Huygens Institute - Royal Netherlands Academy of Arts and Sciences (KNAW)

Citation:

J. de Vries, A group of algebraic complexes of rays, in:

KNAW, Proceedings, 7, 1904-1905, Amsterdam, 1905, pp. 627-631

This PDF was made on 24 September 2010, from the 'Digital Library' of the Dutch History of Science Web Center (www.dwc.knaw.nl)
> 'Digital Library > Proceedings of the Royal Netherlands Academy of Arts and Sciences (KNAW), http://www.digitallibrary.nl'

Mathematics. - "A group of algebraic complexes of rays". By Prof. Jan de Vries.
§ 1. Supposing the rays a of a pencil (A, a) to be projective to the curves b^{n} of order n, passing through n^{2} fixed points, B_{k}, of the plane β, we shall regard the complex of the rays resting on homologous lines. For $n=1$ we evidently find the tetrahedral complex.

Out of any point P we project (A, α) on β in a pencil $\left(A^{\prime}, \beta\right)$, generating with the pencil (b^{n}) a curve c^{n+1}. So we have a complex of order $(n+1)$.
Evidently the curve c^{n+1} does not change when the point P is moved along the right line $A A^{\prime}$; so the intersections of the ∞^{3} cones of the complex (P) with the plane β belong to a system ∞^{2}. It is easy to see that they form a net.

For, if such a curve c^{n+1} is to contain the point X and if b_{X}^{n} is the curve through B_{k} and X, and a_{X} the ray conjugate to it through A, the point A^{\prime} must be situated on the right line connecting X with the trace of a_{X} on the plane β. In like manner a second point through which c^{n+1} must pass, gives a second right line containing A^{\prime}. The curve c^{n+1} being determined as soon as A^{\prime} is found, one curve c^{n+1} can be brought through two arbitrary points of β.

On the right line $\alpha \boldsymbol{\beta}$ the given pencils determine a ($1, n$)-correspondence; its ($n+1$) coincidences C_{k} are situated on each c^{n+1}. So the net has ($n^{2}+n+1$) fixed base-points ${ }^{1}$).
§2. When A^{\prime} moves along a right line a^{\prime} situated in β and cutting the plane α in S, the curve c^{n+1} will always have to pass through the n points D_{k} which a^{\prime} has in common with the curve b^{n} conjugate to the ray $A S$. It then passes through $(n+1)^{2}$ fixed points, so it describes a pencil comprised in the net.

To the $3 n^{2}$ nodes of curves belonging to that pencil must be counted the n points of intersection of $\alpha \beta$ with that c^{n} passing through the points B_{k} and D_{k}. Hence a^{\prime} contains, besides $S,\left(3 n^{2}-n\right)$ points A^{\prime} for which the corresponding curve c^{n+1} possesses a node.

If A^{\prime} coincides with one of the base-points B_{k} then the projective pencils (A^{\prime}) and (b^{n}) generate a c^{n+1} possessing in that point B a node. According to a well known property B is equivalent to two of the nodes appearing in the pencil $\left(c^{n+1}\right)$ which is formed

[^0]Proceedings Royal Acad. Amsterdam. Vol. VII.
when A^{\prime} is made to nove along a right line a^{\prime} drawn through B.
From this ensues in connection with the preceding:
The locus of the vertices of cones of complex possessing a nodal edge is a cone Δ of order $n(3 n-1)$ having A as vertex and passing twice through each edge $A B_{k}$.
$\oint 3$. If P moves along the plane α then the cone of the complex (P) consists of the plane α and a cone of order n cut by α along the right lines $A C_{k}$. So α is a principal plane and at the same time part of the singular surface.

The plane $\boldsymbol{\beta}$ belongs to this too. For, if P lies in $\boldsymbol{\beta}$ then the rays connecting P with the points of the ray a corresponding to the curve b^{n} drawn through P belong to the complex. All the remaining rays of the complex through P lie in β. So β is an n-fold principal plane and the singular surface consists of a simple plane, an n-fold plane and a cone Δ of order $n(3 n-1)$.

The complex possesses ($n^{2}+n+2$) single principalpoints, namely the point A, the n^{2} points B_{k} and the $(n+1)$ points C_{k}.
§4. The nodes of curves c^{p} belonging to a net lie as is known on a curve H of order $3(p-1)$ the Hessian of the net, passing. twice through each base-point of the net. This property can be demonstrated in the following' way.

We assume arbitrarily a right line l and a point M. The c^{p} touching l in L, cuis $M L$ in ($p-1$) points Q more. As the curves passing through M form a pencil, so that $2(p-1)$ of them touch l, the locus of Q passes $2(p-1)$ times through M; so it is of order $3(p-1)$. Through each of its points of intersection S with l one ${ }^{c} p$ passes having with each of the right lines l and $M S$ two points in common coinciding in S; so S is a node of this $c p$.

Consequently the locus of the nodes is a curve of order $3(p-1)$.
If l passes through a base point B of the net then the pencil determined by M cuts in on l an involution of order ($p-1$). This furnishing $2(p-2)$ coincidences L, the locus of Q is now of order $(3 p-5)$ only. So B represents for each right line drawn through that point two points of intersection with the locus of the nodes, consequently it is a node of that curve.

If l touches in B_{1} the curve $c_{1}{ }^{p}$ having a node in B_{1} and if one chooses M arbitraxily on this curve, then the curves of the pencil determined by M have in B_{1} a fixed tangent and B_{1} is one of the coincidences of the involution of order ($p-1$). The locus of the nodes has now in B_{1} three coinciding points in common with l; consequently it has in B_{1} the same tangents as $c_{1}{ }^{\mu}$.

For the net N^{n+1} of the curves c^{n+1} lying in the plane β the locus of the nodes H breaks up into the right line $\alpha \beta$ and a curve of order ($3 n-1$). For, $\alpha \boldsymbol{\beta}$ forms with each curve b^{n} a degenerated curve C^{n+1}.

The locus of the nodal edges of the cones of the complex is a cone with vertex A of order $(3 n-1)$ having the n^{2} right lines $A B_{k}$ as nodal edges.
$\$ 5$. The tangents in the nodes of a net $N p$ envelop a curve Z of class $\left.3(p-1)(2 p-3)^{2}\right)$, the curve of Zeuthen. It breaks up for the net N^{n+1} indicated ahove; for, the tangents to the curves b^{n} in their points of intersection with $\alpha \beta$ envelop a curve, which must be a part of the curve Z. The pencil $\left(b^{n}\right)$ is projective to the pencil of its polar curves p^{n-1} with respect to a point O; the points of intersection of homologous curves form a curve of order ($2 n-1$); in each of its points of intersection S with $\alpha \beta$ a curve b^{n} is touched by $O S$; so these tangents envelop a curve Z^{\prime} of class ($2 n-1$).

So for N^{n+1} the curve of Zeuthen consists of the envelope Z^{\prime} and a curve $Z^{\prime \prime}$ of class $3 n(2 n-1)-(2 n-1)=(3 n-1)(2 n-1)$.

The pairs of tangents in the nodes of the genuine curves of N^{n+1} determine on a right line l a symmetric correspondence with characteristic number $(2 n-1)(3 n-1)$. To the coincidences belong the points of intersection S of l with the curve H; to such a point S are conjugated $(2 n-1)(3 n-1)-2$ points distinct from S; so S is a double coincidence. The remaining $4(n-1)(3 n-1)$ coincidences evidently originate from cuspidal tangents.

The locus of the vertices of cones of the complex, possessing a cuspidal edge consists of $4(n-1)(3 n-1)$ edges of the cone Δ.

A general net of order $(n+1)$ contains $12(n-1) n$ cuspidal curves, thus $4(n-1)$ more; therefore each of the $2(n-1)$ figures consisting of the right line $\alpha \beta$ and a curve b^{n} touching it is equivalent to two curves c^{n+1} with rusp. Evidently the nodes of these figures form with the point C_{n} the section of $\alpha \beta$ with the curve H.
§6. On the traces of a plane π with the planes a and β the pencils (a) and (b^{n}) determine two series of points in ($n, 1$)-correspondence; the envelope of the right lines connecting homologous points is evidently a curve of class $(n+1)$ touching $\alpha \pi$ in its point of intersection with the ray a conjugate to the curve b^{n} through

[^1]the point $\alpha \beta \pi$, whilst it touches $\beta \pi$ in its points of intersection with the curve $b_{0}{ }^{n}$ for which the corresponding ray passes through $\alpha \beta \pi$.

The curve of the complex of the plane π has the right line $\beta \boldsymbol{\pi}$ for n-fold tangent, so it is rational.

If the curve $b_{0}{ }^{n}$ touches the intersection $\beta \pi$, then the multiple tangent is at the same time inflectional tangent.

We now pay attention to the tangents r out of the point $S \equiv a \beta$ to the curve b^{r} corresponding to a. The envelope of these tangents has the right line $\alpha \boldsymbol{\beta}$ as multiple tangent; its points of contact are the $2(n-1)$ coincidences of the involution, determined by the pencil (b^{n}) on $\alpha \boldsymbol{\alpha}$. As S evidently sends out $n(n-1$) right lines r the indicated envelope is of class $(n-1)(n+2)$.

The planes containing a curve of the complex of which the n-fold tangent is at the same time inflectional tangent envelop a plane curve of class $(n-1)(n+2)$.
§ 7. The curve (π) can break up in three different ways.
First the point $\alpha \beta \pi$ may correspond to itself,' so that (π) breaks up into a pencil and into a curve of class n. This evidently takes place when π passes through one of the principal points C_{k}.

Secondly the involution on $\beta \pi$ may break up, so that all its groups contain a fixed point; then also a pencil of rays of the complex separates itself. This will take place, when π passes through one of the principal points B_{k}.

Thirdly the curve π may contain the principal point A. Then the curve b^{n} corresponding to the ray $a \equiv \alpha \pi$ determines on $\beta \boldsymbol{\beta} \pi$ the vertices of n pencils, whilst also A is the vertex of a pencil. The curve $\boldsymbol{\pi}$ is then replaced by $(n+1)$ pencils.

In a plane through $\alpha \beta$, thus through all principal points C_{k}, the curve (π) consists of course also of $(n+1)$ pencils.

A break up into two pencils with a curve of class ($n-1$) takes place when the plane π contains two principal points B_{k} or a point \mathcal{B}_{k} and a point C_{k}.
§8. To obtain an analytical representation of the complex we can start from the equations

$$
\begin{array}{lll}
x_{3}=0 & , & x_{1}+2 x_{2}=0 ; \\
x_{4}=0 & , & a_{x}^{n}+\lambda b_{x}^{n}=0 .
\end{array}
$$

Here a_{x}^{n} and b_{x}^{n} are homogeneous functions of x_{1}, x_{2}, x_{3}, of order n.

For the points of intersection X and Y of a ray of the complex
with \boldsymbol{a} and β we find

$$
\begin{aligned}
& x_{1}: p_{13}=v_{2}: p_{28}=x_{4}: p_{48} \\
& y_{1}: p_{14}=y_{2}: p_{24}=y_{8}: p_{84} .
\end{aligned}
$$

After substitution, and elimination of λ, we find an equation of the form

$$
p_{25}\left(a_{1} p_{14}+a_{2} p_{24}+a_{3} p_{34}\right)^{(n)}=p_{13}\left(b_{1} p_{14}+b_{2} p_{34}+b_{3} p_{34}\right)^{(n)},
$$

by which the exponent between brackets reminds us that we must think here of a symbolical raising to a power.
If in $p_{k \pm}=x_{k} y_{4}-x_{4} y_{k}$ we put the coordinate x_{4} equal to zero, we find for the intersection of the cone of the complex of Y on $\boldsymbol{\beta}$ the equation
$\left(y_{8} x_{3}-y_{3} x_{\mathrm{g}}\right)\left(a_{1} x_{1}+a_{2} x_{2}+a_{3} x_{\mathrm{z}}\right)^{(n)}=\left(y_{8} x_{1}-y_{1} x_{\mathrm{s}}\right)\left(b_{1} x_{1}+b_{2} x_{2}+b_{8} x_{8}\right)^{(n)}$, or shorter

$$
y_{1} x_{8} b_{x}^{n}-y_{2} x_{8} a_{x}^{n}+y_{0}\left(x_{1} a_{x}^{n}-x_{1} b_{x}^{n}\right)=0 .
$$

This proves anew, that the intersections of the cones of the complex form a net.

Mathematics. - "On nets of algebraic plane curves". By Prof. Jan de Vries.

If a net of curves of order n is represented by an equation in homogeneous coordinates

$$
y_{1} a_{x}^{n}+y_{2} b_{x}^{n}+y_{8} a_{x}^{n}=0
$$

to the curve indicated by a system of values $y_{1}: y_{2}: y_{0}$ is conjugated the point Y having y_{1}, y_{2}, y_{2} as coordinates and reversely.
A homogeneous linear relation between the parameters y_{k} then indicates a right line as locus of Y, corresponding to a pencil comprised in the net.
To the Hessian, H, passing through the nodes of the curves belonging to the net, a curve (Y) corresponds of which the order is easy to determine. For, the pencil represented by an arbitrary right line l_{Y} has $3(n-1)^{2}$ nodes. So for the order $n^{\prime \prime}$ of (Y) we find $n^{n}=3(n-1)^{2}$.
If one of the curves of a pencil has a node in one of the basepoints, it is equivalent to two of the $3(n-1)^{2}$ curves with node belonging to the pencil. Then the image l_{Y} touches the curve (Y) and reversely.
Let us suppose that the net has b fixed points, then H passes

[^0]: 1) To determine this particular net one can choose arbitrarily but $\frac{1}{2} n(n+3)-1$ points B and three points C.
[^1]: ${ }^{1}$) This has been indicated in a remarkable way by Dr. W. Bouwnan (Ueber den Ort der Berührungspunkte von Strahlenbüscheln und Curvenbüscheln, N. Archief voor Wiskunde, 2nd series, vol. IV, p. 264).

