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9. Now, that we have sufficiently characterised the three general types,
and have brought some harmony into the multiphicity of the phenomena,
the question arises, whether there is a still farther synthesis, a still higher
unity. More than once the occasion presented itself in the {reatment of
the different general types to remark striking agreements and continuous
transitions, often accompanied with great differences. Equally the
fact, that with a higher alcohol or a higher hydrocarbon, suddenly a
quite different type often appears, must certainly draw attention in
a high degree. All this induces us to look for the one fundamental
type, of which the three types, treated above, are special cases.

Also the analytical consideration of the quesiion suggests thatidea
to us. Indeed, the coexistence of two hquid phases and one gaseous
phase, or of two liquid phases, or finally of one liquid phase and
one gaseous phase, is determined by one and the same equation of
state, and it must consequently always be possible to reduce all the
different cases, which may occur to fwo fundamental proportions:
that of the critical temperatures and that of the critical pressures of
the two components — entirely 1n the same way asI have formerly
deduced all the different types in the case of mixed crystals, where
appear two solid phases by the side of ome liquid phase, from fwo
fundamental proportions: that of the meltinglemperatures and thai
of the latent heats of melting of the two components.

In a following communiecation it will be shown theoretically, that
the three types may be deduced from the ordinary equation of state
of Prof. van prr Waals, even in the case of normalcomponents. In
connexion +with this we must not forget, that in the neighbourhood
of the ecritical points of each of the components the influence of
anomaly vanishes nearly always. In the case of C,H, + H,0 for
instance the water will be in the neighbourhood of 365° C. already
normal long before, and m the neighbourhood of 32° C. the liqud
phase, which consists nearly entirely of ethane, will contain the water
in such a dilute state, that this will be passed for the greater part
into the state of simple molecules.

 Chemistry. — “An evact expression for the course of the spinodal
curves and of thewr plaitpoints for all temperatures, in the
case of muztures of normal substances.”” By J. J. van Laar.
(Cornmunicated by Prof H. A. Lorentz).
(Communicated in the meeting of March 25, 1905.)

1. It is well-known, that the points of the &-surface, corresponding
to points of the spinodal curve on the -surface, are given by the
simple relation
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L

'
! r yo b 1
iz ‘ M 20%Yrate)
| M rfraate)
; |
{ |
H |
i i
4 g 2
" \
' 1
D oame dgor (@5, 0+ He®
K
Fig. 2. - Fig K Fig. 3a.
{
]
1

|

M Y frrase) 7

| e
{
1;
“’ 7 |7 2|
!
I ;

i £ /o

~

/w@z&mwy,ga
o

i Fig, 9. Fig. 10. Fig. 11. Fig. 12

\7

GH ¢ Caow

Fig. 8. Fig. 9a.

L

Fig- 135. Fig. 13¢c.
I

Fig. 12c. Fig. 12d. , Fig. 122, Fig. (2/. Fig. 13a

Fig. 126.

Proceedivgs Royal Acad. Amsterdam. Vol VIL



( 647 )

(a—s) =0,
0a* /p,1

aa az aa 9
which corresponds with the condition S G QN G ) 0,"y when in-
0z® v? dzdv

stead of the thermodynamic potential the free energy is used, and
not «, p and 7, but @, v and 7" are the independent variables.
As we have further in the case of normal components e. g.

5 c 08
Y T T
Oy, 05 . oo
we have also F R w? and the above-mentioned condition may
be replaced by
ou,
Friat

Now
Oew
u, =06, — (w — & 3—) 4+ BT log (1—a),
@

where C, is a pure function of the temperature, whereas o is
given by

w = | pdv — pv.

0
The condition it = 0 is therefore identical with

al’l}
dw  RT
@ =0,

maa?‘——l—-a; .

or

RT::c(l—m)%—g, R )

from which I also started in my preceding communication *).

3

0z?

to rather complicated expressions, so that vAN DER Waars contented
himself most times with approximations. These consisted in this, that
in the liquid state at sufficiently low temperatures 1st p was omitted

leads

Now the difficulty arises, that the exact caleulation of

by the side of f;, 2m terms of order v—b& were neglected against
those of order v.
Starting namely from the equation of state of vaN DER Waals

1) Compare vaN DER Waars, Cont. 1I, p. 137.
1) These Proc. 28 Jan. 1905.
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(p +§,) (0~ =R,

where & will be regarded as independent of v and T, then we
find for o: '

w=RTlg@—b)+%—pv . . . . . . (@
v :
. : RT - .
If we write now ey for »—J, and omit p, then we obtain:
P A s

dw .0 a 0 [a
-a—;‘_—_‘—-R! 6;!09’;}-2 +§;u(;)j

in which van DErR WaaLs further wrote ) for v, whereas for illustrating
a a
several properties 3 was brought in connexion with 77, a,ndg, with ps.

This is consequently a complete set of approximations, and
with good reason Prof. T.oruntz remarked to me, that in such
cases we must be cavefull, whether these approximations ~are
not in contradiction, and up to what temperatures the results,

ow
deduced with the above-mentioned expression for 5, el be used.

VaN per Waats himself considered therefore the deduced expression

merely as a more or less rough approximation, but which is at all
. 0w 0 /a 0 /a

events better than the former expression — =—=]),

3 0z \v dx \ b
0. a
where the term with a——log = was omitted.
&

Now, I showed in my preceding communication, that at low tem-
peratures, and in the case of normal substances, where the critical
pressures rarely differ much, this omifted term has in the greater
part of cases a very small value, and is of entircly the same order as

—b
Lv—’ which is constantly neglected.
Only at higher temperatures the term has a large value, but then
dw
the deduced expression for " is not exact enough by far, for then
a v—b

nor terms of order —— can

neither p can be neglected against 7

b
,Uﬂ

be omitted in that case. (
The maiter is consequently this: at sufficiently low temperatures
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_ab_) may be safely used, at

least in the case of norrual substances; but at higher temperatures

the former simpl ession 2=
e Iormer §&imple expression am—--a—m-

0
equally the new expression with the term % log ;a,— will be insufficient.

) 0w 0%w
And we want a more accurate expression for 3 and Yy the
&

more, when we — specially with respect to the course of the plait-

point-curve — also wish to know anything about the course of the
spinodal curves from the lowest temperatures to the highest critical
temperature.

I therefore tried to solve that problem; I was the more encou-
raged to do so, as soon it appeared to me, that the entirely accurate
expressions are not so complicated as was expected. On the contrary,
the often occurring fact presented itself here, that the exact expres-
sion is relatively more simply than the approximated one.

2. If we write the equation (2) in the form
0== + RT log (v—b) — p (v—"0) — pb,
v
then we obtain:
dw 0 ra RT o(v—0b) db
v (—) T (v—b ) e T Pa

RT
Now — —p =2 consequently we find further:
'v__

’
,v?

dwo 1lda a v adv adb db

or

v
where 5, 2ppears no more.
&

If we write now:
o« =(l—2a)"a, + 22 (1—2)a,, + 2% a,,
and if we put a,, =Va, a,, by which the calculations and the results
are simplified in some way, without affecting much the exactness of
these results '), then we have:
)} [ am convinced, that the expression ¢ = V'@, is exact in the case of nor-

mal substances Al all events the inaceuracy, which results from this supposition,
will certainly not be greater than that of the equation of state used.
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o= ((1—a)Va, + & Va,)".

Further we admit for b the ordinary linear relation
b= (1—a)b, + ab,. -

The suppositions, on which the following calculations are based,
are consequently the following.

1st. the equation of state of van pER Waars, with b independent
of v and T. .

2nd, the ordinary suppositions about @ and &.

34, the special supposition a,, =V 2,a,.

From the expressions for a and & used results:

d

Zz':? =2 ((1 —2) Va, + @ Va,) Va,— Va)=2Va.(Ve,—Va)
dT;a; =2 (Vaz - 1/0“1)2

db a2b

%--_--ba—-—b1 ; -C—Z:qr}—q-::()-

If we did not put a,,=V'a,a,, then we should have found

dﬂ
ga%:2(a1+a,——2an). so only somewhat less simple.

’
2

3. We will now calculate g—g

For (3) we can write:
ow 2P a
o= Vo= V)= (p 4 5 ) 0.
so that we obtain, when for shortness’ sake e is written for

Va,—Va,, and § for b,—ob,:

0w 2 . 2 ov
YR (Vea, — V) — — (Va,— V“z)a—m —
2 a 2a Ov
— (b, — b)) = (Va, — Va))— i =
2a° 2eBVa 208 2a 1 a’\ Oy
=———— (_a_ — _"T") T
v v v P z

ov
Consequently we must calculate .
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From the equation of state (p -+ %) (v— 8) = RT we deduce:

2 en(E-50)-e

yielding
db v—bda
3 (P + *);f T 4
o a 2a(@—b) '
o
or also

3.; == 1 2a/v (v__.b)’ . . . . . . . (4:)
) RT
2
Substituting this in the last equation for ngw’ we obtain:
0w 2 Ve 27/y (v—10)*
0z® vl:(a—aﬁ———- T RT o £+

l/a ( Va )(ﬁ RIZ (?;—gb=)]. (1 _ }q;éi’("—f)’),

di
since Zz% =2apa and— = 8. Further tfreatment yields after im-
portant simplification:
Vay*
P 2 (Q_BT 5
v gy O
RT

Comparing this entirely exact explession with that, deduced in my
-b

former communication, where p and T were neglected, we see
that the exact expression (5) is already simpler than the approx-

imated one, which may easily be written down by means of the
0* 0*

expressions for Fye (:)and 5o log ¢ , deduced there.

&

4. Consequently equation (4) passes into
22 (1—a) (av—B 1 a)
v° 1_ 2a/y (v—0)*
BRI

RI =

45
Proceedings Royal Acad. Amsterdam. Vol. VIL
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that is to say into
a (v—2>)* 22 (1—=
/A Y Gt (v“ ) (w—By/ay,

v vl

-

or into )
Rl = ;25 [’b d—a)(av —B1Va) 4 a(v— b)“:|. -
Now aev—fBVae=e«(@w—0b) + ab— By a -
=a@w—10)+ e, + 28) — B(Ve, + a0
= a(v—"0)+ (ad, —Bv a,)=a(v—0)-+ (0, 0,—b,1/a)).
Therefore we obtain (compare also van DEr Waars, Cont. II,
p. 45): -

& Va,— b,V 0,)+ e(v--b) 2~{— a(v-—b)“:l, ... (6)

2
R —— [.’u(l —a)

,va

being, with the above mentioned suppositions, the sought, quite
general expression for 7I'=—f(v,2), by which for each given tew-
perature the v, a-projection of the spinodal cuvve is entirely determined.
We may also construct a “spinodal surface” 7'= f (v, ), and in-
mediately deduce from the subsequent sections 7’== const. the forms
of the spinodal curves of the transversal- and longitudinal plaits, and
this in just the same v, a-representation as is used by vanN DER WAALS
for the projection of the spinodal curves of the surfaces =/ (1 v,v)
for different values of 7.

5. The equation (6) gives rise to some results, which may be
deduced from it without further calculation.

Ist. Is v = b, that is to say, is the limit of volume 0, reached at
any value of a, then (6) reduces to the equation of the boundary-

curve, lying in the v,a-plane:
\

2
BT = Sa(—a) Ve, —bVa)y, . . . . ()

viz. the same expression, which was formerly found for small values
of v by means of the approximating method.

It is obvious at present, that only for v =10 the expression (6a)
holds rigorously good. In every other case terms with v-—0& must be
added. Bui it also resulls from the found expression (6), that as
long as terms wilh » — b may be neglecled, the formula (67 gives
approxiwately the projection of the spinodal curve on the 7 a-plane,
without it being necessary to take into account the corrective-term with
aa

a . . . .
Fye Zo_(/B;, indicated by van per Waans. In a former communication
&
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I showed already, that this correction-term is small in the case of
normal substances, about of order v — b.

As the second member of the expression (67) is always positive,
even when a,, should be <V'a, a,, the longitudinal plait on the
p-surface (for it is obvious, that in the neighbourhood of »=1b
the spinodal curve belongs to the longitudinal plait, which can
be regarded as a prominence of the transversal plait) will always
close itself above a definite temperature af the side of the small
volumes.

This temperature 7 is the plaitpoint-temperature, corresponding to
(69); it is given by (6%, in connexion with the expression fbrj—w: 0,
deduced from it, yielding for the plaitpoint after elimination of 7
the value

.'vc:%[(r—k 1)—1/9"’—[-7'—}—1],

where r:é%—zﬁ. (compare vaN pEr Waars, Cont. II, and also my
1

preceding communication, p. 579). Only when b, = b, (r = 0), 2, will
be ='/,. In each other case x. will be removed to the side of the
smallest molecular volume.

Just at 7, the closing will take place at the limit of volume
v==>b@=uwa); for values of 7°< T, the longitudinal plait will
remain unclosed up to the smallest volumes. For in that case (compare
the representation in space) a section 7*—=const. will cut the boundary-
curve (62), lying in the boundary-plane » =24, in a straight line.

This temperature 7, may consequently be regarded in any respect
as a third ecritical temperature. For above that temperature a for-
mation of two liquid luyers will never present itself at valuesofv in
the neighbourhood of &, that is to say at very high pressures; just
in the same manner as above the ordinary critical temperatures of
the single substances can never appear a liquid phase in presence
of a gaseous one.

9nd Is p—oo, then for each value of &, 7 will be =0, that
is to say, the equation (6) cannot be satisfied in that case. The plait
will consequently never extend to v = .

3¢, Is 2 =0 or 1, then (6) passes into the two boundary-curves,
lying in the two limiting 7, v-planes, viz.

RT = %(v — b)) and Rfl’:%(v —b,)"
With » =30, (rvesp. 3b,) these two curves yield duly:
45+

-10 -



T=_—~ . . . . I)
R, 275, " ! (6)

which is again a good test of the exactness of our formula,

deduced above. -
These two critical points are at the same time plaitpoints of the

(transversal) plait, for it can easily be shown, that (—), and also
x

ov

(O—T) will be there = 0.
oz o

Before deducing the equation of the plaitpoint-curve, I shall first
point out, that the second member of (6) 18 always positive, as
consisting of the sum of two essential positive terms, so that the
T, v, a-surface possesses nowhere points beneath the v, #-plane, which
of course cannot occur, because 7' cannot be negative. Further,
that from (6¢) and (6Y) results, that as to the limiting-curve (6¢),
there will be found 7'=0 for =0 and =1, and as to the
limiting-curves (6%, 7" assumes again the value 0, as well for v = b,
(resp. b,), as for v = .

Since the values of Z/y, and ¢/, can be very different, according
to different substances, the surface (8) will also present very dufferent
forms. (Generally a greater value of & corresponds with a greater
value of 7}, and in that case the surface has the form, as is indicated
in the figurc. It is manifest already at superficial consideration, that
this form will be pretty complicated.

6. We will now determine from (6) the locus of the plaitpoints.

-11 -
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This may be found by combination of the two conditions

WY o . (U
o p,T_— ' O [;,T_ ’

of = of [ov .
Zvd E),;,T“O" S

leading to

when f represents the second member of (6). Indeed, this second
member has in all points of the spinodal curve on the y-surface the
same value, so that we have, by passing along an element of that curve :
—gl% dz + %f dv=20.
But in the plaitpoint we may regard an element of the spinodal
curve also as an element of the connodal curve, that is to say as the
line which joins the two tangent-points of a double tangent-plane,
when the tangent-points have approached each other to an infinitely
small distance. And as in these two tangent-points the pressure has
the same value, the latter does not vary, when at the plaitpoint we
pass along the considered element of the spinodal curve. Consequently
we have:

v
dv=| — dx,
afv P,T'
which yields immediately equation (7).
For shortness, we will write in the following b,1/a, — b,1/a, = ,

by which the second member of (6) passes into

f= ; [r (1—2) {7 + «a (v-ub)%ﬂ—l— a(v—-b)’:,.

dv) |
The value of (a—z-) will be found from (4), viz.
T/ p, T
8= 2a/a (v—0b)*
dv _ RT  »*
0w Jo7 1 26/, (v—b)*
RT v

And since the denominator of this expression cannot become oo,
(7) passes info

2 ¢/, (v—b)"\ O 2a/a (v—b)"\f .
(I”E:FT a+(5“7ﬁ“‘r)a—°' - ()

Now we have:

-12 -
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-

1,0 —al—i = 6*(1 —22)—2a(1 —z)}faf—2a(v—b)B-+2a} a(v—>0)*

0 a;f 20(1—a)0a 4 2a(v—10) Py

aU v

where 6 is written for ax - a(v—5), and ¢ for */, v"f
The equation (V@) becomes eonsequently :

2ay/a (v-b)* | 3y
RT o Vo

Dﬁ_zal/a(u b); BI 2a/,, (v_b)ﬂ

The expression between [ | is obv10usly:

2‘/ I (’0—— b) 2‘/‘1/,, (v—b)?
RT (av—ﬁl/ ) —_ RT o3 — Uy

+

,1_25’,’(” by“&’(l 2.) - 2a |/a (v-b)" z 35_

(1-1,) fe + a (v-b)

+

2
as e —Bya=xn+ a(v—b)=46. Further we have RT = “qu’ in
v
consequence of (6), so that we obtain:

{ _ a(v—0b)*

‘30*1 %) + %Vl b)“t ,B 5_‘/:“":%’—_’32;%‘{’_

20V (v——b)“‘

j (1—a) Ba + a(v——-b)‘ = 0.

And since ¢ —a(v—b)’ == (1—.7;) 6, we have, after multiplication
with ¢:

w(l—w)ﬁ*[ﬁ’(l—zm)+2a|/a(u-b)*:, w*b)’

By—al/ av(v-b ’(—-

— 268 V'a (6-d)? [_.3:_(1—.1:) fa + a (v-—b):l = 0.

In this expression the underlined terms vanish. And for
B —aVa.v(w—>b) may be written:

Bz (l—a) 8* — Va (v—0b)* (av—P y'a) = o (1—=a) " — Va (v—-b)* 4,

so that we obtain, after dividing by 4, and multiplying by v

z (1-2) 6° [(1—-2‘1;) v-3a (1-2) ﬁ] 4 Va (v-0)* ):—2cw(v—-b) + 82 (1-2)6* —

— 3 VafBz(l-2) 8 4+ 3a (v—'b)’] =0,

or finally:

-13 -
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f
\ z(1 -—~a:)6°[(l-—2.'v) v—~3a(1—=z) 13] 4+ a(v—0b)* [3.2: (1—=z) 80—V a)-+

+a(v~—b)(v—3b)]=0, ... (8)

where 8 — 8 /e may be substituted by ev-— 28 .

This is consequenily the sought equation of the v, x-projection of
the locus of all the plaitpoints, which can appear on the y-surfaces
at different values of 7. Combined with (6), we find the points of
the surface, represented by (6), which satisfy the plaitpoint-condition,
that is to say the equation of the plaitpoint-curve as space-curve.
Equation (6) may be written:

R’I’:;[w(l—m)ﬂ“—i—a(v——b)’:', L. ()

where thus 8 =« + e (v — ), and @ = b, Va, — b, Va,.
For v =& (8) passes into
(1—22)b—82(1—2)=0,

yielding 2, = -1—|i(7- + 1) — V- 1:', as we have deduced
”

already above (in § 5) for that limiting-case.

To coneclude, we remark, that the sections for constant volume of
the surface, given by (6), only extend down to 7'=0 (z=0and 1)
for v = 0. For all volumes >b, T will assume for 2= 0and 1, as

2 — b)?
a—(v——)—. The T'z-boundary-
v

curve suddenly ends then at the T-axis at the designed value of 7
(also compare the space-representation).

The proper discussion of the equations (6) and (8) must be
reserved for a separate communication. It will appear then, that the
different forms of the spinodal- and plaitpoint-curves, which oeceur
specially in the case of anomalous substances, are already possible
in the case of normal substances, provided the proportion of the
two critical temperatures T:/7, be sufficiently large. The spinodal
curves, given by (6), will appear easily calculable, and as to the
course of the plaitpoint-curve (there are two, independent of each
other), some conclusions will be deduced in a simple way.

It will also appear, which indeed results already from (8), that
the longitudinal- and the transversal plaits — at least with respect to the
spinodal curves (compare also vaN pEr Waats, Cont. II, p. 175) —
are no separate plaits, but on¢ single plait, of which the plaitpoint
is lying, according to the different circumstances, either on the side
of the small volumes, or somewhere else.

is obvious from (6), a finite value, viz.

-14 -



