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small irregular vibrations occurring in most electrocardiograms, where
they sometimes reach a height of 0,1 to 0.5 mm. and more, bui
ave sometimes entirely absent, as e.g. in N°. 6 of Mr. Ap.

These vibrations are not caused by tremors of the floor or other
irregularities which should be aseribed to an insufficient technique
as is easily shown by the vibrationless normal curves at the end
of almost every series of electrocardiograms. Hence they must be
caused by electromotive agents in the human body itself and the
question avises whether they find their origin in the aclion of the
heart or of other organs. We may expect that an investigation
undertaken with this object will give a definite answer to this question.

Physics. — Dr. J. E. Verscaarrerr. “Contributions o the Lnowledge
of VAN DER WaaLs' p-surface. VII. The equation of state and
the W-surface in the immediate neighbourhood of the critical
state for binary mivtures with a small proportion of one of
the components.” (part 4). Supplement N°. 6 (continued) to
the Communications from the Physical Laboratory at Leyden
by Prof Kamrruinen OnNis.

(Communicated in the meeting of May 30, 1903).

17. The e, B-diagram.

In the previous communications the different phenomena in the
necighbourhood of the critical point in substances with small propor-
tions of one component have, according to our plan set forth at the
beginning, entirely been oxpressed by means of the « and § and
the co-efficients that can be derived from the general empirical reduced
cquation of slate. Tor shorvtness, and to avoid the consfant repetition
of the same factors (comp. §1) I have used till now, instead of the
differential quotients of the general empirical reduced equation of
state, the co-efficients £, where the m’s (comp. form. 19) have been
expressed by means of « and 8, but henceforth, as the numerical
values are morve important I shall make use again of the differential
yuotients of the reduced equation of siate ifsclf, used in equation (1).
It seemed important to me to completely defermine by means of
the numerical values of e and # the different cases which, according
to the formulae found by Krrsom (Comm. N°. 75) and by me (loc.
cit.), may present themselves in the relative sitnation of the different
eritical pomnts. To 1llustrate this I intend to divide an e, (-diagram
info ficlds in which there is a definite relative situation, by means
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of lines, as Korrewxe has done in another diagram (the x, y-diagram)?).

This investigation showed that the last of the eight cases distin-
guished by Kortuwre of whick the inconsistency was demonstrated
by him for one special case only, did not exist in general, at least
for all the equations of state which satisfy the law of corresponding
states. Not to make the investigation too elaborate I have compared
the situation of the plaitpoint only with that of the critical state_of
the pure substance, that is to say I have considered the fields within
which Ty > or < T, P> or < pr and vy, > or <lwg. I have
also determined in which area the retrograde condensation is of the
first or the second kind; and lastly I have indicated in the diagram
what had been observed experimentally.

The plaitpoint temperature. According to form. (59) the plaitpoint
temperature of the mixture is higher or lower than the critical
temperature of the pwre substance as the expression

m?o,+RTym,, o= — m’ +RTpm,,
RTym,, RTik,,
is positive or negative; and, k,, being negative, 1%, — T;; has the
same sign as the numerator.
If for shortness we put
0p 0%p 0°p a°p 0p

VT Y, e P, T e Py, Ty B, — —, efe.
Por at’ P11 auat, 21 aogai, Pso 6»“’ Pao ab,,?

and for convenience we leave out an index which refers to the
critical state, because only those values are used which refer to
the critical state, -
my, + BTemy, = p*r [(B — v, @) — 04 Pals )
so that the area, where 7,,;> T} is separated from that where
Topt < T by a line of which the equation is:
(5 — Poy a)ﬂ - Cq Phpa= 0.
This line, a parabola, represented on the annexed plate *) by

1) Proc. Royal Acad., Jan 81, 1903. The x and ; are c¢onnecled in a simple
linear way with 2 and 8 (comp. the previous communication p. GG6G6).
?) For we have (comp. form. (19):

Pk 1 pp
My — Pk B—r, a)’ my, = '-'"v_kpn 0y My, :"E;;:;[pm P (@—B)],...

1 1 opy
M 30 -"Ev_kspau’mm “éZ;Ep”’ efc.;
For the definition of C, comp. Kameruwan Onxes (Arvch. Néerl. (2), 5, 670, 1901;

Comm. no. 66).

?
8) The figure is drawn by using the values of y,1, 3y ele. which will he caleulated

in the next section. For cleainess [ have represented the 2's in a 5 times larger

scale than the B's.
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hAQOb corresponds to Kortrwre's first boundary *). Outside the parabola
xpl > Trlc: inside 7 pl< jk

The ])Zazz,‘pomtjnessm'e From form. (60) we derive that p,, > or
< prasv,, (B — Py, @) >or< O, vy, f. The equation of the boundary

PP — @) — Cip,, =0,
is that of a parabola represented in the figure by c¢OB¢’. Outside
the parabola pg > pu, inside < px.

The plaitpointvolume. The manner in which »,,, depends on ¢ and 8
may be derived from form. (61); it is expressed by Kersom’s formula
(2¢), which I borrow from him in my notations:

(B-Po1@)rz ; .
ﬁ;‘;— [pu(ﬂ"}‘ola)?“(’4021(5—1‘01“)_3049 11“]'

Hence the boundary is here:
0=— P (ﬂ‘pm a)a + 04 Pay (ﬁ—'pm a)g + 304 pzu a(ﬁ_pﬂl “) + 024‘311"‘30 (“"ﬁ)'

This is a curve of the third degree, like KorTEWEG’s third boundary,
with which it corresponds in this diagram.

In order to investigate this curve I introduce, following the example
of KorTEWEG, a parameter z, by putting

z = 6 — P
and I find that « and §8, by means of that parameter are expressed thus:

o= —= [— T 04 Py 2 — 024 P11 Paol

Vi ==+ vi(a-f)e —

ﬂ——“‘[ "nl“ll 'i' Ch‘mpn_?’pn}z_c M 30]!
where
N= 024 M Py (1‘01 - 1) —3 04 pzu Z
As « and B are single valued functions of z, all lines which are
parallel to the straight line 8=1,, « (Oa of the figure) inierscet
the curve at one single point at a finite distance.
If we put:
_quso(pm—l) 2)
T 8y,
the straight line § =1p,, @« + 2,, being a dotted line in the figure (CD),
) To avoid mistakes I use here the word boundary, instead of the expression

border curve used by Kortewee; for in our demonstrations the word border curve
has a very special meaning, viz thal of a boundary between stable and unstable states.

ap
%) As p; is also equal lo the direclion-cosine (&—) of the tangent to lhe re-
CJk
duced vapour tension curve at the crilical point, and as it follows from the form

dp
of that line that (t—z—:-) > 1, # must necessarily be positive,
k
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is an asympiote of the cubic curve. It has fwo branclies, of which
the one (dG'Ed) sitnated above ihe asymplofe, is given by values
of z, which are larger than z,, the other («'OHFUI"),. below the
asymptote for &< z,. -

o becomes egual to zero not only for z=0, but also for two
other real values of s, of which the one is positive, the other negative;
I shall call the positive root z,, the negafive one z,. In the same manner
g vanishes for z =0 and also for two oiher rcal values of z, of which
again one (z,) is positive, the other (z;) negative- We can prove
that always z, >z,; for z, and z,, three cases are possible: both
are larger than 2z, and then z, >z, or both are equal to z,, or
both are smaller than z, and then z, <z, With the values of the
derivatives, to be introduced presently, the order of the roots is:

2, > 2, >8> 0> >,
and hence follows the form of the cubic curve as it is drawn in the
figure ).

One can easily see that v,,;>>w; above the branch z >z, and
within the branch z<Cz,, while w,,;<wv; in the area which lies
partly between those two branches and which extends further to the
right of both.

Retrograde condensation is of the first kind when vz, <wvp, and
of the second when vy, >>v7. According o form. (41) and (26)
v >vp. when m,, and m?, 4+ B1,m,, have the same sign;
mty, + RTpm,, is positive outside the parabola 540 and negative
inside, while m,, is posilive above the straight line Oa and negative
below it. Hence we have g, >wr. and retrograde condensalion
of the second kind: 1+ . inside the parabola 640 and below the
straight line O, 2"1. outside the parabola and above the straight line;
at all other points vz, < »7, and the retrograde condensation is of
the first kind.

Here follow the physical characteristics of the fields into which the
figure is divided by the boundaries under consideration:

Field 1: —T'z//l > T Pinl > Pl s Yanl > Vi s VIl > vy, 1.oc 1l

2: Tot > Ty papt > pio s vapt < 0% » 9T > 077, .6 11
8t Tapt > Tk s papt > Pl s vopt < VU 5 4T < 0T, Y- 01
4: T:rpl > 1% Papl > Ploy Vapl > v VIl < o7y, TG I
5 T:zpl > Ly o pant < Pk oy Vapl > Vkoy UUl < vy, TI.Ce H
6t Topt < Ty Papt < Py Wupl > vk 5 0L > vpr, Yoo 1
7 TJ;;! < Ty, Papl < Pk o+ Vapl > Vi 1 VTl < vYr, T.C I
8: T:l;al < 7y, Payt < Pl oy Vapl < Vo9 VI < vrry Y. O I
9: T.'Ly/l < 7, Papl > P+ Vapl < UV s VIl < vy, I.Ce I.

1) It will be seen that this form agrees entively with that derived by Konrrrwic
in lhe &, y-diagram from a special cquation of slaie. -
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It will be seen t{hat the fignres 1 and 2 of the plate belonging to
the first paper (Comm. 81) refer io points situated in the parion the
right of the p-axis of the fields 1 and 2; figs. 3 and 4 to the same
fields on the left of the @-axis; figs. 5 and 6 to the fields 7, 8 and
9; figs. 7 and 8 to the part of the flelds 3, 4 and 5 lying on the
right of the g-axis; figs. 9 and 10 to the same fields on the left of
the p-axis; and lastly figs. 11 and 12 to field 6.

In the figure I have marked three points P, @ and R, of which
the first relates to carbon dioxide with a small quantity of hydrogen
(¢ =——117, 3=-—1.62), the second to carbon dioxide with a
small quantity of methyl chloride (a¢=0,378, #=0,088) and
the third to methylehloride with a small quantity of carbon dioxide
(@ =—0,221, 3 =0,281). From the situation of P, viz. in field 2,
it should follow that 1w, > T}, whereas the observalions showed
that 7%,;< T%; this deviation has been pointed out before. *) More-
over the situation of P in field 2 ‘points to a system of isothermals
of the mixtures as represented in figs. 1 and 2 of the first paper,
while in reality this system of isothermals corresponds to figs. 5 and 6,
that is to say to one of the fields 7, 8 or 9. The point P lies very
near the limit of field 9, and hence it is possible that a more accurate
determination of @« and g would remove the point P into field 9 where
indeed it should lie according to the plaitpoint constants observed
and the chavacter of this field, if at least the law of corresponding
slates can be applied. The points @ and Z, so far as we know with
cerfainty, ave sitnated in the right field. *)

The straight line =1, e agrees with Kormuwee’s second boun-
dary. It is determined by the circumsiance that along the conno-

Y

d.
dal line (——- =0; we find from the formulae (37), (41) and (26) that:

av/

oy 2m, RT . (01t — 273) My, -
=) =TT gy — v7y) = = am,
av /i m2y,+ BTy, - ! "TTRT, Y

5

da ) . .
50 that (l—) becomes zero with m,,. Thus above the straight line Oa
(44)] wl

AN » : : : : .
(——Z 18 positive, below ii, negafive, hence in connection with tne
v !

M

1) Comp. 2nd paper, p. 334.

2 It musl be remarked that the devialion of the point @ in consequence of our
insufficient knowledge of « and # would be much less striking than in the case of
point P; e.g. whether Q ought to be placed in the neighbouring field & or not,
could be only concluded from the sign of v.,1 — v, but we do not know with certainty
what this sign should be for mixtures of carbon dioxide and methyichloride.
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preceding it follows that Korrrwee’s eighth case:

- da
7:‘6pl< T , ”:lpl<'v/c en (—C—l_) l< 0 -
?

v

is in general not possible.
A dirveet proof of this circumstance may easily be given. Because
m,, must be negative, I put 8=1p,, « —¢*; T, < T} requires that

7,4 sﬁ
B—v, 6 =Cp,,e—s* Hence we may put: a= and
Cpu
7 4 & v
Vapl ==V —7 —1)——a + gt [ C v, p,, (857 20
2pl ke k (Por )04 " + 7o +C’4p“p30[ Dgy 7Py, (357 - 20)],

so that all the terms of w,; are positive. Hence we see that, if

) do _ . .
Txpz < T} and (}%) <0, Vapt < ot is an impossibility.
v/ pl

18.  The numerical value of the reduced differential quotients.

To find this numerical value I have first tried to derive it directly
from the observations by means of graphical representations; but as
I did not succeed in finding more or less reliable values for the
higher differential quotients (»,,, v, »,, etc.) I was obliged fo use
formulae which satisfactorily represented the observations. Undoubtedly
Kaveruinen OxNis’ ') developments in series are best fitted for this
purpose, although just in the neighbourhood of the critical point,
where in our case they have to be applied, they deviate rather much
from the observations *). Therefore the values of the derivatives obtained
in that way, especially those of the higher orders, can only be con-
sidered as approximate.

By means of the temperature co-efficients of reduced virial co-
efficients marked by V.s.1? derived from AMaGAT's observations,
I find for those virial co-efficients (¥,, B,, ete.) and their first deriv-
atives according to the témperature (A, D ete.) at the critical
point (t = 1),

1) Proc. Royal Acad, 29 June 1901, Comm. N'. 71, and Arch, Néeul. (2). 6, 874,
1901, Comm. N’ 74.

2) Comp. Avch. Néeyl. loe. cit. p. 887, Previously I have given parabolic for-
mulae (Proc. Royal Acad.,, 3! March 1900, Comm. NO 55 and Arch. Néerl. (2), 6,
650, 1901) which very well represent the observations just in the neighbonrhood
of the eritical point. These formulae, however, do not harmonize with our consi-
derations, because they do not yield finite values for higher derivalives.

$) Gomm, N° 74, p, 12,
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A, = -} 366,25 X 10—° W, = 4+ 866,25 X 10—
B, = — 471,614 X 10-* &', = -+ 662,387 X 10—
6, = -+ 283,300 X 10— @, = — 855,774 X 10—
D, = — 360,485 X 10—** D, = 4 789,880 X 10—
€, = 4 683,07 X 10— &, = 4 346,72 X 10—
§ = — 90,14 x 10—  §, = — 698,82 X 10—

If farther we put 2=0,00102 (calculated from 7;—=304,45, ;=729
and v;==0,00424, we find at the critical point:
o= 0,08833, p,,=0,10305, p,=-—0,16881, p,,—— 550648,
P, =75,79292, p,,=7,34410, p,,;=—9,09986, p, = 27,76382, etc.

The values of p,,, »,, and »,, onght to be equal to 1, 0 and 0
vespectively ; the tolerably large deviation of the two last derivatives
proves that the series used do not represent the shape of the iso-
thermals in the neighbourhood of the critical point so accurately as
we might wish'). Hence it follows that the values of the other
derivatives calculaied here cannot be very precise, and probably this
uncertainty increases with the order of the derivative.

I take as approximate values of the reduced differential quotients
at the critical point:

Poo = - 5,3, P,y = 76, 1., = 7,3, »,, = - 10, »,, = 28, while C,—3,6.%)

According to van Dk Waars® original (reduced) equation of state:
g 8 1

i
I

L2
(7

I

8: 3
N ——— —
P=51 7 ,
we should have
8
P = — 9,0, =126, p,, =4 ,p,, = — 6, p,, =18, 042522,7;3)
and according o this modified equation:
8t 3el—t
P = — — :
I 80—1 p?
Pao=—9 , P, =126, p;, =7, 0, =—12, p,, =86, C,=2,7.

Firially I substitute the numerical values of the derivatives obtained

1) On the cause of that inaccuracy and the possibility of improving upon it
a new communicalion by Kameruwen OnxvEs is to be expecled. (Comp. Comm.
nl. 74, p. 13).

) Kcesom gives (Comm. n" 75, p. 9 and 10) C,=3,45, p , =7, pjy=—9.3.

3) It will be seen that these values agree tolerably well with (he former ; it is
thus mot remarkable that so close a resemblance exists between the forms of
the boundaries found by Korrewes and by me, which indeed is based onvan pEr
Waats' original equation.
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above in formulae (9) and (10) and compare the vesult with the

observations. _ -
Equation (9) yields:

1 ' -
E(vﬂ_bl)::l/ 6}-‘-1-1(1—[):3,371/1—t
. 3

30
t

and equation (10):
1 1 3 P11Pa0

E(D2+1‘1)—1=_E[p21_—5 ™ ](1-—;);10,9(1—;).

In order to compare these resulls with the parabolic formulae of
Marnaias ), formulae must be derived for the reduced densitics of the
co-cxisling phases; representing these reduced densities by b, and d, I
find, according to a transformation employed formerly: *)

1 _
5 (0—0,) =837 T

%(D1+<bn) —1=(3,37 —10,9) (1—1) = 0,5 (1—¥).
1n the last formula, however, the co-efficient 0,5 is somewhat uncertain.
Marias gives for the liquid branch, according io the observations
- of Caznerer and MarHIAS °),
b, =1.— 2,47 (1 —1t) + 4,091 — ¢,
and for the vapour branch
b, =14+291(1—1)—3837Ty 1 —¢.
f TFrom these formulae it would follow thai the two branches of the
border curve belong {o different parabolae. The co-efficient of V'1—;
or the vapour branch perfectly agrees wiih the one found, and the
fact that Mararas has found a grealer value for the same co-cfficient
in the liquid branch, may clearly be ascribed {o the uncerlainty of
the then existing data on this subjeet. If we negleet this difference,
the formulac of Matiias give:

1
~2—b1—|— 0)—1=10251—1),

a sufficient agreement with the co-cfficient 0,858 later devived by
him from Awmacar’s obscrvations. The value 0,5 found above is in
good harmony with this.

Y Journ. d. Phys., (3), 1, 53, 1892. Ann. d. Toulouse, V.
%) Pioc. Royal Acad., 27 June 1896; CGomm. no. 28, p. 12. More acurately we have
1 1 @ i+ 1 ., .
— — [ — -— — {( S /] ’
T + & = TR (v )
3) Journ, d. Phys., (8), 2, 5, 1893. Ann. d. Toulouse. VI.
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