Huygens Institute - Royal Netherlands Academy of Arts and Sciences (KNAW)

Citation:

Verschaffelt, J.E., Contributions to the knowledge of Van der Waals' psi-surface. VII. The equations of state and the psi-surface in the immediate neighbourhood of the critical state for binary mixtures with a small proportion of one of the components, in:
KNAW, Proceedings, 6, 1903-1904, Amsterdam, 1904, pp. 59-62

This PDF was made on 24 September 2010, from the 'Digital Library' of the Dutch History of Science Web Center (www.dwc.knaw.nl)
> 'Digital Library > Proceedings of the Royal Netherlands Academy of Arts and Sciences (KNAW), http://www.digitallibrary.nl'

Physics. - Dr. J. E. Vhrscharfilit: "Contributions to the Rnowledlye of van der Wals' ψ-surface VII. The equations of stute and the 4 -sunface in the immediate neighboun'hood of the critical state for binary mintures with a small nnoportion of one of the components." (part 3) ${ }^{1}$). (Snpplement $\mathrm{N}^{0} .6$ to the Communication from the Physical Laboratory at Leiden by Prof. Kaverdinger Onnes).
(Cominunicated in the meeting of Febr. $28,1903$.)
15. The 4 -surface in the immerlinte neighbounhood of the plaitpoint.

By the application, after Kebsom ${ }^{2}$), of Kormerveg's projective transformation ${ }^{3}$) to the equations of the ψ-surface, I have expressed the coefficients of my equation (20) in terms of those used by Korturra to study the platt in the paper meutioned.

The following new coordinates must be introduced

$$
\begin{aligned}
\psi^{\prime \prime} & =\left(\psi-\psi_{T_{\mu}, l}\right)-\left(v-v_{T_{l} l}\right)\left(\frac{\partial \psi}{\partial v}\right)_{T_{p l}}-\left(x-v_{T_{\mu} l}\right)\left(\frac{\partial \psi}{\partial x}\right)_{T_{l, l}}, \\
a^{\prime \prime} & =\left(x-w_{T_{\mu} l}\right)-m\left(v-v_{T_{\mu} l}\right) \\
v^{\prime \prime} & =v-v_{T_{\mu} l},
\end{aligned}
$$

where m is determined by the equation

$$
m\left(\frac{\partial^{2} \psi}{\partial x^{2}}\right)_{T_{\mu} l}+\left(\frac{\partial^{2} \psi}{\partial x \partial v}\right)_{T_{\mu} l}=0 ;
$$

to the first approximation and by the use of equation (20) this reduces to

$$
\left.m=\frac{m_{01}}{R T_{k}} v_{T_{1} /}{ }^{4}\right)
$$

Since the equation of the ψ-surface contains a torm with log r,
${ }^{1}$) Pioc. Amsterdam. 28 June and 27 Sept. 1902.
${ }^{2}$) Proc. Amsterdam. 27 Sept. 1909, p. 341.
${ }^{3}$) Wien. Ber., 98, 1159, 1889.
${ }^{5}$) In agreement with Keeson's expression (l.c. p. 342). The value of m must also fulfil the two other equations:

$$
m\left(\frac{\partial^{2} \psi}{\partial n t \partial v}\right)_{T_{\mu l l}+}\left(\frac{\partial^{2} \psi}{\partial v^{2}}\right)_{T \mu l}=\dot{0}
$$

and

$$
m^{3}\left(\frac{\partial^{3} \psi}{\partial x^{3}}\right)_{T_{p l} l}+3 m^{3}\left(\frac{\partial^{3} \psi}{\partial x^{2} \partial v}\right)_{T_{\mu} l}+3 m\left(\frac{\partial^{3} \psi}{\partial x \partial v^{2}}\right) T_{T p l}+\left(\frac{\partial^{3} \psi}{\partial v^{3}}\right)_{T_{p l}}=0 ;
$$

this is really the case when the above values of $x_{\mathrm{T}_{p} l}$ and $v_{\mathrm{T}_{p} l}$ are substituted. Conversely we can use these equations to determine $x_{y_{p} l}$ and $v T_{p l}$, as Korteweg has done. (Proc. Amsterdam. 31 Jan. 1903, p. 526).
it can only be identified with Kormwwe's equation (2), when log x can be expanded in a series. This can only happen when the difference between x and $x_{T_{\mu} l}$ is so small that $x-x_{T_{\mu} l}$ is vanishingly small with regard to $x_{T_{\mu}}$. We remain thus in the immediate neighbourhood of the plaitpoint ${ }^{1}$). In this case we find that the equation of the ψ-surface can be brought into the form

$$
\psi^{\prime \prime}=c_{1} x^{\prime \prime 3}+d_{1} x^{\prime \prime 3}+d_{2} v^{\prime \prime 2} v^{\prime \prime}+d_{3} x^{\prime} v^{\prime \prime 2}+e_{1} x^{\prime 4}+\ldots
$$

where, to the first approximation
$c_{1}=\frac{1}{2} \frac{R T_{k}^{\prime}}{w_{p l}^{\prime}} \quad, \quad d_{1}=\cdots \frac{1}{6} \frac{R T_{l}}{v^{2} T_{\mu} l}, \quad d_{2}=-\frac{1}{2} \frac{m_{01}}{v^{\prime} T_{p l} l}$,
$d_{3}=-\frac{1}{2 R T_{k}}\left(m_{{ }_{01}}^{2}+R T_{l} m_{11}\right) \quad, \quad e_{1}=\frac{1}{12} \frac{R T_{k}}{x^{3} T_{\mu l}} \quad, \quad e_{2}=\frac{1}{3} \frac{m_{01}}{x^{2} T_{p l}}$,
$e_{3}=\frac{1}{2} \frac{m^{2}{ }_{01}}{R T_{k}{ }^{v} T_{\rho} l} \quad, \quad e_{4}=\frac{1}{3 R^{3} T^{1}{ }_{k}}\left(m^{3}{ }_{01}-R^{2} T^{2}{ }_{k} m_{21}\right) \quad, \quad e_{5}=-\frac{1}{4} m_{30} . .$,
$\dot{f}_{6}=-\frac{1}{5} m_{40}$ etc. ${ }^{2}$).
The expression $4 c_{1} e_{5}-d_{3}{ }^{3}=-\frac{1}{2} \frac{R T_{k} m_{30}}{v_{T, l}}$ is always positive hence m_{30} is always negative; it follows that the plaitpoint on the ψ surface is always of the first kind ${ }^{3}$).

Since $d_{3}=0$ when $m^{3}{ }_{01}+R T_{l} m_{11}=0$, the second special case of border curve and connodal line treated by me ${ }^{4}$) agrees with the
${ }^{1}$) The following expansion can thus be used to determine the coordinates of the critical point of contact, (cf. Keesom l.c. p. 342).
${ }^{2}$) The expressions for d_{3} and e_{3} agree with those found by Keesom (l. c. p. 341).
${ }^{3}$) See Korteweg, Wien. Ber., p. 1158.
${ }^{4}$) Proc. Amsterdam 27 Sept. 1902 p. 329. Thie reference to this special case allows me to correct some mistakes in the formulae whirh are connecled with this and the preceding special cases. In Proc. of 28 June 1902 p. 267 line 2, read:

$$
p_{1}-p_{T k}=\left(m_{02}-\frac{1}{3} \frac{m_{11} m_{21}}{m_{30}}+\frac{1}{5} \frac{m_{11}^{2} m_{40}}{m_{30}^{2}}\right) \boldsymbol{\Xi}^{2}
$$

and in Proc. 27 Sept. p. 328, line 12:

$$
p-p_{T k}=\frac{m_{30}^{2}}{m_{11}^{2}}\left(m_{02}-\frac{1}{3} \frac{m_{11} m_{21}}{m_{30}}+\frac{1}{5} \frac{m_{11}^{2} m_{40}}{m_{30}^{2}}\right)\left(v-v_{T k}\right)^{4}
$$

Further in the last Proceeding p. 329 line 9 for the coefficient of $\frac{m_{01} m_{02}}{R T_{k}}$ read 4 instead of $\frac{5}{2}$
first donble-plaitpoint case of Korteweg ${ }^{1}$). The second case for a double-plaitpoint, i. e. $4 c_{1} e_{5}-d_{3}^{2}=0$, does not occur on the ψ-surface.

16. Application to a particular equation.

In a communication published in the Proccedings of the Academy for 31 Jan. 1903, Korteweg has determined the plaitpoint and critical point of contact for mixtures with a small proportion of one component, but on the assumption that these mixtures satisfy van der Waals' equation of state

$$
p=\frac{R T}{v-b_{x}}-\frac{a_{x}}{v^{2}}
$$

where

$$
a_{x}=a_{1}(1-w)^{2}+2 a_{12} v(1-w)+a_{2} w^{2}
$$

and

$$
b_{x}=b_{1}(1-x)^{3}+2 b_{12} x(1-x)+b_{2} x^{3} .
$$

The formulae fornd by Korterweg can be immediately deduced from my formulae, when we introduce the special forms which my cocfficients will then assume.

First we may note that, in this case, the critical constants for the homogeneous mixture are

$$
T_{a l e}=\frac{8}{27} \frac{a_{x}}{b_{x} R} \quad, \quad p_{x k}=\frac{1}{27} \frac{a_{x}}{b_{x}^{2}} \text { and } v_{x k}=3 b_{x}
$$

${ }^{1)}$ l.c. p. 1166. In using the same method with Kortrweg's equation (2), as I have used to determine the critical constants, I have found the following expression:

$$
\begin{gathered}
y_{2}+y_{1}=\frac{4 c_{1} e_{4} e_{5}+d_{3}^{2} e_{4}-4 d_{2} d_{3} e_{5}-4 c_{1} d_{3} f_{6}}{4 e_{5}\left(d_{3}^{3}-4 c_{1} e_{5}\right)}\left(x_{2}+w_{1}\right), \\
\left(y_{2}-y_{1}\right)^{2}=-\frac{d_{3}}{e_{5}}\left(w_{2}+x_{1}\right)
\end{gathered}
$$

and

$$
x_{3}-x_{1}=\frac{4 d_{2} e_{5}^{2}-2 d_{3} e_{4} e_{5}+d^{2}{ }_{3} f_{6}}{2 e_{5}\left(l^{2}{ }_{3}-4 c_{1} e_{5}\right)}\left(x_{2}+v_{1}\right)\left(y_{2}-y_{1}\right)
$$

where x_{1}, x_{2}, y_{1} and y_{2} are the coordinates of the ends of the tangent-chord.
In the special case when $d_{3}=0$ we get
$y_{3}+y_{1}=-\frac{1}{4} \frac{e_{4}}{e_{5}}\left(x_{2}+x_{1}\right) \quad, \quad x_{2}-x_{1}=-\frac{1}{2} \frac{d_{2}}{c_{1}}\left(x_{2}+v_{1}\right)\left(y_{2}-y_{1}\right)$
and

$$
\left(y_{2}-y_{1}\right)^{3}=\frac{1}{2 e_{\mathrm{5}}}\left(\frac{d_{2}^{2}}{c_{1}}-e_{3}+\frac{3}{8} \frac{e_{4}^{2}}{e_{\mathrm{5}}}\right)\left(x_{2}+v_{1}\right)^{2}
$$

By the introduction of the above values for the coefficients, my expressions for Φ, φ and ε are again found. The first approximation for c_{2}, c_{1} and e_{3} will then be certainly insufficient in the last expression.
so that Kamerlingit Onmes' coefficicuis a, β and γ become $a=2\left(\frac{a_{12}}{a_{1}}-\frac{b_{12}}{b_{1}}\right), \quad \beta=2\left(1+\frac{a_{12}}{a_{1}}-2 \frac{b_{12}}{b_{1}}\right), \quad \gamma=2\left(\frac{b_{12}}{b_{1}}-1\right)$.

Further we find, by comparing my equation (18) with the above equation of state:

$$
\begin{aligned}
& m_{01}=\left(\frac{\partial p}{\partial v}\right)_{T k}=\frac{2 a_{1}}{27 l_{1}{ }^{3}}\left(1-3 \frac{a_{12}}{a_{1}}+2 \frac{l_{12}}{b_{1}}\right) \\
& m_{11}=\left(\frac{\partial^{2} p}{\partial v \partial x}\right)_{T k}=\frac{4 a_{12}}{27 b_{1}{ }^{3}}\left(\frac{a_{12}}{a_{1}}-\frac{b_{12}}{b_{1}}\right) \\
& m_{21}=\frac{1}{2}\left(\frac{\partial^{3} p}{\partial v^{2} \partial v}\right)=-\frac{1}{27} \frac{a_{1}}{b_{1}^{4}}\left(1+2 \frac{u_{12}}{a_{1}}-3 \frac{b_{12}}{b_{1}}\right) \\
& m_{30}=\frac{1}{6}\left(\frac{\partial^{3} p}{\partial v^{3}}\right)_{T k}=-\frac{1}{486} \frac{a_{1}}{b_{1}^{5}} .
\end{aligned}
$$

If these special values are substituted in my general formulae, Kortbwbe's special formulae are obtained, and in addilion some which he has not given. These are not given here as they aro not sufficiently simple and they can also be easily reproduced.

Kortwing has already given the results obtained fiom thesc formulac. I will here only remark that the special cases $1,2,3$ and 4 of Kortewsg's fig. 1 agree with my fig. 15 and the cases 5, 6, 7 and 8 with 14. As fig. 15 is obtained for the case that $m^{3}{ }_{01}+R T T_{k} m_{11}>0$ and fig. 14 when $m^{2}{ }_{01}+R T_{k} m_{11}<0$, the boundary between the two cases is determined by $m^{2}{ }_{01}+R T_{k} m_{11}=0$, which in connection with the special equation of state can be written

$$
\left(1-\frac{3 a_{12}}{a_{1}}+2 \frac{b_{12}}{b_{1}}\right)^{2}+8\left(\frac{a_{12}}{a_{1}}-\frac{b_{12}}{b_{1}}\right)=0 .
$$

This is the equation of the parabolic border curve given by Kormeweg.
(June 24, 1903).

