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D, are most readily interpreted by considering them as originating
from a triplet and not from a secatet.

It scems rather superfluous to give any further explanation of
figs. 8, 4, 5; in the case relating to fig. 5, the vapour density is
again greater than in fig, 4. All the phenomena we have considered
are qualitatively in excellent accordance with Voier’s -theory.

The phenomena deseribed for D, and D, again demonstrate the
existence of very characteristic differences between different spectral
lines, differences no less stviking here than in the case of the related
phenomena of the magnetic separation of the spectral lines and of
the rotation of the plane of polarization in the interior') of, and
close to, the absorption line. 1t is certainly very inieresting that the
theory explains the cntirely different behaviour of D, and D, in the
case now considercd by differences between the velocities of propa-
gation of wvibrations normal and parallel to the field, assuming, of
course, the magnetic division of the lines.

Physics. — “The motion of eclectrons in metallic bodies”. 1. By
Prof. H. A. LorenTz.

It has been shown by Riscke®), Drupr?) and J. J. Trowmson *)
that the conductivity of metals for clectricity and heat, the thermo-
electric currents, the Tromson-effect, the Havr-effect and phenomena
connecied with these may be explaned on the hypothesis that a
metal contains a very large number of free electrons and that these
particles, taking part in the heat-motion of the body, move to and
fro with a speed depending on the temperature. In this paper the
problems to which we are led in theories on these subjects will be
treated in a way somewhat different from the methods that have
been used by the above physicists.

§ 4. I shall begin by assuming that the metal contains but one

1) Zeeman, Proc. Acad. Amsterdam May 1902, see also the description of another
phenomenon in Voier, Gottinger Nachrichten, Hefl 5, 1902,

%) E. Riecks, Zur Theorie des Galvanismus und der Warme, Ann. Phys. Chem.
66 (1898), p. 353, 545. 1199 ; Ueber das Verhaltms der Lertfahigkeiten der Metalle
fur Wdrme und fur Elektrizitat, Ann. Phys. 2 (1900), p. 835.

8) P. Drupr, Zur Elektronentheorie der Metalle, Ann. Phys. 1 (1900), p. 566 ;
8 (1900), p. 369.

4) J. J. Tuomson, Indications relatives & la constitution de la malidve fournies
par les recherches récentes sur le passage de I'électiicité a travers les gaz, Rapports
du Congrés de physique de 1900, Paris, 8, p. 138
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kind of free electrons, having all the same charge ¢ and the same
mass m; the number of these particles per unit volume will be
represented by &, and I shall suppose thewr heai-motion to have
such velocilies that, at a definite temperature, the mean kinetic
cnergy of an electron is eyual to that of a molecule of a gas. Deno-
ling by 7' {he absolute temperature, I shall write for this mean
kinetic energy 7, where « is a constant.

We shall further consider a cylindrical bar, unequally heated in
ils different parts, so that, if 2 is reckoned along iis length, T is
a fanection of this coordinaie. We shall also suppose each electron to
be acted on, in the direction of OX, by a force mX, whose intensity
is a function of @ Such a force may be due either to an electric
field or, in the case of a non-homogeneous metal, o a molecular
attraction exerted by the atoms of the metal. Our first purpose will
be to calculate the number of electrons » and the amount of energy
W crossing an element of surface perpendicular to the axis of z in
the positive divection, or rather the difference between the numbers
of particles in one case and the quantities of energy in the other
that travel towards the positive and towards the negative side. Both
quantities » and TV will be referred to unit area and unit time.

This problem is very similar to those which occur in the kinetic
theory of gases and, just like these, can only be solved in a rigonrous
way by the statistical method of MaxweLn dand BorTzmanw.

In forming our fundamenial equation, we shall not confine ourselves
o the cylindric bar, but take a somewhat wider view of the subject.
At the same time, we shall introduce a simplification, by which it
becomes possible to go further in this theory of a swarm of electrons
than in that of a systemx of molecules. It relates to the encounters
experienced by the particles and limiting the lengths of their free
paths. Of course, in the theory of gases we have to do with the
mutual encouniers between the molecules. In the present case, on
the contrary, we shall suppose the collisions with the metallic atoms
to preponderate; the number of these encounters will be taken so
far to exceed thal of the collisions beiween electrons mutually, that
these latter may be altogether neglecied. Moreover, in calculating the
effect of an impact, we shall treati both the atoms and the electrons
as perfectly rigid elagtic spheres, and we shall suppose the atoms
to be immovable. Of course, these assumptions depart more or less
from veality; I believe however that we may safely assume the
general characler of the plienomena not to be affected by them.

§ 2. Lel dS be an element of volume at the point (z, ¥, 2). At




( 440 )

the time ¥, this clemeni will confain a certain number (in fact, a
very large number) of electrons moving in different ways.

Now, we can always imagine a piece of metal of finite dimensions,
say of unit volume, in which the ‘“concentration”, as we may
call it, of the electrons and the distribution of the different velocities
among them are exactly the same as in the element (S. In studying
the said distribution for the N electrons, with which we are then
concerned, we shall find a diagram represemting their velocities to be
very useful. This is got by drawing, from a fixed point O, N vectors,
agreeing in direction and magnitude with the velocities of the electrons.
The ends of these vectors may be called ihe velocity-points of the
electrons and if, through the point O of the diagram, we draw axes
parallel to those used in the metal itself, the coordinates of a velocity-
point will be equal to the components & 1%, § of the velocity of the
corresponding electron. -

Writing now

J & g) da

for the number of velocity-points within the element di at the
point (&, %,8), we make the exact solution of all problems relating
to the system of electrons depend on the determination of the
function f (&, , §).
We may also say that
FEmEASdr . . . . . . ..

is the number of electrons in the element dS, whose velocity-points
lie in d2; in particular

F& 5 dSdsdnds . . . . . . . (2)
is the number of electrons for which the values of the components
of velocity are included between § and & --dS, % and % -~ dy,
§ and § -} /& The expression (2) is got from (1) by a proper choice
of the element 2.

If the function in (1) were known, we could deduce from it the
total number of elecirons and the quantities » and W mentioned
in § 1. Integrating over the full extent of the diagram of velocities,
we have

v=[remya ... @

v:fgf(’s',n,g)d}.,. SRR O

and if, in treating of the flux of energy, we confine ourselves to
the kinetic energy of the particles,
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We=dim{|§22fEn,8d» . . . . . . (5

In the latter formula, r denotes the magnitude of the velocity.

It ought to bé observed that, in general, the state of the metal
will change from point to point and from ome instant to another. If
such be the case, the function f(§, %, §) will depend on z,y,z and
¢, so that the symbol may be replaced by /(& u,8 @y, 517 We
shall, however, often abbreviate it to f.

As to the integrations in (3), (4) and (5), in performing these, we
must treat @, y,z and { as constants.

§ 3. We shall now seek an equation proper for the determina-
tion of the function f. For this purpose we fix our attention on the
electrons present, at the time ¢ in the element dS at the point (z, , 2),
and having their velocity-points within the element d2; we shall
follow these particles, the number of which is

FE G ayt)dSdr . . . . . . . (6)
in their course during the infinitely short time d¢. At the end of
this interval those particles of the group which have escaped a
collision with an atom will be found in an element dS’, which
we may get by shifting dS in the divections of the axes over
the distances §dt, nd!, Sdt. At the same time, if there are external
forces, the velocities will have changed. I shall suppose each elec-
tron 1o be acted on by the same force (m.X, mY, mZ). Then, for
each of them, the components of the velocity will have increased
by Xdit, Ydi, Zdt and, at the end of the interval dt, the velocity-
points will be found in the element di’, which may be considered
as the original element d2, displaced over those distances.

We must further keep in mind that, while travelling from dS to
dS', the group (6) loses a certain number of electrons and gains
others. Indeed, all particles of the group that strike against an atom
have their velocities changed, so that they do not any longer belong
to the group, and, on the other hand, there are a certain number of
encounters by which electrons having initially different velocities,
are made to move in such a way, that their velocity-points lie
within d2. Writing

adSdidt
for the number of electrons leaving the group and
bdSdadt
for the number entering it, we may say :
If, to the number (6), we add (b —a)dSd2dt, we shall get
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the number of electrons which, at the time ¢ ¢, satisfy the condi-
tions that they themselves shall be found in the element JS* at
the point (w4 8§dt,y++ndt z-+5dt) and their velocity-points in
the element /2’ at the point (§4 Xdt, v Ydt, 54 Zdt). Hence,
since dS’ = dS and M = 2,

FEMLS 2y 5t) 4 0 —ad=

=f(§ + Xdt, + Ydt,§ + Zdt, w + &dt, y -+ ydt, = 4 &de, ¢ 4 di),
or .

o » U O, O, o o,
EEX+5;Z Y+a—;z+5;§+5;°l+a—z§+§g- . (7)

This is the equation we wanted 1o establish?).

It is easly seen that, in ecalculating the numbers of collisions
adSdidt and bdSd2rdt, we need not trouble ourselves about
the state of the metal varying from one point to another; we may
thersfore understand by adidt the decrease, and by bdadt the
increase which the group of elecirons characterized by d2 would
undergo, if we had to do with a piece of metal occupying a unit
of volume and being, in all its parts, in the state that exists in the
element dS.

b —a—

§ 4. We are now prepared to calculate the values of a and 6.
Let B be the sum of the radii of an atom and an electron, 7 the
number of atoms in wunit space, and let us in the first place con-
fine ourselves to encounters of a definite kind. I shall suppose that
in these the line joining the centres falls within a cone of the infinitely
small solid angle dw.

Taking as axis of this cone one of the straight lines that may be
drawn in 1, and denoting by & the acufe angle between the axis
and the direction of motion of the group (6), I find for the number
of electrons in this group undergoing an encounter of the kind chosen,

nR*f(§ n,8)reosddideo . . . . . . (8)
per unit time, a result which leads to the value
a=aaRFELEr . . . . . . . (9

if we take into account all encounters, whatever be the direction of
the line joining the centres.

Now, if we ascribe to a metallic atom so large a mass, that it
is mnot sensibly put in motion by an electron flying against it, the
velocity of the latter after the encounter is given by a very simple
rule. We have only to decompose the initial velocity into one

1) See Lopenrz, Les équations du mouvement des gaz et la propagation du
son suivant la théorie cinétique des gaz, Arch. néerl. 16, p. 9.



( 443 )

component along the line of the centres and another perpendicular
to it; the latter of these components will remain unchanged and the
former will have its direction reversed.

In applying this to the encounters of the particular kind specified
at the beginning of this §, we may take for all of them the line of
centres to coincide with the axis of the cone dw. Our conclusion
may therefore be expressed as follows: Let V7 be a plane through
the origin in the diagram of velocities, perpendicular to the axis of
the cone. Then, the velocity-point of the electron after impact will
be the geometrical image of the original point with respect to this
plane. It is thus seen that all electrons whose velocity-points before
the encounters are found in the element 2 will afterwards have
their representative points in d 2,, the image of « 2 with respect to
the plane V.

By this it becomes also clear, in what way the number & can
be caleulated; indeed, in encounters taking place under the circum-
stances considered, velocity-points may as well jump from d A, to
dA as from d 2 1o d?,. The number of cases in which the first takes
place 1s found from (8), if in this expression we replace §, %, § by
the coordinates §, ', & of the image of the point (§, %, 5) with respect
to the plane V. It is to be remarked that the factor » cos & d 2 may
be left unchanged, because the lines drawn from the origin of the
diagram to the points (5§ 7, §) and (§, v/, &) have equal lengths and
are equally inclined to the axis of the cone. Also d7, =d 2. The
increase per unit volume of the number of electrons in the group
(6), insofar as it is due to encounters in which the line of centres
lies within the cone d w, is thus found to he

» RfFE, 7, Sresddidw
and, in order to find 0, it remains only to divide this by di and to
integrate with respect lo all cones that have to be taken into account.

Using the formula (8) we may as well calculate directly the
difference b—a. By this he equation (7) becomes

B [N = EnE e dde=

_of of ., of, of  of  of.

We must now express §,4/,8 in §, 1,8 Let f, ¢, be the angles
belween the axes of coordinates and the axis of the cone dw, this
last line being taken in such a direction that it makes the acufe
angle ¥ with the velocity (§, u,5). Then

§==§— 2rcosdcosf, W =mn—2rcosPcosg, §=25— 2rcosdcost, (11)
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These formulae show that, as we know already, the magnitude of
the velocity (), %, &), which I shall call , is equal to the magnitude
r of the velocity (8, %, 5).

As fto the integration in (10), it may be understood to extend to
the half of a sphere. Indeed, if in the diagram of velocities, we
describe a sphere with centre O and radius 1, and if P and @ are
the points of this surface, corresponding to the directions (&, v, §) and
(f, 9,7, we must give to the point ¢ all positions in which its
spherical distance from 2P is less than i #. For do we may take a
surface-element situated at the point Q.

§ 5. At the time ¢ and the point (a,y, 2z) the melal will have a
certain temperature 7' and the number A, the concentration of the
swarm of electrons, a definite value.

Now the assumption naturally presents itself, that, if 7" and IV
had these values continually and in all points, the different velocities
would be distributed according to MAXWELL's law

FEME) =AM . . . . . . . (12

Here, the constants A and % are related to the number & and the

mean square of velocity +* in the following way

5

A = N ;5, (13‘
-~ 3
r? o= —, .
25
Since } mr® = T, the latter relation may also be putin the form
3m
7}, = m . (14)

It appears from this that the way in which the phenomena depend
on the temperature will be known as soon as we have learned in
what way they depend on the value of /.

§ 6. The function f takes a less simple form if the state of the
metal changes from point fo point, so that A and % are functions of
z,y,2. In this case we shall put

SEmE)=de " 4+ @En8&), - . . . . (1B)

where ¢ is a funetion that has yet to be determined by means
of the equation (10). We shall take for granted, and it will be con-
firmed by our result, that the value of ¢ (§, %, §) is very small in
comparison with that of de—#" In virtue of this, we may neglect
the terms depending on ¢ (§, 1, 5) in the second member of (10), this
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having already a value different from 0, if we put /== de—** For
a stationary state and for the case of the bar mentioned in § 1, the
member in question becomes

d4 dh
(—-27;AX+»———-—1«’A-—~)§(3—"" ... (19
dn dan

As to the left hand side of the equation (10), it would become O,
if we were to substitute f= de¢—"’. Here, we must therefore use
the complete value (15), the deviation from MaxwrLL’s law being
precisely the means by which this member may be made to become
equal to (16).

The occurrence of the factor & in this last expression makes it
probable that the same factor will also appear in the function . We
shall therefore try to satisfy our equation by putting

pEnd)=8&x® . . . . . . . (17

This leads to

FEmE)=4de b 4§y ()

FE 8 = A 4 8y (),
consequently, since ' =, if we use (11),
FE N, 8) —F(E 8 =—27rcos P cos fy(r),

so that the first member of (10) becomes
———2nR’9""x(¢)ﬁos’ Jeosfdew. . . . . . (18

Denoting by ¢ the angle between the velocity (§, 7, 8), i.e. the
line OP, and the axis of z, and by y the angle between the planes
QOP and XOP, I find for (18)

P 2w
— 2nR y ('r)f fco\s’ & (cos & cos g - sin F sin p cos ) sin $ d S dPp=
0 9
=—anBry(Mcspy=—anR§ry(.
If this is equated to (16), the factor § disappears, so that y (») may
really be determined as a function of r. Finally, putting
1
T n R?
we draw from (15) and (17)
! dA ary §
F(E o §) = A o=l l(zh AKX -4 A—-) 2 -k, (20)
{ dw da/ »

I must add that, as is easily deduced from (9), the quantity [

defined by (19) may be called the mean length of the free paths of

and

=L . . . . ... (19

d4
the electrons, and that, in the equation (20), the terms in . and
i

-10 -
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dh

— are very small in comparison with A ¢~%* provided only the state
of the metal differ very little in two points whose mutual distance
is /. This is seen Dby remarking that the ratios of the terms in
question to A e¢—h* are of the order of magnitude

a4

i and Zﬁd—h,
dz

l

— 1
and that, in the second of these expressions, »* is of the same order as R

If the term in (20) which contains X, is likewise divided by
Ae-1, we get
2hl X

Now, 2/ X is the square of the velocity an electron would acquire
if, without having an initial motion, it were acted on by the external
force m X over a distance /. If this veiocity is very small as com-
pared with that of the heat-motion, the term in .Y in our equation
may also be taken to be much smaller than the term 4 e—%*

It appears in this way that there are many cases in which, as
we have done, the function ¢ (&, %, §) may be neglected in the second
member of the equation (7).

The above reasoning would not hold however, if, in the case of
two metals in contact with one another, there were a real discon-
tinuity al the surface of separation. In order to avoid this difficulty,
I shall suppose the bodies to be separated by a layer in which the
properties gradually change. I shall further assume that the thick-
ness of this layer is many times larger than the lengih /, and that
the forces existing in the layer can give to an electron that is initially
at rest, a velocity comparable with that of the heat-motion, only
if they act over a distance of the same order of magnitude as the
thickness. Then, the last {erms mn (20) are again very small in com-
parison with the first.

As yel, a theory of the kind here developed cannot show that
the values we shall find for cerfain quantities relating to the contact
of iwo melals (difference of potential and Prrmmr-effect) would still
hold in the limit, if the thickness of the layer of transition were
indefinitely diminishe” This may, however, be inferred from thermo-

dynamical considerations.

§ 7. laving found in (20) the law of distribution of the veloci-

-11 -
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ties'), we are in a position to calculate the quantities » and W (§ 1)
with which we are principally concerned. If the value (20) is sub-
stituted in (4) and (5), the term A4 ¢~*"*leads 0 an integral containing
the factor &§; this integral vanishes, if taken over the full extent of
the diagram of velocities. In the remainiug integrals the factor §*

]
occurs ; these are easily found, if we replace § by gr’, the element

di by 4mr*dr, and if then we integrate from r=0 to r = c.
Taking »* —s as a new variable, we are led to the integrals

[z2] oo o0
L{se—hs ds, j‘sg e~tsdsand |s* e—hs d s,

0 0 0
whose values are

1 2 6
7;2—, Zs‘" and h—“.
Finally, the “stream of electrons” and the flux of heat are given by
2 1 d4 A dh
=—xl| —{2h4X— — 2—— . . .
» 5 % [h“ ( A X da:) + fE dm] 21)
2 1 d4 A dh
W=—aml|-—{2 { — — —— 1 . .
g™ [h"( h4 X da;)+ 3#6&”] (22)

These are the equations that will be used in all that follows.
For the sake of generality, I shall suppose (though, of course, this
is not siriclly true) that, if only a proper value be assigned to /,
the formulae may still be applied even if we make other assumptions
concerning the metallic atoms and their action on the electrons. From
this point of view, we may also admit the possibility of different
kinds of electrons, if:such there are, having unequal mean lengths
of free paths, and of, for each kind, / varying with the temperature.

Provisionally, we shall have {o do with only one kind of electrons,
rescrving the discussion of thc more general case for a future com-
munication.

§ 8 From the equation (21) we may in the first place deduce a
formula for the electric conductivity o ot the metal.

Let a homogeneous bar, which is kept in all ils parts at the same
temperature, be acted on by an electric force &/ in the dirvection of
its length. Then, the force on each electron being ¢ %, we have to put

) It may be observed that, as must be the case, the value (20) gives N for

the number of electrons per unit volume and o7 {or the mean squarc of velocity
¥

|

-12 -
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x=2Z
m
Also,
dAa dh
:l:v_ = 0 and ?d‘—c = O,
so that (21) becomes
4mide
Yy =
3hm”

Multiplying this by ¢, we find an expression for the electric current
per unit area, and in order to find the coefficient of conductivity,
we must finally divide by Z. The result is

dxlAe®
g=
3hm
or, taking into account the relations (13) and (14) and denoting by

(23)

u a velocity whose square is the mean square o of the velocity of
(2

heat-motion,

2 INe'uw
6= §;—r-;;ﬁ-(24)
Drupe gives the value
1 INe*u
41 ar

§ 9. The determination of the coefficient of conductivity for heat,
which we shall call ; (expressing quantities of heat in mechanical
units) is rather more difficult. This is due to the circumstance that,
if initially X=20, the equation (21) implies the existence of an
electric current in a bar whose parts are unequally heated. This
current will produce a certain distribution of electric charges and
will ultimately cease if the metal is surrounded on all sides by non-
conductors. The final state will be reached when the difference of
potential and the electric force arising from the charges have increased
to such a degree that everywhere » = 0.

Since it is this final state, with which one has to do in experiments
on the conduction of heat, we shall caleulate the flux of heatin the
assumption that it has been established.

In the first place we have then by (21), putting » =0,

d4 9 A dh

hAX de h dx ( )~

and next, substituting this in (22) and again using the formula (14),

-13 -
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8nlda dT
V=S %
Consequently, the coefficient of conductivity has the value
S8alda
= 9 '

or

Drup’s result for this case is
k= ! I[N
fraand § aw.

The ratio of the two conductivities is by my formulae

E 8 /al?
—=-| )T
o Q(e)
k 4 7e\?
—— ) T
o 3(6)

and by those of Drubk

(26)

(27)

(28)

Here again, the difference between the two formulae consists

merely in the numerical coefficients.

k
Just like Drupk we may therefore conclude that the value of .

does not depend on the nature of the metal and that it varies pro-
portionately to the absolute temperature, consequences that have been
verified with a certain approximation in the case of many metals.

It need hardly be observed that these conclusions could only be
arvived at because we have neglected the mutual encounters between
electrons ). In faci, these would tend to diminish the conductivity
for heat, but not that for electricity, since they cannot have an
influence in a phenomenon in which all electrons move in the same

way. It is clear that, under these circumstances, a value of p inde-

pendent of the nature of the metal could hardly be expected.
Let us next consider the absolute values.

r

T
The value of %- thm) can be deduced from those of 4 and 6 and

for which, using (28), I find
al 9%
= 2,
e l/S o

Y) See Tuowmson, 1. c., p. I@G.V

Proceedings Royal Acad. Amslerdam, Vol. VIL

.

(29)

-14 -
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may be compared, as has been observed by Drupr and RemNeanum?),
to a value of the same expression that is obtained from other data.
I shall suppose that the charge ¢ of an electron is equal to that of
an ion of hydrogen in an electrolytic solution and I shall represent
by p the pressure that would be exerted, at the temperature 7', by
gaseous hydrogen, if a unit of volume contained one electrochemical
equivalent. Then

The proof of this formula is as follows. We may write for the

. . . 1
number of atoms in unit volume of the gas considered — for the
[

1 . ,
number of molecules oW and, since the mean kinetic energy of a
7

gyt

a
molecule amounts to ¢7, for the total kinetic energy = Asis well
[4

known, the numerical value of the pressure per unit arvea is two

thirds of this.
Using the C. (. S. system and electromagnetic units, we have for

the electrochemical equivalent of hydrogen 0,000104 and, putting,
7= 273" 4 18°,
3p — 88.
On the other hand, the measurements of Jarcer and DIBSSELHORST
have given for silver at 18° C,

k
— = 6,85 X 10,
p X

whenee, by (29), )
11
2= 47,
€
The agreement between Lhe results of the two calculations, for
which the data have been furnished by widely different phenomena,
though not quite satisfactory, is close enough {o make us feel con-
fident that DruDE’s theory rests on a sound basis?).

§ 10. We might now return to the formula (25) and, denoting
by ¢ the electric potential, so that

1) Remeanuy, Theoretische Bestimmung des Verhaltnisses von Warme- und
Elektrizitdtsleitung der Metalle aus der Daupe’schen Elektronentheorie, Ann. Phys,
2 (1900), p. 398.

%) A better agreement is found if, instead of (28), we use Drupg's formula.

-15-
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x—_t %

H
m da

we might deduce from it expressions for the fall of potential in each
point and for the difference of potential between the ends of the bar.

It is more interesting, however, to make a calculation of this kind
for a more general case. Before doing so, we may observe that the
equations (21) and (22) may be applied to a thin curved wire or
bar and that we may as well suppose the normal section slowly to
change from one point to another. The line passing through the
centres of gravity of the normal sections may be called the axis of
the conductor and we shall understand by « the distance from a
fixed point, measured along this axis. We shall also assume that in
all points of one and the same normal section the properties of the
bar and the temperature are the same, but that, generally speaking,
both depend on x, changing from one section to the next. By making
different assumptions in this respect, we come to consider circuits
of different kinds, composed of one or more metals and with any
distribution of temperature we like.

For the sake of generality we shall introduce the notion of
“molecular” forces of one kind or another exerted by the atoms of
the metal on the electrons and producing for each electron a resulting
force along the circuit in all points where the metal is not homo-
geneous. Actions of this nature have been imagined long ago by
Hrumeortz for the purpose of explaining the phenomena of contact-
electricity. We may judge of their effect in the simplest way by
introducing the corresponding potential energy ¥V of an electron
relatively to the metallic atoms. This quantity, variable with
wherever the metal isfnot homogeneous, will be a constant in any
homogeneous part of the circuit; we shall suppose this even to be
so in case such a part is not uniformly heated. If, as before, we
write ¢ for the electric potential, the force X divides into two parts

X:X,,;—*—Xm
. 14V _ edp! . . . . . (80)
" mde T° m da

We shall now consider an open circuit, calling the ends Pand Q,
and reckoning x from the former end towards the latter. Putting in
(21) » =20 and attending to (30}, we obtain for the stationary state
dp 14V md(l) m dlog A

L) 2¢h du

——————— (1)

dz e dv ede
whence by integration V

3

31*
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— . )
$q ™ %p = ( )+ ﬁp lLQ)
! m 1dlogf1
h de

do, . . (32)
P
a formula which may now be applied to some particular cases.

a. Let all parts of the circuit be kept at the same temperature.
Then, 4 is a constant, and

1
goQ—-(ppz—e—(VP——V )—]~2 k(logA —logAQ) . (33)

The potential-difference will now have a positive or negative value,
if the ends of the circuit are made of different metals. It appears
in this way that the differences that have been observed in this case
may be attributed either to an inequality of Vp and Vy, i.e. to
“molecular” forces acting at the places of junction (Hrrmmownrz), or
to an inequality of Ap and Agq, i.e. to a difference in the “con-
centrations” proper to the metals (DrubE).

It need hardly be added that (33) becomes 0 whenever the ends
are made of the same metal and that the law cxpressed in Vorra’s
tension-series is implied by the equation.

b. Let the metal be the same everywhere. Then 4 is a function
of & and (32) will always be 0, if the ends P and Q ave kept at
the same temperature, whatever be the distribution of temperature
in the intermediate parts.

c. Let us next examine the potential-difference between the ends
of an open thermo-electric circuit, a difference that may be regarded
as the measure for the electromotive force I existing in it. Starting
from P and proceeding towards (), the state of things I shall
consider is as follows: 15t Between P and a section FB', the metal J
maintained at a temperature varying from T'p to 7" in R'. 27d Between
R' and §', a gradual transition (§ 6) from the metal I to the metal 77,
at the uniform temperature 7". 34 From S' to S", the metal 17 with
temperatures varying from 7" to 7". 4™ Between S" and R", a
gradual transition from the metal 7/ to the metal J, the iemperature
being 7" in every point of this part of the circuit. 5% Finally, between
R" and (@, the metal [/ with a temperature changing from 7" to
Toq= Tp. It being here implied that the ends of the circuit consist
of the same metal and have the same temperature, the equation (32)
reduces to the last term, and we find, after integration by parts,
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Y
m d /1
= — — = e e e 4
F zeflog Adw (h)dw : (34)
P

This inlegral may be divided into five parts, corresponding to the
above parts of the cireuit.

Distinguishing by appropriate indices the different values of 2 and A
that have to be considered and keeping in mind that % is a constant
both in the second and the fourth part, we have

Sl d 1 R”
d /1
logA—| = |da =0 log A—| = Jdo = 0,
f(’” dw(h) v= f"g 4dw(h) ’
¥ 5

! hl

d /1 d (1 d /1
log A—| — )d: —| = Jdo = —| = | dh,
fog Ada; (]&)d'a + {log Adn; (h ) dx log Ald/z (k )dh
P Rfl hll

#' and A" being the values corresponding to 7" and 7', the tempe-
ratures in R' and R". Similarly
SII ]lll

d [ d /1
tog A (NN atw = (10 42 (2 an.
f CARP P (h) v=)log Aug ; )d’l
S’ n

If we combine these results, the formula (34) for the electromotive
force becomes

m A 1
F=— | log— —dbh,
2e OgAu A2 L
. s
or, if we use (13) and (14),
Tl'
2¢ Nip
o F= log—dI. . . . . . . (35
=gt [wg 85)
TI

Geodesy. — “The comnection between the primary triangulation of
South-Sumatra and that of ihe West Coast of Sumatra.” By
Mr. 8. Brok. (Communicated by Prof. J. A. C. OUDEMANS).

L Short description of the triangulations of South-Sumatra
and the West Coast of Sumatra ).

/
Towards the end of 1896 the measurements for the primary
triangulation, which will serve as a basis for the topographical sur-

1) For a more detailed description I refer to the papers of Dr. J. J. A. Muiieg,
occurring in the proceedings of the International Geodetic Association of 1892,
1896 and 1903.
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