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The following paperé were read.:

Mathematics. — “The formulae of GuULDIN in polydimensional
space.”” By Prof. P. H. Scuoure.

(Communicated in the meeting of December 24, 1904),

We suppose in space S, with » dimensions an axial space S,,(a)
.and in a space 4,S,A;+.1 through this S,(,“l a limited part with p -1
dimensions rotating * round: Sf,“)i Then an avbitvary point P of this
limited space, which may be called a polytope independent of the
shape of its limitation and may be represented by the symbol (£0)p41,
describes  a spherical space of n—p dimensions lying in the space
Sap through P perpendicular to Sg,“) “having the projection Q of P
o . ' 34
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on S;,“’ as centre, P() as radius; so it can be represented by the symbol
Spn—p (Q, PQ). B
The question with which we shall occupy ourselves is as follows:
“How do we determine volume and surface of
the figure of revolution generated by (Po)y41 ro-

tating round S,@ if we assume that (Po),41 and ;S',g“)
though lying in the same space S,y have no points
in common?

This theorem is solved with the aid of a simple extension of the
well known formulae of Gurbiy, which serve in our space to deter-
mine the volume and the surface of a figure of revolution. To prove
these generalized formulae we have but to know that the surface of
the above-mentioned spherical space Sp.—, (@, PQ) is found by multi-
plying PQr—»—! by a coefficient s,—, only dependent on n—p; for
its application however it 1s desirable to know not only this coeffi-
cjgnt of surface s,—, but also the eoefficient of volume Vn—p Dy which
PQ—? must be multiplied to arrive at the volume of the same
spherical space. To this end we mention beforehand — as is learned
by direct integration — that between these coefficients the recurrent
relafions

2 2m
Un = Vg ) W . . (1)
exist, whilst the well known relation between volume and surface
leads in a simpler way still to the equation

1
1:,1:-;-1—3,,..........(2)

In this way we find as far as and inclusive of n =12 out of the
well known values of v,, v, and s,, s,
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1. Determination of volume. If aindicates the length
of the radius PQ and the differential v the p - 1-dimensional
volume-element, lying immediately round £, of the rotating polytope
(Po)yt, then the demanded volume is
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V= s,l_pfz‘"—l’ -1 dv,

if the integral is extended to all the elements of volume of (Po),4.. 1f
now ¥,y is the volume of (P0),41, we can imagine a quantily 7,
satisfying the equation

fx"—ﬂ—l dv ::E"—P—Ifdv = p—1 Vo

and we can insert this quantity in the above formula. By this it passes into
V="Vyp1 . snep ap—1.

If we call x the “radius of inertia of order n—p—1" of the
volume V41 of the rotating ﬁgme (Po)p41 with relation to the

axial space S lying in its space S,y1, we find this theorem:
We find the volume of the figure of revolution
generated by the polytope (Po)p41 rotating round

an axial space S” not cutting thispolytope of its
space Sy, if we multiply the volume Vpyy of (Po)pp
by the surface of a spherical space Sp,—p, having
the radius of inertia of order n—p—1 of V,pn

with relation to S,(,“) as radius.”’

2. Determination of surface. If in the above we
substitute the p-dimensional element of surface for the p - 1-dimen-
sional element of volume and in accordance with this for the volume
Vo41 and its radius of inertia the surface Sw,1, and its radius of
inertia, we arrive in similar way at the theorem:

We find the surface of the figureof revolution gener-
ated as above if we multiply the surface Sy, of (Po)py1
by the surface of a spherical space Sp.—p, having for
radius the radius of inertia of order n—p—1 of Su,p,

with relation to Sg,a).

3. The segment of revolution. The opinions will differ
greatly about the use of the n-dimensional extension of the GuLpiv
formulae proved above. Those regarding only their generality and
theiv short enunciation may rate them too high, though reasonably
they cannot go so far as to believe that these formulae allow the
volume and the surface of a figure of revolution to be found when
the common principles of the calculus leave us in the lurch, as
the quadratures can be indicated but not effecied n finite form.

34
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Others, whose attention is drawn i{o the fact that these formulae
displace the difficulties of the quadratures but apparently — in this
case displace them from definition of volume and of surface to the
definition of radii of inertin — will on the other hand perhaps fall
into another extreme and will deny any practical use to the formulae
in question. Here of course the truth lies in the mean. Though it
remains true that the GurpiN formulae help us but apparently out
of the difficulty in the case where the direct integration falls short,
yet by the use of those formulae many an integration is avoided
because the radii of inertia appearing in those formulae of volume
and surface of the figure of revolution are known from another
source, which latter circumstance appears in the first place when
p=mn—2, thus each point P> of the rotating figure describes the
circumference of a circle and the radii of inertia relate therefore
to the centre of gravity of volume and surface of that figure, whilst
for p—=n—3 the kndwledge of the common radius of inertia of
mechanics gives rise to simplification.

As simplest example of the case y=mn—2 we think that a
segment Sp,—1 (7, 0) of a spherical space Sp,—; with » and ¢ as
radii of spherical and base boundary generates a segment of revo-

lution Sp (r, ¢, @), by rotation round a diametral space (9, situated
in its space S,—;, having no point in common with it and forming
an angle e¢ with the space S,—» of the base boundary. For this we
find the following theorems: s

“We find the volume of the segment of revolurion
Sp(r,0,a), by multiplying the volume of a spherical
space Sp, with ¢ for radius by cos a.”

“We find the surface of the segment of revolution
Sp(r,0,0), which is described by the spherical boundary
of Spu—1(r,0) when rotating, by multiplying the ¢ircum-
ference of a circle with » for radius by the volume of
the projection of the base boundary of Sp.—1(r,9) onthe

axial space S,

These theorems are simple polydimensional extensions of well
known theorems of stereometry. They can be found by direct inte-
gration where the case a =0 is considerably simpler than that of an
arbitrary angle ¢. And now the formulae of GuLpiN teach us exactly
to avoid the integration in the general case, showing ns immediately
that the theorems ave true for the case of an arbitrary angle «, as
soon as they are proved for ¢ =0. If namely @, and x5 are the
distances from the centres of gravity of volume V,_, and surface

\
}
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Stvy—r of Spr—i (7, 9) t0 AS,(,"_) o, where Su,—1 now again indicates exclusive-
ly the spherical boundary, then the formulae of GULDIN furnish us with
Ve=2mazycosa > Vi, S, = 2w wsc050 . Sty

Vo, = 2na, VeV Sy, =2n o Sthyt1

and from this ensues immediately
Vo= "V, cose , St = Su, tos a

and therefore what was assumed above, so that only for ¢ =0 the
proofs have yet to be given. We commence with the volume, If

is the distance from S% to a parallel space S&s cutting Sp,—, (7, 0)

in a spherical space Sp,(flg with y =V »* —a* for radius, then the
demanded volume is
r=r
V=2rv.o)y"2 xde
g=V 7

and this passes, as #* 4 y* =" and zdz -+ ydy = 0, into

2n
V=2xn v,,_ff y—ldy = — Up—g O" = v, O",
with which the special case of the theorem for the volume has
been proved.
In the special case of the theorem for the surface we regard the
superficial element generated by the rotation of the surface Suu—, (r, 0)

situated between the parallel spaces S @y and SEH™. It ds is the

apothema of this frustum the demanded surface is

’

~ r=r
Su == 27 sp—g | yn—3 ads.
= Vg2
With the help of the relations yds = rdx and axde 4-ydy=0 this
passes into

: 2m
Su — 2mr s,,__i{ y3dy = - rap_g O 2= 2mr . v,_o @2,

o
1. e. the desired resuit.
Of coursc we can represent {0 ourselves the more general segment
of revolution Sp(r, ¢, «)ur of order £ generated by the rotation of a
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spherical segment Sp,_z(r,0) Tound a diametral space S,y of its
space S,—i; of the various possible cases
E=1,2,......... y n—2

the first is the one treated above extensively. As any point generates
at the rotation the surface of a spherical space Spit1, we find —
if along the indicated way by means of the formulae of GuLDIN the
general case of an arbitrary angle o is reduced to the special
case a =0 — for volume V,; and the surface Su,iof Sp(r,0, s

the formulae ~
xrx=r
Ve == Vn—k—1 Sicf1 Cos* o‘tf yr—k—1 gk dg
ze= VT
rx=r
Stk = PSp—t—1 Sh1 coskoJ yr—k—3 a2k du
v=ViT=Z

and from this ensues the general relation
Stin == 2 rcos’ & Vo

by which all cases of determination of surface except Su,, ,—» and
Sttn,n 5 are deduced to simpler cases of the determination of volume.

When determining the volume the integral gives a rational result,
an irrational one or a transcendental one according to % being odd,
n odd and % even, or n even and 4 even. And this is evidently
likewise the case for the determination of surface.

4. The torusgroup. By rotation of a spherical space Sp,—z(?)

around a space Sfﬂk_l of its space S,—1 at a distance a > from
the cenire a ring is generated in S,, the ring or “torus” T'(r,a),s.
For volume V(r,a),; and surface Su(r, @)y of this figure of revo-

lution of order £ we find

. \

" n—k—1

a
V(7 @afe = Sk On—io—1 f Vri—a’ (ata)tde
—a

. (8)

f~--k—13

a
St (7y @Y fe == P Sl Sp—t—1 f Vrt—at (a+t+2)de
']

from which ensues again the formula of reduction
Supp=2ar Voegp» . . . « « « . (4
For the case =1 and £==2 the results are calculated more
easily by means of the formulae of Gurpi, if one makes use of
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the conire of grawity and of the oscillation centre of the rotating
spherical space.
Case k=1 The centre of gravity of volume and surface of
the spherical space Sp,—1(») lying in the centre, we find
Ve=2ma vp ! , Su=2xa. s— 172
Case £=2. The radu of inertia of volume and surface of a

. . —2
spherical space Spa—s () with respect to the centre are r l/n =

n

1
and r, those with respect to a diametral space S,—s are thus » l/:
n

1
and r[/ . So we find
n—2

1 1
V= 4 (a’ 4+ . r’) tnmz 2 , Su=4dn (u’ -+ — 9«2) . Sy—p P73,

It instead of a whole spherical space Spr—1 (r) we allow only

half of it to rotate around a space S n—-k—1 i its space S, parallel
to its base at a distance «, then the limits (— #,7) of the two
integrals (1) change into (0,7} or (—,0) according to the half
spherical space Sp.—i () turning 1ts base or its spherical boundary

to the axial space S,(,"_)k__l. We shall occupy ourselves another moment
with the former of these cases, namely for £ =1 and % = 2.
Case (0,7), k=1. We find immediately
2 v 9 2 s —9
V=mn (a-}——h— v:_l ) vyl Su—a (a—[—n_z SZ-—x q") . 8yg 172,
Case (0,7), t=2. We determine the moments of inertia of

volume and surface first with respect to the base S._3 and then
successively with respeet to the parallel space 6,,_3 through the centre

of gravity and with respect to the axial space Ss; Thus we
finally find the formulae

7* 2 vp—o ? 2 vpo
V= 8n ] — —| — G B o 7'+“ . Vg 7"
n n o Up— n Un-i
77 2 84— \? 2 sps
—_ » 74 a . 8z 13,
n—2 n—2 8 + n—2 sy + 2 h2

4 U2 r?
V=—=2n (a’ 4 - ar 4~ - ) y Vo P2,

n Vp—1

Su = 2m

or

2
8y—2 r
ar 4+ —— 1 . sp—g 3,
—2 8,3 n—32

which pass for ¢ =0 appx opriately mto volume and surface of the
spherical space Sp, (7).

Su = 2x




