Huygens Institute - Royal Netherlands Academy of Arts and Sciences (KNAW)

Citation:

J. de Vries, On nets of algebraic plane curves, in: KNAW, Proceedings, 7, 1904-1905, Amsterdam, 1905, pp. 631-633

This PDF was made on 24 September 2010, from the 'Digital Library' of the Dutch History of Science Web Center (www.dwc.knaw.nl)
> 'Digital Library > Proceedings of the Royal Netherlands Academy of Arts and Sciences (KNAW), http://www.digitallibrary.nl'
with \boldsymbol{a} and β we find

$$
\begin{aligned}
& x_{1}: p_{13}=v_{2}: p_{28}=x_{4}: p_{48} \\
& y_{1}: p_{14}=y_{2}: p_{24}=y_{8}: p_{84} .
\end{aligned}
$$

After substitution, and elimination of λ, we find an equation of the form

$$
p_{25}\left(a_{1} p_{14}+a_{2} p_{24}+a_{3} p_{34}\right)^{(n)}=p_{13}\left(b_{1} p_{14}+b_{2} p_{34}+b_{3} p_{34}\right)^{(n)},
$$

by which the exponent between brackets reminds us that we must think here of a symbolical raising to a power.
If in $p_{k \pm}=x_{k} y_{4}-x_{4} y_{k}$ we put the coordinate x_{4} equal to zero, we find for the intersection of the cone of the complex of Y on $\boldsymbol{\beta}$ the equation
$\left(y_{8} x_{3}-y_{3} x_{\mathrm{g}}\right)\left(a_{1} x_{1}+a_{2} x_{2}+a_{3} x_{\mathrm{z}}\right)^{(n)}=\left(y_{8} x_{1}-y_{1} x_{\mathrm{s}}\right)\left(b_{1} x_{1}+b_{2} x_{2}+b_{8} x_{8}\right)^{(n)}$, or shorter

$$
y_{1} x_{8} b_{x}^{n}-y_{2} x_{8} a_{x}^{n}+y_{0}\left(x_{1} a_{x}^{n}-x_{1} b_{x}^{n}\right)=0 .
$$

This proves anew, that the intersections of the cones of the complex form a net.

Mathematics. - "On nets of algebraic plane curves". By Prof. Jan de Vries.

If a net of curves of order n is represented by an equation in homogeneous coordinates

$$
y_{1} a_{x}^{n}+y_{2} b_{x}^{n}+y_{8} a_{x}^{n}=0
$$

to the curve indicated by a system of values $y_{1}: y_{2}: y_{0}$ is conjugated the point Y having y_{1}, y_{2}, y_{2} as coordinates and reversely.
A homogeneous linear relation between the parameters y_{k} then indicates a right line as locus of Y, corresponding to a pencil comprised in the net.
To the Hessian, H, passing through the nodes of the curves belonging to the net, a curve (Y) corresponds of which the order is easy to determine. For, the pencil represented by an arbitrary right line l_{Y} has $3(n-1)^{2}$ nodes. So for the order $n^{\prime \prime}$ of (Y) we find $n^{n}=3(n-1)^{2}$.
If one of the curves of a pencil has a node in one of the basepoints, it is equivalent to two of the $3(n-1)^{2}$ curves with node belonging to the pencil. Then the image l_{Y} touches the curve (Y) and reversely.
Let us suppose that the net has b fixed points, then H passes
twice through each of those base-points; so it has with the netcurve c_{Y}^{n} indicated by a definite point Y yet $\left(n n^{\prime}-b\right)$ single points in common; here $n^{\prime}=3(n-1)$ represents the order of H. The curve c^{n} having a node in D, determines with c_{Y}^{n} a pencl represented by a tangent of the curve (Y). From this ensues that the class of (Y) 1s indicated by $k^{\prime \prime}=3 n(n-1)-2 b$.

The genus $g^{\prime \prime}$ of this curve is also easy to find. As the points of (Y) are conjugated one to one to the points of H these curves have the same genus. So we have

$$
g^{\prime \prime}=\frac{1}{2}\left(n^{\prime}-1\right)\left(n^{\prime}-2\right)-b=\frac{1}{2}(3 n-4)(3 n-5)-b .
$$

We shall now seek the number of nodes and the number of cusps of (Y). These numbers $\boldsymbol{\sigma}^{\prime \prime}$ and $x^{\prime \prime}$ satisfy the relations

$$
\begin{aligned}
& 2 \mathrm{~d}^{\prime \prime}+3 x^{\prime \prime}=n^{\prime \prime}\left(n^{\prime \prime}-1\right)-k^{\prime \prime}, \\
& \mathbf{d}^{\prime \prime}+x^{\prime \prime}=\frac{1}{2}\left(n^{\prime \prime}-1\right)\left(n^{\prime \prime}-2\right)-g^{\prime \prime} .
\end{aligned}
$$

From this ensues after some reduction

$$
\begin{aligned}
d^{\prime \prime} & =\frac{3}{2}(n-1)(n-2)\left(3 n^{2}-3 n-11\right)+b, \\
x^{\prime \prime} & =12(n-1)(n-2) .
\end{aligned}
$$

The curve (Y) has nodes in the points Y_{B} which are images of the curves c_{B}^{n} possessing a node in a base-point of the net. For, to each right line through a point Y_{B} a pencil corresponds, in which c_{B}^{n} must be counted for two curves with node.

Each of the remainng nodes of (Y) is the image of a curve ${ }^{n n}$, possessing two nodes.

So a net N^{n} contains $\frac{3}{4}(n-1)(n-2)\left(3 n^{2}-3 n-11\right)$ curves with two nodes.

To a cusp of (Y) will correspond a curve replacing in each pencil to which it belongs two curves with node. According to a wellknown property that curve itself must have a cusp. For a definite pencil its cusp is one of the base-points; this pencil has for image the tangent in the corresponding cusp of (Y).

So a net N^{n} contains $12(n-1)(n-2)$ curves with a cusp.
The two properties proved here are generally indicated only for a net consisting of polar curves of a c^{n+1}. We have now found that they hold good for every net, independent of the appearance of fixed points B.

We can now easily determine the class z of the envelope Z of the nodal tangents of the net.

Through an arbitrary point P of a right line l pass z of these
tangents. If we add the second tangent in the corresponding node to each of these tangents, these new set of z tangents intersects the right line l in z points P^{\prime}. The coincidences of the correspondence $\left(P, P^{\prime}\right)$ are of two kinds. They may originate in the first place from cuspidal tangents, in the second place from the points of intersection of l with the curve H; each of these latter points of intersection however is to be regarded as a double coincidence. Thus $2 z=12(n-1)(n-2)+6(n-1)=6(n-1)(2 n-3)$.

The curve of Zeuthen is of class $3(n-1)(2 n-3)$.

ERRATA.

Page 504, line 13, for members read member.
" 504, , 15 , ", not wanting read wanting.
" 509, " 24 , " blewish read bluish.
(April 19, 1905).

