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we neglect in our formula the terms, which are’ multiplied by 2 by
the side of those in which this is not the case, if we put p,—peoe.
and if we take v, instead of v, which is permissible for very
dilute solutions we get:

MRT
P = po—peoes. = — log (1—~w)

Ueoex.

which gives the well-known formula of van’t Horr when the loy
is developed and the higher powers omitted.

I wish to point oui, that also a more accurate treatment yields
the logarithmic form which BonpiNeut and vaN Laar have advocated
— and there could not be any doubt but it must be so — but that
it also shows that vax Laar’s statement') was too absolute when
he asserted that a correction term need never be applied in the
NUMerator Ve, (0r v,) in connection with the size of the molecules.

In the second place I draw attention to the fact that we find the
osmotic pressure exclusively expressed in what vaN DEr WaaLs hLas
called thermic quantities (in opposition to ecaloric quantities). It
appears to be unnecessary to take into consideration the heat of
dilution or other quantities of heat, which van’r Horr *) seems to
deem necessary for concentrated solutions and which Ewan ®) has
taken into consideration. Even if we had avoided all the introduced
neglections, so' when we had not assumed, thal the vapour follows
the gaslaws, nor that v, —wv, may be put in some terms, nor that
the area C may be neglected compared to 4, nor (the most important)
that & is constant, we should evidently not have had to deal with
any quantity of heat. This seems important to me, as both theore-
tically and experimentally the caloric qnantities are much less accessible
than the thermic ones,

Physics. — “Kinetic derivation of van 't Howw's law for the
osmotic pressure m « dilute solution.” By Dr.Pu. KonNsTaMM.
(Communicated by Prof. vax pir WaALS).

§ 1. When we leave out of account the more intricate theories
as that of PoynTiNG *), who tries to explain the osmotic pressure
from an association of solvent and dissolved substance, and that of

Hle
2) K. Svenska Vet. Ak. Hand. 1. Quoted by Ewan Zsch. phys. Ch. 14

409 en 410,
8) Zsch. phys. Ch. 14, 409 en 31, 22.
Y Phil. Mag. 42, 289.
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BackLusp *), who seems®) to require even ether waves to explain it,
chiefly two theories have been developed aboui ine nature of the
osmotic pressure: the static and the kinetic theory. The first theory
finds warm advocates in Puriy *) and BARMWATER *); it seems however
doubtfal to me whether they have closely realised the consequences of
their assertions. At least the latter brings forward as an objection
to the kinetic nature of the osmotic pressurc: “Ein molekulares
Bombardement in einer Fliissigkeit ist mir immer etwas sonderbar
vorgekommen”; notwithstanding he considers the equation of state
of Van per Waars by no means as a “sonderbar” insiance of false
ingenuity, but as an example {0 be followed. However this may be,
he who does not want io break with all our conceptions about
heterogeneous equilibrium, will not be able to explain such an equili-
brium in another way than statistically i.e. as a stationary condition
of a great number of moving particles. This does, of course, not
detract from the fact that the question may be put what forces are
required to bring about that state of equilibrium. This implies that
the adherents of the static theory need not be altogether mistaken
when they assert that the cause of the osmotic pressure is to be found
in forces of attraction. On this point ! shall add a few remarks at
the end of this communication.

§ 2. Of much more importance than this static theory of the osmotic
pressure is the kinetic theory. The great majority of its advocates
(I shall speak presently about the few exceptions) take as their basis

the equality, which bas been proved experimentally and by means
of thermodynamics, of the osmotic pressure and the gas pressure (the
pressure which the molecules of the dissolved subsiance in the same
space would exercise, when they were there alone and in rarefied
gas state) and derives from this that they have both the same cause
in this sense that the dissolved substance is present in the two cases
in the same state and so acts in the same way; this is then
expressed in about this way that the solvent converts the dissolved
substance into the rarefied gas stale. This conception seems doubly
remarkable to ine; first because it seems to be preity well generally
prevailing *), secondly because it alone seems to me to be able to

1) Lunds Univ. Aarsskrit 40.

M I know his paper only from an abstract in the Beibl. 29, 375.

%) Diss. Berlijn 1889.

1) Diss. Kopenhagen 1898 arnd Zsch, phys. Ch. 28, 115,

§) It is naturally difficult to give a proof of this opinion, therefore I shall only
adduce the following citalions as a confirmalion.

“If we look a litlle more closely into the matter, we find that in the case of
dilute solutions, al least, there is far more likelihood of the dissolved substance
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explain, why the theory of the osmotic pressure has become so quickly
popular, whereas Gisss’ method for the solution of the same problems
was scarcely noticed. In fact the view mentioned possesses all qualities
required for great popularity: it seems {o give a very simple, clearly
illustrating explanation for the striking law discovered by vax’r Horr;
it is allied to the universally known gaslaws; it seems to make us
acquainted in the osmotic pressure with a quantity, which is as
characteristic for the dissolved state as the well-known external pressure
for a gas. On the other hand it does not seem to carry weight
that this ‘“explanation” is, properly speaking, no more than an
explanation of words, which leaves undecided exactly that which
had to be explained, viz. how it is, that the solvent acts on the
dissolved substance in this way. It is, however, worse that this
explavnation clashes with everything we know of liquids and gases,
and therefore is to be rejected. We need only think of the well-
known experiment with a bell jar, closed at the bottom by a
membrane, filled with a solution of cane sugar and placed in a
vessel with pure water, which forces its way in till equilibrium
has been established. If now the pressure [, exerted on the mem-
brane, was a consequence of the facl, that the dissolved substance
in the bell jar was in a state which more or less resembles the
gasstate, then those molecules of the dissolved substance would have
to exert the same pressure also on the glass wall of the bell jar, in
other words, the waler molecules would exert the same pressure

being in a condition comparable with that of a gas.” (Wauker, Introduction to
Physical Chemistry, 148).

“Ich glaube dargethan zu haben —- {m Gegensalz zu der zur Zeil allgemeinen
Auffussung — dass es nicht notwendig ist eine freie Bewegung der geldsten
Molekiile wie fiir die Gase anzunebhmen. Wenn ein fester Karper in einer Tlissig-
keit geldst, oder cine Flissigkeit mit einer anderen gemengt wird, so wird eine
neue Fliissigkeit erhallen, von deren Molekiilen es nicht gestatiet ist, andere
Beweglichkeit anzunechmen, als diejenige, die Fliissigkeiten chavakterisierl.” (Barwm-
waTER L ¢. pag. 143). “Aus den klassischen Arbeiten von vax "t Horr und ArRuenius
geht nun hervor, dass die Korper bei Gegenwart von Lisungsmiltel thatsiichlich
mehr oder minder dem Gaszustand niher geriickt werden,” and a little hefore
“Andererseits konnle ich miv.... nicht verhehlen, dass gerade diese Gegenwart
und Einwirkung des Losungsmitiels doch die notwendige Vor
bedingung fiv den Ginwilt des gasilinlichen Zustandes sei:.... daher ist
aber ein gasihnlicher (also Kinelischer) Zustand nur unter dieser Einwirkung
vorhanden und hort sofort aul, sobald diese Ewirkung bheseiligt ist. Hs sei be-
tont, duss diese duffussung durchaus nichts Newes bictel, duss sie vielmehr wohl
einem Jeden cigen Ist, der den Beyriff des osmotischen Druckes kennew gelernt
hat” Brepig. l.c. p. 445 and 114). The ilalics are mine, the spacing the cited authors’.

Finally cf. Van Laar’s address in the “Bataafsch Genootschap”, p. 2 and 3 and
the example cited there.

50
Proceedings Royal Acad. Amsterdam. Vol. VIL

{
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on that wall from the inside and from the outside (of 1 atm.). This
now is a perfectly unacceptable result, as immedialely appears from
what follows. Let us imagine the same solution as in the bell jar
inclosed in a cylinder with a piston under the pressure of its satu-
rated vapour p — Ap, where Ap is the decrease of vapourpressure.
The cane sugar molecules contribute nothing to that pressure or hardly
anything '), as’ appears from the fact that they cannot pass into the
vapour (at least not in a measurable degree); all the pres/sure is
furnished by the water molecules. Now we compress the liquid, till

it has got a pressure P - p, it is now in perfectly the same con- -
dition as the liquid in the bell jar, when we except the immediate
neighbourhood of the membrane. On the supposition made just now
the water molecules would exert a pressure p against the piston, the
sugar molecules a pressure [’ i.e. the pressure of the latter would
have increased by an amount about 1000 times that of the former,
whereas their initial pressure was at least a hundred thousand times
smaller. And the result would be that the, let us say 2, sugar mole-
cules, which are found to every 1000 water molecules would exert a
pressure twice as great as the 1000 particles together. It is beyond
doubt that the pressure £~ p on the piston or the glass wall of
the bell jar is exclusively exerted by the watermolecules, and if he
meant this, LoTHAR MuYER was certainly right when he asserted *),
that the osmotic pressure was a result of the collisions of the solvent.

Also in this respect the theory of the gaslike character of the dissolved
substance falls short, as it leaves perfectly unexplained why in an
isolated solution, e.g. a cane sugar solution, which in a glass vessel
stands under atmospheric pressure, nothing is perceived of the gaslike
character of the dissolved substance. Ior that in this case solvent
and dissolved substance are less closely in contact than in the
osmotic experiment, cannot seriously be asserted.

§ 3. If therefore we must not seek the explanation of the
laws of the osmotic pressurc in a particular condition of matter,
characteristic of dilute solutions, then the rcmarkable fact formulated
by Vax’r Horr calls the more peremptorarily for an explanation.

Nobody less than Lorentz and BorrzMaNN have made attemps to
do this *), but even their endeavours do not seem to me to have solved
the problem entively. In saying this I agree with Prof. LoruNTz’s own
opinion, at the beginning of his paper he terms i{ a “freilich nur zum
Teil gelungene Untersuchung”. As to the reasons of this partial failure,
however, 1 shall most likely differ in opinion with Prof. Lorentz.

1) Perhaps the pressure of these molecules would even prove to be negative.
%) Zsch. Phys. Ch. 5, 23.
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For what is the case? The behaviour of liquids is entirely dominated
by the occurrence of the quantities @ and ) in the equation of
state. Only matter in dilute solution seems to emancipate itself
from it, according to the law of Vanx ’r Horr, where neither
the @ nor the & occurs. This fact calls for an explanation.
Now it is not difficult to understand, why the @ can disappear
bere; the membrane is bounded on one side by the solution, on
the other side by the pure solvent. If we now think it thin com-
pared to the extent of the sphere of action, then it is clear that at

. Qg . . .
the membrane the force —: which works towards the solution, is
)

in first approximation neutralized by the force ;a-g- towards the other
9

side. It is more difficult to see why also the & vanishes, i.e. why

the molecules of the dissolved substance seem to move as through a

vacuum, instead of through a space, which is occupied for a very

great part by the molecules of the solvent.

Just on this most important point Prof. LorpNTz’s paper leaves us
in the dark, for so far as I have been able to see. And it seems to
me beyond doubt, that in the first place this is due to an inaccurate
interpretation of the term “kinetic pressure”. According to Prof.
Lorpntz it is always equal to */, of the kinetic energy of the centres
of gravity of the molecules which are found in the unity of volume.
It is therefore independent of the volume of those molecules. Now
this would only be a question of nomenclature, if not that kinetic
pressure was also defined as the quantity of motion, carried through
the unity of surface in the unity of time by the motion of the
molecules; and that this quantity is dependent on the number
of collisions and so on the volume of the molecules does not seem
open to doubt to me after Korrewke’s proof®). In agreement with
this the kinetic pressure is represented in the equation of state by
MRTv—b. In consequence of his definition LoreNtz replaces this

1) Zsch. phys. Ch. 7, 37 and Arch. Néel. 25, 107.

2) Zsch. phys. Ch, 6, 474 and 7, 88,

,8) Verslagen Kon. Ak. Amst. (2) 10, 363 and Arch. Néerl. 12, 254, Comparc
also the simpler, perhaps even more convincing proof for one dimension in Nature
44, 152, As the attentive 1eader will notice Prof. Louncnrz’s proof (I c. 39) docs
not take inlo account the collisions and the fact ensuing from them, that a quanlity
of motion skips a dislance or moves wilth inlinite velocily for a moment. And
the admission of the validily of Koxruwre's reasoning appears, as it scems lo me,
already from the fact, that Prof. Loncyrz has to assume for the solid bodies intro-
duced by him, that they ave immovable (l. ¢. 40) or of inlinite mass (. ¢. 12)
which comes lo the same thing in this case.

S50*
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quantity by MRETfy, and so his paper cannotgive any elucidation on
the point which requires it most. But that notwithstanding we owe
to Lorentz’s labour a considerable widening of our views, will as I
hope, appear from the continuation of this communication.

Also BorrzmanN’s paper leaves us in the dark as to the (uestion
why the quantity §, which in other cases plays such an important
part for liquids, seems {o have no influence on the value of the
osmotic pressure. In the equations, which he draws up, he never
takes the size of the molecules into accouni ) and it does not appear
why he does not do so. Iuovther he stops at the resull, that the
osmotic pressure is equal to the sum of the pressures exercised by
the two kinds of molecules, without discussing the part played by
the different kinds. Ifor these reasons I cannot see a satisfactory
solution of our problem in BorrzMaNn’s paper either.

§ 4. To arrive at a solution it seems in the first place necessary
to give three definitions.

1st. Given a fluid. Placed inita body of perfect elastic impermeable
substance, which does not exert any attraction on the molecules
of the fluid. The thickness of this body (or this surface) be infinitely
small; let us suppose it to have an area of 1 em?®. The “kinetic
pressure” in that fluid is then the quantity of motion in unity of
time transferred by the molecules of the fluid to this body (or oblained
in the elastic collisions from this body).

2nd, In the second place I imagine a body?), which is distinguished

1) See specially 1. ¢. 475 equation (4), which is evidently incorrect, when part of
the cylindre is not open to the cenires of the molecules, because il is occupied by
distance spheres of other molecules.

%) That I assume that the body does not atlract the molecules of the fluid, is
for simplicity’s sake, but it is not essential. If we imagine a wall, which does
attract the fluid, more molecules will veach ils surface (cf. the footnote p. 739)
and hence will impart a greater guantity of motion to the wall. But on the other
haod the particles of the surface will new he drawn into the {luid with an] equally
greater force. The claslic displacement of the particles of the surface of the solid
wall, and with it (with sufficient elasticity) that of the layers lying under it, in
other words the pressure which propagates in the solid body, and which would
be measured with a manometer of any kind, will be perfectly the same in the
two cases. If we wish to take also negative external pressures inlo account, we
shall even have to give the definition by means of an altracting body, because
in this case a non-altiacting bhody would not even he reached by the molecules
of the fluid. (Cf. the well-known fact that for the observation of the nepative
pressure strongly adhering walls are requived). In this case the impulse of the
attraction of the molecules is simply grealer than the quantity of motion which
they impavt to the wall (amd which may still be very great). the elaslic displacement
is therefore not from the fluid, but towards it

Also in the case thal we wish to take capillary layers inlo account, our definilion
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from the just mentioned body only by its being very thick compared
to the sphere of action of the molecules. The quantity of motion
transferred by this body per unity of time to the molecules, is called
the “external pressure” in that fluid.

3ud. In the third place I place in the fluid (which Inow suppose
to be a mixture) a body, which is distingnished from that mentioned
under 2 only by the fact that the molecules of one component (solvent)
pass through it without any change in their velocity. I shall leave undis-
cussed here whether such a body can actually occur. The pressure
to which this body is now subjected, and which might be measured
e. g. by the elastic displacement of the particles of its surface, I
call the “osmotic” pressure in that solution.

From these definitions it is already clear that in dilute solutions
the osmotic pressure defined here must be of the order of the kinetie
pressure exerted Dy the dissolved substance, and not of that of the

a
external pressure. For these two differ, in that — has disappeared
v

for the kinelic pressure, and this will also be the case for the osmotic
pressure defined here, as appears from the reasoning given above
(§ 3). I shall further show, that in dilute solutions this osmotie
pressure has the value indicated by the law of Vax’r Horr, and that
in any case it is as great as the well known experimentally intro-
duced and measurable osmotic pressure, i. e. the difference in external
pressure of solution and pure solveni under the pressure of its own
vapour in equilibrinm through a semipermeable wall.

calls for fuller discussion. First of all this applies to what we have just now
said, for just as for mnegalive pressures so also in the capillary layer, as
Van per Waars has shown in his theory of ecapillarity, the attraction of the
surrounding layers is a necessary condition for stable equilibrium. But further,
as Huismorr has shown (These Proe. 8, 432 and Diss. Amsterdam 1900), the
above defined quanlity does not obey the law of Pascan any more, because mea-
sured in the divection of the layer and perpendicular lo it, it has a different value.
In this case we might perhaps speak of a total external pressure, which might
be split into an external fluid pressure and an external elastic pressure. The
consideralion of capillary layers round a free floating sphere, teaches us further,
that the “external” in the name “external pressure” must not be undersiood
in such a way, as might easily be done, viz. that the reactive force of this
pressure, as it prevails in a certain point. would act in points outside the system
in question, which would always be more or less arbitrary, as we may choose
the limils of our system arbitrarily. The assertion: the external pressure is in a
point of the fluid so great, comes simply to this, that when I showld place a
strange dody at that place, without ullering the condition more than necessary
for this, this body would experience a pressure of such a value, and would
suffer an elastic modification in form which corvesponds to it, so differing in the
capillary layer in different directions.
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§ 5. For this proof I must refer fo a formula of Crausis used
by me already before?). Imagine a point which can freely move
in a space W. Cravsws®) shows — which is alteady plausible
beforeshand — that the number of collisions of this point per second
against a wall of area S is proportional to S/1 (the factor of
proportion depends only on the velocity of the point). . ,

Let us now consider a wall as defined under 2, and draw a
plane parallel to that wall at a distance '/, ¢ (¢ is the diameter of
the molecules, which we think splerical) ; this plane we call plane
of impact, because the centre of a mnolecule, which strikes against
the wall, lies in this plane. Now we apply Cravsivs’ formula to
this wall. In this we must allow for the fact that the centre of a
molecule cannot move freely throughout the volume of the fluid;
for within the distance spheres (spheres drawn round the centre of
every molecule with a radius 6) it cannot come ;-instead of » we
have therefore to put »—20, when 267 is the volume of the distance
spheres. Now the whole plane of impact, however, is not accessible
to collisions either, part of it also falls
within the distance spheres. In order to
fix this part we draw two planes at
distances % and /. - dk parallel to the
plane of impact. We determine how
many centres of molecules are found
between them and what part of the
plane of impact is within their distance
sphere. In order to find what part of
the plane of impact falls at all within
distance spheres, we must integrate with respect to % between 0
and !/, ¢. It appears then, that instead of S we must put.S(1-—>5/v)
in the formula for the number of collisions against the wall, so
that the pressure becomes proportional to

— 2%

Fig. 1.

or in first approximation

1) These Proe. VI. 791.

?) Kinetische Theorie der Gase, 60.

% Tror simplicity I confine myself o the firsl term, even il we have to deal with
liquids; this is permissib'e here, because the cllier terms have no more influence
on our question (the derivation of the law of Van 't Horr) than the first,
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§ 6. Now woe apply the reasoning of the preceding paragraph to
the collisions of the dissolved substance on a wall defined as under
3. We assume the solution io be so diluted, that the volume of the
molecules of the dissolved substance may be neglected compared
with the whole volume. For simplicity — though it is not essential
to the proof — we assume now also that the molecules are spheres.
Then here too the available space must again be put equal to v—20;
but the part of the plane of impact, accessible to collisions, is now
different. For as the molecules of the solvent pass through the
wall, their centres may now just as well be on the other side of
the plane of impact. We have therefore not to integrate with respect
to 4 from 0 to ', e, but from —?/, 6to 4+ '/, 6, which evidently
yields the double value. The pressure on the wall becomes therefore
proportional to

S§(1—2bfv) 8,

Tom e
so that the influence of the molecules of the solvent vanishes and
vaN ‘1 Horr's formula is proved for the quantity defined by us.

§ 7. That this quantity has further always the same value as
the quantity whieh may be measured experimentally, is proved as
follows. Let us think the action of the membrane in such a way
that it suffers the molecules of the solvent to pass through freely,
but repels those of the dissolved substance perfectly elastically.
Something similar would take place when the membrane worked
as a “molecule sieve”, ie. when the pores were such as to allow
the molecules of the solvent (thought smaller) to pass, the others
not. According to the definiion the latter will then exert a
pressure on the membrane equal to onr osmotic pressure. The other
molecules passing through the wall unmolested, there is no mutual
action with the wall, and so they co not exert any force on it.

1) If one should object to the train of veasoning followed here, one can find in
Bourzmany’s  “Gastheorie™ a proof for this formula which intrinsically agrees per-
feetly with {hat given in this paper, but will appear stricter to some. There onc
will also find the above given infegration carried out.

%) It is clear that we shall get fhe same result, when we do not take 2b,
but f (b/v.) for the volume of the distance spheres. I'or as the place of the plane
of impact with respeet to the molecules of the solvent js guite arbitrary in our
present case, the part of the plane of impact, which lies within the distance sphereg
will stand to the whole area in the same proportion as the volume of the distance
spheres to the whole volume,

-10 -
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The experimentally measurable difference in pressure on either side
of the membrane must therefore have the same value as the quantity
defined by us. i

LorenTz'), however, has shown that the assumption made here
concerning the membrane is by no means necessary. On the contrary;
it we assume that the membrane is thick compared with the sphere
of action, that its substance fills a volume large compared with the
apertures present and that it feebly attracts the molecules of the
dissolved substance, whereas these are strongly attracted by the
solvent — none of which are improbable assumptions — we arrive
at the result, thatnone of the dissolved particles reaches the membrane,
much less exerts a pressure on il; the membrane is then quite
surrounded by the pure solvent. And that this case is really the
usual one in nature is made probable by the fact, that it is by no
means always the smaller molecules which pass the membrane, as
we assumed above. The membrane seems therefore not to work as
a molecule-sieve. We are then easily led to suppose that the mem-
brane does not exert a positive repulsion at all on the non-passing
substance, but that it only attracts those particles mucl less strongly
than the solvent, so that the dissolved particles do not pass through
the membrane, because they occur but extremely rarely in its neigh-
bourhood. This view is supported by the fact, that only those
substances seem to be non-passing which are not easily converted
to vapour, and so cannot reach the limits of the liquid in virtue of
their own thermal motion alone.

However this be, also in this case our conclusion holds good.
For when the molecules of the dissolved substance do not {or only
in an intinitely small nnmber) reach the membrane, two planes will
be found not far from the membrane, 4 where the molecules of the
dissolved substance still have their normal density, /3 where this
density has diminished to zero. Between B and the membrane we
find then pure solvenr. If we wished to discuss such a layer fully,
we should, of course, have lo give a theory, as vaNn bR WaALs
has given for the transition liquid vapour?), extented to a mixiure
in the way va~y Erpik®) has done. But for our purpose this is
fortunately not neccessary. We need only observe, that the layer
4B as a whole has now exactly the same influence on the condition
of motion of the dissolved molecules as the mathematical upper surface
of the membrane had just now. The layer 4B as a whole will now,

1L e
%) Verh. dezer Ak. (2) 1; Arch. Néerl, 28, 121 and Zsch, phys. Ch. 18, 657,

% Diss. Leiden 1398.

-11 -
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just as the membrane just now, he pressed downward with a force
equal to the osmotic pressure defined by us, and transfer this force
to the underlying layer of the pure solvent, which is pressed outward
with this force. But this pressing force is evidently equal to the
difference in pressure which may be measured experimentally *).

§ 8. Thus it seems to me that van 't Horr's law for dilute solu-
tions is kinetically explained in the same way as the law of BoyLe-
Gay Lussac-Avoeapro for dilute gases and that of vaN DER WaAlLs
for liquids and gases, i.e. we have obtained an kinetic insight how
these laws result from the condition of motion in the homogeneous
mass, while we have left out of account what happens in the
eventually (probably always) present unhomogeneous bounding layers.

It appears from the explanation convincingly, that vax LaAr goes
too far, when he states?), that we cannot speak of osmotic pressure
in an isolated solution. Here too this notion has a clear physical
signification, and the laws which govern it, are to be derived.

1) This hydrostatic proof may easily be replaced hy a purely kinetic one, though
the latter is somewhat more elaborate. The layer 4B, which (in consequence of
course of the neighbourkood of the membrane) behaves as a layer of water, through
which the dissolved substance cannot penetrate (Cf. Nernst's well-known osmotic
experiment) imparts to the molecules of the dissolved substance per second a
quantity of motion equal to the osmotic pressurc defined by us, and receives itself
an equally large quantity in opposite scnse, which 1t transfers to the underlying
layers, as {he kinelic theory feaches. (See e.g. Bovramans, Zsch. phys. Ch. 6, 480),
Now thé whole mass of water, which is in the neighbourhood of the membrane, (on
either side, reckoned on one side from B, on the other from a plane, so far from
the membrane that the latter doesnot act on it any more), does not move downward,
so it must receive an equally strong but opposed impulse, which, of course, cannot
issue from anythine hut the membrane. Of what nature the forces acting here are
is quite unknown. It canmot be the ordinary molecular attraction, for then the
denser liquid found above the membrane would probably be drawn more strongly
downward than that found ander it upward. We might think of friction in the pores, but
it would then have to be different in one direction from thal in the other; in short I dare
not venture on any conjecture about this. This alone is certain, such forces must
exist, at least if the case put by us ever actually occurs. This appears already
from the fact that the pure solvent above the membrane is subjected to a higher
pressure, so has a greater demsity than under it. Sueh an equilibrium occurs for
all kinds of kinetic questions (liquid vapour, gas under the influence of gravity),
but the necessary condition is always a force, which at a cursory examination
seems to have the result, that the velocify of the molecules in one part (so the
temperature) would be higher than in the other, but in reality only proves to have
infliuence on the densily. The membrane, which furnishes this impulse, receives an
cqually strong one back from the reactionm, and so here too, though :indirectly, we
see a force equal to the osmotic pressure defined by us, exercised on the membrane
from the inside to the outside.

2) Chem. Weekblad 1905, NO. 9, § 3. Voordracht Bat, Gen. 3.

-12 -
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Whether this renders it desirable for ns to give ita prominent place
in the theory of solutions and make all the rest proceed from it, is
a question to which I wish to revert in a separate paper.

First I must add this observation. The insight obtained in the
nature of the osmotic pressure enables us to examine what quantities
must occur in the formula for more concentrated solutions. In the
first place it will no longer be true for concentrated solutions, that
the term o/, vanishes, both because on the two sides of the mem-
brane the density v differs, and because the concentration and so
the @ will differ. Further — as appears from our proof — for
higher concentrations the volume of the molecules will assert its
influence, and not only that of the dissolved substance, but also of
the solvent. For as on the two sides of the membrane the density
differs, the part of the plane of impact that falls within the distance
spheres of these molecules, will no longer be represented by the
above given value. As finally the molecules are of different size,
when the terms &, and 0, occur, the term &,, is sure to appear.
The formula found in this way will certainly not agree with the one
found in the preceding communication by a thermodynamic method,
for the latter is derived from the equation of state with constant 0,
whereas the kinetic considerations exclude all doubt that ) is a
function of the volume. If there should be a real diminishing of
the size of molecules when passing bevond the membrane, then this
fact is also 1o be taken into account.

Far be it from me to make an atterapt to draw up such an
equation. To achieve this, it would be required, as appears from
what precedes, that one should be able to surmount at least all the
obstacles which stand in the way of an accurate equation of state.
And if this might be done — the preceding paper proves it — the
final formula could be found in a way, which would not expose
us again to the danger of making errors. I shall therefore not enter
into the question either, in what way the formula derived in o kinetic
way can satisfy the first requirement that may be put to every formula
for concentrated solutions: that it yields the valne oo for the case
that the substance passing the membrane has perfectly vanished from
the solution.

§ 9. I shall just add a single remark on the question whether
our kinefic view implies that the so-called static theory of the osmotic
pressure, which ascribes the cause of the phenomenon to atfractive
forces, is entirely wrong? It seems to me that from what Lorexrz
has proved it appears that we must answer this question in the
negative. It is true that we have seen that the aftraction of solvent
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and dissolved substance begins to play a part only in sensibly con-
centrated solutions, and that we have to explain the osmotic pres-
sure by a “moleculares Bombardement”. But the case treated by
Lorextz shows that the whole osmotic phenomenon might possibly
exclusively be the consequence, not so much of the presence of
attractive forces, but just of the reverse, of the want of attraction
belween the molecules of most solid substances and certain other
solid substances which form membranes. If the adherents of the
static theory mean no more than this with their assertion: that the
osmotic pressure must be explained from forces of attraction, then
they seem to me for the present secured against every attack.

Physics. — “Osmotic pressure or thermodynamic potential”’. By
Dr. Pa. Komnsraum. (Communicated by Prof. J. D. vaw
DER W AALS).

§ 1. The theory of thermodynamic functions, through which
GrBs has enabled us to derive from the cquation of state of a system
in homogeneous condition, what heterogeneous equilibria will occur,
has attracted attention only in a very limited circle during a series
of years. However great the region opened for investigation by Gisss
was, the methods indicated by him seemed so abstract, that only
very few dared to grapple with them. At a stroke this was changed,
when in 1885 Vax 't Horr succeeded in replacing these methods
in appearance so abstract, by another, that of the osmotic pressure,
which strongly appeals to the imagination. The~theory of solutions,
which up to that time had only existed for a few, rapidly became
one of the most frequently treated and discussed subjects of physics
and chemistry ; since then it haz continued to enjoy wundivided
attention. \

It stands {o reason, that the attention, which now for twenty yeavs
has been so lavishly granted to the questions, of heterogeneous equili-
brinm, have also been conducive to making Giees’ methods for the
solution of such questions known in a wider circle. But though Gisss’
name may be counted among the most famous and widely known
names in the sciences of physies and chemistry, yet even now his
methods cannot be said to have been universally aceepted.

The adherent of a mechanical (or, if one prefers, statistical) natural
philosophy has by no means reason cxeclusively to regret this course
of affairs, for he sees in it a clear indication, that the views whose
truth he advocates, are by no means so antiquated, nay even dead,
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