Tarsius brain shows unmistakable genetic relations with this latter also.

A more detailed account with figures will be published in the Handbuch d. Entwicklungsgeschichte edited by Hrrtwig.

Mathematics. - "On the equation determining the angles of two polydimensional spaces". By Prof. P. H. Schoute.

The problem which we wish to solve is the following:
"In a space S_{n} with n dimensions a rectangular system of coordinates $O\left(X_{1} X_{2} \ldots X_{n}\right)$ has been taken and with respect to this system a space S_{p} passing through O has been given by the equations

$$
\begin{gathered}
x_{p+i}=a_{1, i} x_{1}+a_{2, i} x_{2}+\cdots+a_{p, i} x_{p} ; \\
(i=1,2, \cdots, n-p)
\end{gathered}
$$

supposing this space S_{p} to have with the space of coordinates $O\left(X_{1} X_{2} \ldots X_{p}\right)$ but one point O in common, the p angles $\alpha_{1}, \alpha_{2}, \ldots \alpha_{p}$ are to be determined between these two p-dimensional spaces."

By means of geometry we should set to worls as follows. Suppose in the given space S_{p} a spherical space having O as centre and unity as radius and thus forming in S_{p} the locus of the points at distance unity from O; if this spherical space projects itself on the space of coordinate $O\left(X_{1} X_{2} \ldots X_{p}\right)$ as a quadratic space with the half axes $a_{1}, a_{2}, \ldots a_{p}$, we get

$$
a_{1}=\cos \alpha_{1}, a_{2}=\cos \alpha_{2}, \ldots, a_{p}=\cos \alpha_{p} .
$$

In an almost equally simple way the tangents of the demanded angles are connected analytically with the central radii-vectores of an other quadratic space. If P is an arbitiary point of S_{p}, and Q its projection on the space of coordinate $O\left(X_{1} X_{2} \ldots X_{p}\right)$, then the angle $P O Q=\alpha$ is also determined by the relation

$$
t q^{2} a=\frac{O P^{2}-O Q^{2}}{O Q^{2}}=\frac{\left.\sum_{i=1}^{n-p}\left(a_{1, i} v_{1}+a_{2, i} x_{2} \cdots+a_{p, i} x_{p}\right)\right)^{2}}{\sum_{i=1}^{p} x_{i}^{\prime 2}}
$$

If we consider in S_{p} the points P the coordinates of which are bound to the condition

$$
\sum_{i=1}^{n-p}\left(a_{1, i} x_{1}+a_{2, i} x_{2}+\cdots+a_{p, i} x_{p}\right)^{2}=1 \ldots \text {. } \ldots \text { (1), }
$$

containing only $x_{1}, x_{2}, \ldots k_{p}$, and thas expressing that the projection Q of P on $O\left(X_{1} X_{2} \ldots X_{\mu}\right)$ remains in this latter space on the quadratic space represented by (1), then the relation holds good

$$
\operatorname{tg} a=\frac{1}{O R} .
$$

If $b_{1}, b_{3}, \ldots b_{p}$, are the half axes of this new quadratic space, we shall find

$$
\operatorname{tg} \alpha_{1}=\frac{1}{b}, \operatorname{tg} \alpha_{2}=\frac{1}{b_{2}}, \ldots, \operatorname{tg} \alpha_{p}=\frac{1}{b_{p}} .
$$

Now (1) passes into the symbolic form

$$
\left(A_{1} x_{1}+A_{2} x_{2}+\ldots+A_{p} x_{p}\right)()^{(2)}=1
$$

by the snbstitutions
so the well know secular equation

$$
\left\lvert\, \begin{array}{ccccccccc}
A_{11}-\lambda & & A_{21} & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot
\end{array} \Lambda_{p, 1}\right., 1 .
$$

furnishes by its roots $\lambda_{1}, \lambda_{2}, \ldots \lambda_{p}$ the coefficients of the equation of that yuadratic space reduced on the axes.

From the relations

$$
\lambda_{1}=\frac{1}{h_{1}^{2}}, \lambda_{2}=\frac{1}{h_{2}^{2}}, \ldots \lambda_{p}=\frac{1}{h_{p}^{2}}
$$

ensucs immediately that the demanded equation is arrived at by replacing in the above mentioned determinant 2 by $t y^{2} a$.

Mathematios.-."The locus of the principal ares of a pencil of quirulratic surfaces". By Prof. J. Cardinaal.

1. The envelope of the axes of a pencil of conics was investigated among others by M. Trbirsconer ${ }^{1}$). He found that the axes of the above mentioned conics envelop a curve of class three touching the right line at infinity of the plane in two points conjugate to the directions of the axes of the two parabolac of the pencil with respect to the
${ }^{1}$) Ueber Beriehungen zwischen Kegelschnittbüscheln und rationalen Gurven dritter Classe, Sitzungsber. der Kaiserl, Akademie der Wissenschaften, Bnd, LXXXI, p. 1080.
