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Physics. — “The lquid state and the equation of condifion.” By
Prof. J. D. vAN DER WaALs.

(Communicated in the meeting of May 30th and June 27th 1903),

It has been repeatedly pointed out that if we keep the values of
the quantities @ and & of the equation of state constant, this equation
indicales the course of the phenomena only qualitatively, but in
many cases does not yield numerically accurate results. In par-
ticular Dawmr BuerHeror {esling the equation of state at the expe-
rimental investigations of Amaeat, has shown that there occur some
curves in the net of isothermals, e. g. those indicating the points for
which the valwe of the product pv is a minimum, and other curves
of the same kind, whose general cowrse is correctly predicted by the
equation of state, but whose actnal shape and position as determined
by the experiments of Amacar, shows considerable devialions fron
the course of those curves as it may be derived from the equation
of state.

In consequence of this circumstance the quantities ¢ and 6 have
been considered as functions of the temperature and volume. Already
Cravsius proposed such a modification for the quantity @; for car-
bonic acid he does not put @ = constant, but he multiplies it with
273

ik
view {0 the course of the saturated vapour tension.

From the beginning I myself have clearly pointed out that, though
a may probably be conslant, this cannot be the case with the quantity
0. One of the circumstances which I was convinced that I had shown
with the highest degree of certainty as well in the theoretic way as
by means of the comparison of the experiments of ANDruws, was
that the quantity & must decrease when the volume decreases. So
for carbonic acid I calculaied for & in the gaseous stale at 13°l the
value 0,00242 and in the liquid state a value decreasing to 0,001565.
But the law of the variability of 4 not being known, I have been
oflen obliged to proceed as if & were constant. In the following
pages I will keep to the suppositions assumed by me from the begin-
nmng, namely that @ is constant and that & varies with the volume;
and I will show that if we do so, the considerable deviations dis-
appear for the greater part and that it is possible to assume already now
& law for the variability of & with the volume, from which we may
calculate in many cases numerically accurate data even for the liquid
state at low temperatures.

Such a modification seems to be required principally with a
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To that purpose we shall begin with the discussion of the tension
of the saturated vapour over_liquids al Iow iemperature. From the
conditions for coexaisting phases of a simple subsiance, that namely
p, 7 and the thermodynamic potential are the same in both phases,
follows :

-

(pv —-‘j;)du)1 = (pv ——J}J(ZU)S -
R!’ rr [
pv-———-— v-—-b v——-——— v—b/,

If we put & = constant i. e. /) independent of the volume, then the
latter equation assumes the well known form:

[pv ~ L RT log (v—b)] = [pv ~-L_ RT log (u—-—b)-]'
v 1 v

r

or

2

Properly speaking this equation is not suitable for the divect calculation
of the coexistence pressure; it must be considered to give arelation
between the specific volumes and so also between the densities of the
coexisting phases. At lower {emperatures, Lhowever, for which the
vapour phase, which we have indicated by means of the index 2, is rare
and may be estimated not to deviate noliceably from the gas-laws,
the equation becomes suilable for the calculation of the pressurve of
the saturated vapour. In this case il assumnes the following form:

po, — L Ry loy (v,~1b) — RT = RT log %
v R

1
We find afier successive deductions which are oo simple to requre
special discussion:

a “(U ) a v P (0, =)
——+ — (]) + ;1—2) (v, =0) = Rl lo'q—_—_R_'[’

b 1
ph— L L oy = RTlog—2
b v o
P+
vl
T —p@—0)]  =RTly —Jl-a—
2
Uy
(0,—2)
5 b v—b .
RT + b =] a
p+ ~
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Undoubtedly p may be neglected by the side of — - Even if p
amounts to onc Atmospheze, its value is certainly stlll smaller than

—-2b
0.0001th part of ——2. In the same way p ﬂ'{b____) may undoubtedly
U

be neglected by the side ofl;i or pv, (v,—20) by the side of ¢ —

~ a4
and this for the same reason, for b —-v—) is a quantity of the same
n-v—4Yy
a
order as —
v,?
So the equation may be simplified to:
a
p b v,—b
log —— = — — 1
A RT T % ()
v,?

For the limiting case, when v, may be equated to 0, we get:

S

If we introduce the critical data, namely :
1a 8 a
— —and RTp—— —,
P =gy g ond le=gg 1
then we get the following equation for the caleulation of p.

p 21T}
— log —=— — — log 27
J pr 8 T il
or, as log 27 is equal to 3,3 and may therefore be nearly equated

27
to 3 Ve get with a high degree of approximation:

Ty—T

— g2 —3,375 ZF_—,
Pl T

This last equation is nearly equal to that derived by prof.

Kaneruiner ONNES by means of a graphical method from the equation
of state with & and & constant, namely :

[/
—1092_34( ’° ,f))
Pk 1

Kameriine Oxnus found this equation to hold in approximation up
to the critical temperature, here we could only derive it for low

1) Arch, Neérl, Livre Jub, dédié¢ a H. A. Lorentz. p. 676.
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temperatures., If in equation (1) we do not immediately introduce
v, = b, we may write it as follows: =

a
P b v,—b
l — ]
i a/b\? RT 2 b -
"\ v, _
or
a -
P b v,—b v,
gL — ~ 2 4 B0 95,
S T %
b

For values of v, only slightly greater than 0 we may write
v,—b

b

for loy %3 So we get:

27Ty, —b
— log£ =__lb _*_vlb

— log 27.
Pk g8 I )

v~

The value of varies with the temperature and starts with

the value zero for 7’=0°. It may be calculated from:
a I
1;:5 (0,—0) = RT.

This last equation may be writlen as follows:

U2 1
8Tﬂ(7—

o7 Ty, 'ul)’ ’

b

itl ”_-}5 find fo n—t il | 1 witl - = 0,54
—— we , 4] — 7 _— =
With T, =52 ve find for 7 1e value 3 and with 7 ,

|

4
n

1
the value T With T}—::—Qr the value of

vy, —

b
is equal {o 0,2125.

g
varying with the temperalure, the term 5
2
does not represent the total variation of g with the lemperalure,

lfa

. ) L1 d

but the diffevence is small. We might calenlate the value of — lg .
P

from the above equation, but it is simpler to calculate this quantity

from the following equation:

" ap) _ (e
7)-=(5),

v,—b

The quantity
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For coexisting phases this equation becomes:

7 dp _ §,—§,

\dT - VgD,

or
a a
R A Y
ar V=, U7
For low temperatures this yields:
@ o af{v,—b)
Ly _m b
» AT RT — RT RT
or
a
Tdp b v
pdl " T RT b
or

Tdp 271’1:. ____”1"'6
pdl 8 1T b
For 7'= T} equation (2) yields:
T d
Gar)=+
For the highesl temperature, therefore, at which the pressure curve

I/ Al

occurs, the coefficient with which -,1-,5' must be multiplied in order to yield

Id
the value of —gz},, does not differ much from that for the lowest
p
temperature at which the liquid may exist without solidification.
Here we have one of the strilking instances, how the equation of
slale with constant @ and b may vepresent the general course of a
quantily just as it is found in reality, though the numerical value
differs considerably. For the real course of the vapour tension is at
least in approximation represented by the formula:
T,—T

ST

p
log e I
but the value of f is not 4 or somewhat less — but for a great many
substances & value is found which does not differ much from 7.
Before discussing this point further, we shall calculate some other
Quantities whose values for the liquid state for low temperatures
follow from the equation of state when we keep a and & constant.
9
Proceedings Royal Acad. Amsterdam. Vol. VL.
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Let us take again p to be so small that we may write
a
— (v—0) = RT.
= (=0)

From this we may deduce:

| — T dv ¢
. T\ dl ), =0

v

1
For = 0,585 (Ether at 0°) _v_b is equal to 4,7 as appears from:
v—

G G)
e

With this value —:1;_—5—-4 we find:

T (dv 1
2 \dT Jp=o 2,7

So we find for the coefficient of dilatation under low pressure
and at this temperature which is so low that we may neglect the
pressure, the value:

1 fdo\ _ 0,00367
v (?ﬁ =0 2,7

Comparing this value with that which the experiment has yielded
and which we may put at 0,001513, we see that it may be used
at least as an approximated value.

1 /d
The above equation (3) yields for — (——?-) with v = 20 an
v dT =0,

v

—2 T ®)

v—0

= 0,00136.

7ol

7 )
infinite value and so (VAT This quite agrees with the circumstance

Tr 27
that the isothermal for j—’:§§ touches the V-axis and it warns us
that equation (3) cannot yield any but approximated values for much
lower values of 7.

d
For the coefficient of compressibility g namely’-—(%) in that
vdp /7

same liquid state we find
dp. Rf'vl 2a__ af v, 5
dvl T (v —0)* vl’ T o\ v, —b

1 O\ v
—_=27 pp| — 1.2,
B PA (Ul) (vl_b )

or




/199

With the aid of the above data and putting pr==37,5 atmospheres
we find :

B = 0.0006 (nearly).

The experiment has yielded no more than about 0,00016 fer this
value. So we have found it so many times too large, that for this
quantity the equation of state with constant ¢ and 4 cannot be con-
sidered to hold good even in approximation,

From the well known equation:

oY /0T a_p)___ 3
() o)
T/ 0v dp __T(ap
o) (—ra)=(52),

T(wY 1 _a,
;(d—T)pXB_F)

With the values mentioned above and yielded by the experiment
we should therefore have for ether at 0°:

273 X 0,001518 by?
=27 X 87,5 —
0,00016 X 315 (v)

2,b = (—b—) .
v

According to this equation » should be smaller than 4 which would
be absurd, if 0 does not vary with the volume.

follows

and therefore

or

If we calculate the value of 0 from % then we find for ether
0 = 0,0057 circa; in reality the liquid volume appears to be smal-
ler than §. Dividing namely the molecular liquid volume by the nor-
mal molecular gas volume we find about 0,0047 *). From this appears
convincibly that the variability of b exists in reality and that there-
fore an equation of state in which this variability is not taken into
account, cannot possibly yield the data of the liquid state.

Let us return to the equation:

pr__ JTp—T

— Jogtt — f I
ng f 11 1

which holds good at least approximately, as is confirmed by the
experiments, if we take for f a value which is about twice as great
a5 would follow from the equation of stale if we keep @ and b con-

1) Continuitit 2nd Edition, p. 171.
%) Continuitit 2nd Edition, p. 172.
%
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stant. What modification must the equation of state be subjected to
in order to account for this twice greater value? CrAusius answered
this question by supposing a to be a function of the temperature

o 273 .
e. g. by substituting a v for it.

When we consider the question superficially, the difficulty seems
to be solved. But it is only seemingly so. At 7'= T} this modifica-
tion really causes f to assume the value 7 — but this supposition
has consequences which for lower temperatures are contrary to the
experiment. If we calculate the value of

dp _ &—F
ar T ov,—v,
. . a 273
as on page 4 and if we take into account that & — —2 — e
find
a 273
Tdp v, T
pdl T T RT

For lower temperatures we will put », = & and we deduce
approximately :

Tdp g ° 273
pdT — " b RT*
or?)

T 4 27 Tw\?

Tdh gy 2 (__{f .

p dT 8 \ 1

T 1 Td
For —=—-— we find then for — P o value which is not twice

T & 2 4 ar
as great as that which follows from a constant value of @, but a
value which is four times as great.

The equation :
’:pv - pdvj| = [pv = pdv:I )
1 2
yields for this value of a:
p 27 [T \? T%
—lyg—=2 X === —1 27 — 1.

T
17

In order to agree with f( —1) the positive term of the right-

0

1
hand member of this equation should have the form 2 X 3 T{“; and

the negative term should not be log 2 X 27, but log 277,

1) Continuitat, p. 171.
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The imperfect agreement between the real course of the vapour
tension and that derived from the equation of state with a and b con-
stant, has induced us to assume that ¢ is a function of the tem-
perature. It appears however that this agreement is not satisfactorily
established by the modification proposed by Crauvstus. It will there-
fore be of no use to proceed further in this way -— specially be-
cause this modification in itself is certainly insufficient to account for
the fact that liquid volumes occur which are even smaller than 6.

If we had not supposed a to increase so quickly with decreasing

T

Ty I— .
temperature as agrees with a — 7 if we had chosen ae * for in-

stance, then the greater part of the ahove difficulties would have

vanished.
We should then have found:

Zﬁlg_1—- ae™ ’=
pdl Tk RTw,
1..._

r
The expression (1-[— ) T is equal to 2 at T'= T and at

T=10 it would have increased to ¢=2,728 etc.; so the increase is
relatively small. But the term which should be found equal to
log 27%, would also have remained far below tle required value. For
this reason it seems desirable to me to inquire, in how far the
variability of & alone can account for the course of the vapour
tension.

As I dared not expect that the variability of & could explain the
course of the vapour temsion as it is found experimentally, and in any
case not being able to calculate this variability, I have often looked
for other causes, which might inerease the value of the factor f from

27 . I .
5 to about twice that value. The quantity — representing the amount
v

with which the energy of the substance in rare gaseous condition
surpasses that of the same substance in liquid condition, and this

I

to be only half of what
P _
pdT 0 be only half of wh

it should be, I have thought that the transformation of liquid into
vapour ought perhaps to be regarded as to consist of two transforma-
tions. These two transformations would be: that of liguid into
vapour and that of complex molecules into simple gasmolecules.
If this really happened then the liquid state would essentially differ
from the gaseous state even for substances which we consider to be

quantity seeming — from the value of

-10 -
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normal. We should then have reason to speak of “molécules liquidogeénes”
and “molécules gazogenes”. It would then, however, be required that
the following equalities happened to be satisfied. In the first place
the two transformations would require the same amount of energy;
and in the second place the number of “molécules liquidogénes™ in the
liquid state ) at every temperature would have to be proportional with

the value of M The following equation would then hold :
a a
2 (—2)E -
Tdp _ny, + (o) _ (v,—,)e
pdl o p(v,—,) - 0P p(”z"‘”l).

Not succeeding in deducing this course of the amount of the
liquidogéne molecules from the thermodynamic rules and in accoun-
ting for the above mentioned accidental equalities I have relinquished
this idea, the more so as this supposition is unable to explain the
fact that the liquid volume can decrease below b.

If we ask what kind of modification is required in the equation
of state with constant a and & in order to obtain 3 smaller vapour
tension, we may answer that question as follows. Every modification
which lowers the pression with an amount which is larger according
as the volume is smaller, satisfies the requirement mentioned. In
the following figure the traced curve represents the isothermal for
constant @ and &; the straight line 4B, which has been constructed
according to the well known rule indicates the coexisting phases,
and the points C' and .D represent the phases with minimum pressure
and maximum pressure. The dotted curve has been constructed in
such a way that for very large volumes it coincides sensibly with
the traced curve, but for smaller volumes it lies lower, and the
distance is the greater according as the volume is smaller. Then
the point D' has shifted towards the right and the point C' towards
the left. For in the point exactly below .D as well as in the point

d
exactly below (' the value of d_}z; for the dotted curve is positive;

these points lie therefore on the unstable part of the modified iso-
thermal and the limits of the unstable region are farther apart.
But it i3 also evident — and this 15 of primary interest — that
if for the modified isothermal we trace again the straight line of
the coexisting phases according to the well know rule, this line
will lie lower than the line AB. The area of the figure above A8

1) Diminished with that number in the gaseous state.

-11 -
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P -

has decreased, that of the figure below 425 has increased in conse-
quence of the modification. The line A'S' must therefore be traced
noticeably lower in order to get again equal areas. B’ will of course
lie on the right of B, and we may also expect that 4’ will lie on
the left of A.

We have, however, put the question in too general terms; for
our purpose it should have been put as follows: what modification
in the quantities @ and & makes the vapour pressure at a temperature
which is an equal fraction of 7%, decrease below the amount which
we find for it, keeping a and & constant — and it would even be
still more accurate not to speak of the absolute value of the pres-

sure, but of the fraction ﬁ. The modifications in @ and & should

P
then. be such, — if we base our considerations on the preceding
figure - that in consequence of the modifications themselves the

values of 7% and p; either do not change at all or very slightly.
If we make @ a function of the temperature we have to compare
the following two equations:

. RT a
P=IT TR
and
RT ol
p= v—b  Tv
. . 8 a 1 a .
Both equations yield RT; = 7% and Pr=gz 5 Le the same

values for 7% and p; if @ and & have the same values in both

-12 -
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equations. The value of p — the values of 7 and v being the
same for both curves — for the modified isothermal is smaller than
that for the isothcrmal with constant ¢ and §, and the difference is
greater according as the volume is smaller. According o the figure

leal

discussed £ — the value of T being the same for both curves —
Pk k
will therefore have a smaller valne for the modified isothermal than
for the wnmodified one. A value of o increasing wilth decreasing
value of v would have the same effect. But I-have not discussed a
modification of this kind, at least not elaborately, because I had con-
cluded already before (see “Livre Jub. dédié & Loruntz” p. 407) that
the valuc of the coefficient of compressibility in liquid state can only
. - iJ a
be explained by assuming a molecular pressure of the form —. The
v
supposition of complex molecules in the liquid state would involve

m

a modification of the kinetic pressure to gw1), where @ (v, T')

v—Db
must increase with decreasing value of ». Also thissupposition would lead

mn

to a smaller value of 2 for the same value of 7 This is namely
Pk - k -

certainly true, if the greater complexity has disappeared in the critical
state, and if thevefore the values of 7} and p; are unmodified; pro-
bably it will also be the case if still some complex molecules occur
even in the critical state. But whether this is so or not can only be
settled by a direct closer investigation, and for this case the property
of the drawn figure alone is not decisive. I have, however, alveady
shown above, that we cannot regard this circumstance as the
probable cause of the considerable difference between the real value
of the vapour pressure and that calculated from the equation
of state with constant @ and 0. So we have no choice but {o
return to my original point of view of 30 years ago and to suppose
b to be variable, so that the value of & decreases with decreasing
volume. It is clear that a variability of this kind causes the kinetic

m

pressure — to be smaller than we should find il with constant b,
v—

and the more so according as b is smaller. Moreover it is possible
in this way to account for the fact, that liquid volumes occur smal-
ler than the value which 6 has for very large volumes and which
I shall henceforth denote by 0,. Or I may more accurately say that
I do not return to that point of view, for properly speaking I have
never left it. As the law of the variabilily was not known, I could

-13 -
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nol develop the consequences of this decreasing value of b — but
it appears already in my paper on “The equation of stdate and the
theory of eyclic motions” and in the paper in the “Livre Jub. dédié
a Loruxtz” quoted above that I still regarded the question from the
same point of view.

My first supposition concerning the cause of the decrease of &
with the volume was not that the smaller value of & corresponded
io smaller volume of the molecules. b, being equal to four times
the molecular volume, I supposed smaller values of & to be lower
multiples of this volume. In this way of considering the question
the decrease of & does not indicate a real decrease of the volume
of the molecules. We will therefore call it a quasi-decrease.

It can scarcely be doubted that such a quasi-decrease of the
volume of the molecules exists. In his “Vorlesungen” Borrzmany
started from the fundamental supposition that the state of equilibrium
ie. the state of maximum-entropy is at the same time the “most
probable stale”; in doing which he was obliged to take into account
the chance that two distance spheres partially coincide. And comparing
the expression which he found in this way for the maximum-entropy

dv
with the expression I f — (i. e. the entropy in the state of equi-

hbrium according to the equation of state) it was possible for him
to determine the values of some of the coefficients of the expression:

=)o)
- v v

This method is indirect. I myself had {ried to find these coeffi-
cients by investigating directly the influence of the coincidence of
the distance spheres on the value of the pressure. According to
these two different methods different values for the coefficients were
found. My son has afterwards pointed out (see these Proceedings
1902) that also according to the direct method a value of & equal
to that calculated by Borrzmann is found, if we form another
conception of the influence on>the pressure than I had formed and
since then I am inclined to adopt the cocfficients calculated according to
the method of BorrzmaNy as accurate.

But these values apply only to spherical molecules and only in
the case of monalomic gases we may suppose molecules with such
o shape. It is not impossible that for complex molecules these coef-
ficients will be found to be much smaller. Moreover for the determina-

. dv . . L
tion of f —— knowledge of all the coefficients is required — and

-14 -
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we cannot expect that the calculations required for this purpose will
soon be performed. Even the determination of 8 required an enormous
amount of work — compare the calculations of vaN Laar.

For complex molecules another reason is possible for decrease of
b with decreasing volume. The molecules might really become
smaller under high kinetic pressure i.e. in the case of high density.
If the atoms move within the molecule — and we can hardly doubt
that they do so — they require free space. And it is highly probable,
we may even say it is certain, that this space will diminish when
the pressure which they exercise on one another, is increased. The
mechanism of the molecules however being totally unknown it is
impossible to decide apriori whether this decrease of the volume
of the molecules will have a noticeable effect on the course of
the isothermal. In my application of the theory of cyclic motions
on the equation of state I have tried to give the formula which
would represent such a real decrease of the volume of the molecules
with diminishing volume. van Laar has tested this formula to AMAGAT’S
observations on hydrogen, — and though new difficulties have
arisen, the agreement is such that we may use the given formula
at any rate as an approximated formula for the dependency of b
on ». I will apply the formula, which may have a different form
in different cases, in the following form:

2
b8y _ (b—b“) Y £
v—b bg—b,

The symbols b, and &, in this formula denote the limiting values
for b, the first for infinitely large volume, the second for the
smallest volume in which the substance can be contained. For
more particulars I refer to my paper on “The equation of state and
the theory of cyclic motions.” Vax Laar concluded from his inves-
tigation that agreement is only to be obtained if b, decreases with 7,
a result which I mysclf had already obtained applying the formula
for carbonic acid (Arch. Néerl. Serie II, Tome 1V, pag. 267). If this
is really the case and if it appears to be also true after we have
modified the formula in some way or other compatible with the
manner in which it is derived, then the following difference exists
between the course of & with v when ascribed to a quasi-diminishing
and when ascribed to a real diminishing of the volume of the
molecules: in the first case & is independent of 7', in the second

v

d,
case however it does depend on 7. The fact that (_d%)) is not per-

fectly constant seems to plead for the latter supposition.

-15-



( 137 )

For the present, however, I leave these questions and difficulties
out of consideration, and I confine myself to showing that a for-
mula of the form (4) can really make the considerable differences
disappear which we have met with till now. The more so as this
formula appears to be adapted for the derivation of general conse-
quences, which follow from the decrease ot & with v. I leave there-
fore a possible dependency of &, on 7 out of consideration. Moreover
in applying the formula I will suppose b, =2 ,. I choose one —
in some respect arbitrarily — from all the forms which I have found
to be possible (compare also my paper in the Arch. Néerl. “Livre
Jub. dédié & Bosscha). The numerous calculations required in order
to investigate in low far modifications are necessary and possible
in order to make the agreement with the experiments more perfect,
may perhaps be performed later.

A. The tension of the saturated vapour.

Let us begin with the calculation of the pressure of the saturated
vapour at low temperaturcs and let us to that purpose write the
equation expressing that the thermo-dynamic potential has the same
value in coexisting phases, in the following form:

i d (v-b @ T g
pU- £ _RT G —) -RT|— | = e e e e
| v v-b v-b |, .

of

db
pv— 2 _RT log (v-0) - Rﬂff—— =
i v v-b

1 3

In my paper “De kinetische beteekenis der thermodynamische
potentiaal” I have already pointed out the signification of the term

) ——

db
RYf——z; it represents namely the amount of work performed by
1

the kinetic pressure on the molecule when this passes in a reversible
way from the condition of the first phase into that of the second
phase and when its volume is therefore enlarged either fictitiously or
as we now take it to be, really. We may calculate this term if we
assume the chosen form for & and this is one of the reasons why
I adhere to the idea of a real increase of the molecular volume.
But though its value may depend upon the particular form which
we have assumed for 0, it will certainly have a positive value for
every law of variability of 6 with v which we may choose.

db b—b
Let us for the calculation of | — denote ~ by =z, then we
v—b by—0,

-16 -
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have db=(b,—b,)dz and according to the form~ of formula (4)
chosen for b: ~ . ~
by—b, 1-2°

e 1
v—2b 2

. . . db ) 1—2z? 1
in consequence of which 7 passes into f = log 2 — §z2'

—t

Substituting into the expression for the thermodynamic potential
we get: -

b— 1 —b, \*
pv————RTlog(v——b)-—RTlgb bb ERT(: b[:)
(/M

If we suppose the temperature to be low, the second phase is a
rare gas phase and we have:

b—b,
= RT, log (v —b) = .
Ppv T,log (v—b) = log BT — =1
In consequence of this we get:

a b-b, 1 1
pvl-—;:—RTlog (x-b,)~RTlog* -—RT( - Rf_/;+ RTZOgI% - BT
or

b,-b, .-, p(v b,)
_2 _RT-RTI RT~——_RTZ 11
A ”@ 3 ot P RT
or
~b,
pb-_+RT” PO ppgiibey L Rr —RThy;ﬁ—
by b, —'b v,~0,
P+F
1

As yet we have not applied any approximation for the liquid
condition.
If in the first member we collect the terms containing p, we may
write them as follows:
v,*—2b,v
_p 1 b 1 1'

1

The value of », in the liquid condition being only slightly larger
than 2b,, the value of this expression remains below pb, and it may
certainly be neglected- if in the second member we neglect also

p compared with —, then we may write the equation for the caleu-
1
lation of the vapour pressure at low temperatures as follows:

a

—B, b—b,  b,—b,
ot )

LY —‘bl

Zog—g —
a

Rf b,

2
Yy
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Im ovder to draw attention to the principle circumstances, we
shall assume for the present that the following equations also hold
in the case that b is variable:

8 «a

RTy ==~ — —

FTaTy

and B
1l a
pr = 577 bg"
Equation (5) may then be written in this form :
loq__.p__:_?z_jl’?_g E’l—-—bl‘-—-logbl—bn_l—%bl_ bn.
¢ _ {’i 2 8 T bl b1 b!]_bo vl_bl
V4 2,

A comparison of this equation with:
— logz-:f -j—v—]-c—-l),
Pk T
shows that it is possible to satisfy the condition that the coefficient of

] b . :

7{° approaches to 7 by equating Z)ﬁ to 2, i.e. by assuming that the
1

molecules in volumes equal to the volume of liquids at low tempe-

ratures are only half as large as those in the gaseous condition. But

T
the agreement in the value of the coefficient of —f does not suffice for

establishing agreement between the calculated value and that of
the formula which at low temperatures is followed by the vapour
tension, though it be only in large features. For this purpose it is
required that
by\? by—B, b,—b,  v,—b
[l".‘] “ (?Z) b1—bo:| i v, —b, + b,

differs only slightly from 7.

We must return to the equation of state in order to be able to
determine the value of this expression, and we must investigate its
consequences for the case that »p may be neglected compared with

a -
~. So we must return to:
v

a 8 a T
2 (o—b) = RT = — = =
o () 97 by Th

If we express b, and », in the quantity z, we get:
by, = b, + 2 (0,—b,)

1—

7

and
zﬂ
(b!] _"bo)

v,—b, =
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t

or
. 1—z*
v, = b, - z ~+ "z— (bg_'bo)

Substituting these values and putting b, =n b, we get the equation :

s v "0Ui
27 T 2 2
14 (z+ l_z,)(n—l)z
1 T
If we put n==2, then we get F= for T —=0,8
1 T
2 :"5"' 1 ’i-," =0,7
1 T
-4 :‘_."F I —_,Z—_';.._.O 65
1 T
z = " -j‘—k:0,615.

For very small values of z we may neglect 2* compared to unity
and we may calculate the value of z from the approxumated equation:
8 T 2
271y (1422

1
which equation yields the value of z— ry for =g For such
%
b,—b —b 1422
small values of 2 we have * ——2=1, ST f and El—:—i%—.
v,—b, b, 142 b, 14z

We will assume that for all temperatures below 0,6 7% the vapour
phase may be considered to have a sufficient degree of rarvefaction
for following the gaslaws; therefore we may assume z to have a

1 1 b, \3
value below E If we choose z = 5 then we find for (——3-) the
v

by \? 1 4x16
) —4 ) —_ 3. ; ;
value 4 ( 1’1) (1 22) or T 2,56, With this value

we bave:
by \* bg— —b,  v,—b 1
log27 [ 1) 0 — L —log 2 - :
09 (’01) - + 5 vi—b R 7. 0g 27 < 20,5 - 5 + 0,11
It is true that this value is smaller than log 272, but it approaches
sufficiently to that value. The fact that it is smaller than log 27% is in
perfect agreement with the circumstance that for the quantity f in

v el

p
the formula — lpg ~ =f ———
u ogq ” f

T according 1o the experiments at low
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temperatures a higher value must be chosen in order to establish
agreement. For a higher value of f yields the same result as a not
T
"’175

It might appear that the dependency of p on 7'is strongly increased
by the difference between the values of z for different temperatures.
The following relation however always holds good if & is indepen-
dent of 7':

higher value of f in f—:, from which a smaller quantity is subtracted.

a
Tdp v,

pdTl RT
and therefore (see p. 127)

[71

Tdp b, v,—b,

pdl BT b,
or

Tdp 2TTyb, v,—b

pdT 8 Tb, b,
In the supposition made here, this 15 equal to

Tdp 27Ty = z

1

which expression does not vary much with 2, if z remamns small.

Td
Yet we find the value of — P

r

at low temperatures for most sub-

stances to be somewhat higher than is indicated by this formula.
We should in fact have found a lugher value if we had assumed
by >2b,. 1If therefore we had only to deal with the formula for the
vapour tension, then 1t would be rational to mvestigate the conse-

1 1
quences of the suppositions: 17 =2 T o= 2 5 Other experi-

mental quantizes however follow less perfectly the formula chosen
for b, 1f we give n these values Therefore I will confine myself
to the investigation of the consequences of the equation chosen for
b with n=2.

I think the following theoretical observation to be of some impor-
tance, even if we disregard the question whether we have established
a perfect, numerically accurate agrcement with the experiments, by
assuming the quantity 6 only to be variable, and even this vana-
bility to be independent of 7. The pressures 1 two coexisting phases
which lie at a great distance from the critical conditions satisfy, if

\
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we suppose the volume of the molecules {0 be invariable, the follo-
wing approximated equation_ -
a

p_ b
“u =T RT )
In this formula M denotes the pressure of the liquid phase i. e.

[

7 the heat required for the transfor-

the molecular pressure, and

mation.
The following approximated equation holds for molecules of

variable volume:
(/1

P b, -
log ——— —= — —
%9 % RT’

a . J J . 3
where again T denotes the heat required for the transformation, which
1
is greater if the molecules in the liquid phase are smaller, as well in the

case that this diminishing of the volume is real, as in the case that 1t
is only fictitions. Again the molecular pressure is also higher. But
the molecular pressure is now provided with the facior. K, If
it is a real diminishing then the signification of this factor can be
sharply defined. The factor is in this case at least approximately

its signification can be derived from the following

1 q o,
equal to b.—b,
equations, (comp. my paper: “The equation of state and the Theory
of cyclic Motions™):

0P, -
3]![—}— (—BT)b=bl g (0,—b,) = R1

/

(aPD b,—b )= RT
0b b=0, (by—bs) =

0P,
i _°
bg—b, At ( 0b )b=bl

b,—b, (B p,
00 Jp—

So we find for it:

2 W
The quantity (’a?) in this equation represents the alomic forces,

which keep the molecule inlact or at least contribute {o the canses
which keep the molecule intact. Making use of this value of X we
find :
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0P, . a
P (Fb_)b:bq b1
A7 =T RT

+ ( db )b=b1
The first member of this equation contains the logarithm of the
product of two ratios, namely the ratio of the inwardly directed forces
which keep the molecules — considered as separate systems —
inside the vapour and the liquid phase, and the ratio of the inwardly
directed forces which keep these systems in both phases intact. In
the case that it is a quasi-decrease it is impossible to indicate the

db
signification of & in such a precise manner; but the quantity -

differing also in this case from zerb, the above considerations show
with certainty that the quantity K exists also in this case. The
question whether it will be Jarger or smaller can only be decided
by a comparison of the course of b with v in the supposition of a
quasi decrease with that in the supposition of a real diminishing,

(6)

—bo

b .
The term 5 o has becn neglected in equation (6). This equa-~
'U——

tion applies only for low temperatures, and for those temperatures
. . 1 : .
the term in question s equal to 5 according to the formula given

for b. It is remarkable that also many other suppositions concerning the
nature of the forces which keep the molecules intact, different from
those suppositions which have led to the form chosen for 6, yield
the same equation (6), every time however only after neglection of
a vrelatively small quantity in whose kinetic interpretation I have
not yet succeeded. We obtain equation (6) when we assume, 15t that
the molecule may be regarded to be a binary system consisting of
two atoms or of two closely connected groups of atoms, which e shall
call radicals, 204 that these parts move relatively to each other, and
3'd that the amplitudes of these motions are of the same order
as the dimensions of the atoms. If the paris are radicals, other
motions take place inside those radicals, but the amplitudes of these
motions are so small that they have no noticeable effect on the
volume of the radicals. We have vepresented the forces which the
aloms or radicals exercise on one another by e« (h—0b,), so in the
gaseous state by a (by—D,). So, as we lave dertved the equation:
@ (by—b,) = RT

and as b,—D, 15 constant, « must be proporlional with the temperature,
— and I must acknowledge that it is dufficult to image a mechanism

- 10
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for the molecule in which the forces between the two parts of which
it is thought to comsist, satisfy the conditions, that they are propor-
tional with the distance, and at the same time increase proportionally
with 7. Perhaps we get a more comprehensive conception of a molecule,
if we ascribe the forces which keep the atoms together in the molecule
not to a mutual attraction of the atoms, but to the action of the
general medium by which the atoms are surrounded. The molecules of
a gas arve free to move inside the space in which they are included
and they are kept inside that space only by the action of the walls;
in the same way it might be that the atoms of a molecule were
free to move inside a certain space — the volume of the molecule —
and that they are only prevented from separating by an enclosure
of ether. Still assuming that 0,—b, has for all temperatures the
same value, we should be again obliged to conclude that the forces
which keep the molecule intact are proportional with the temperature,
but this conclusion would now bee much less incomprehensible.
According to these suppositions it is also rational to assume that the
force required to split up the molecule into two atoms is the same
for all temperatures. So we should obtain the formula-

b=by _ =Dy
v—b T By—b,
With this equation we have:
a1 1 by—b, b—b
= {db _ = log 22 e 0,
f —b o, b,—bﬂg b, o—b

b b

by—1b
The term which must be subtracted from Jog bi—b—ﬁ has now twice

0

the value it had before, but the chief term has remained unchanged.
In my further investigation, however, I will continue with the dis-
cussion of equation (4), because my chief aim is only to investigate
the principle consequences of the nearly certainly existing diminution
of &, independent of the question whether this dimmnution is real or
only fictitious; and in doing so I will confine myself to a cerlain
coneeption of the molecule — that wiieh leads to equation (4) —
as an instance.

B. The coefficient of dilatation and the coefficient of compres-
sibility of liquids.

Let us again assume ihe temperature to be so low that p may be

a
neglected compared with — and that we therefore have:
v
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2 (v—b) = RI
v

1 /d .
The value for — (ﬁ) which we may calculate from this equa-
v
P

tion applies only to the pvessure p =0, and is therefore not the
same as would be found for another constant pressure; neither
is it that which corresponds to the points of the border curve.
For very low temperatures the difference will probably be small.
For higher temperatures the differences might be considerable; and
for the temperature which is so high that the isothermal in its lowest

aT
be absurd to suppose the two values to be mutually equal.

1 (dv
point touches the v-axis, in which case — (— =0, it would even

1 /dv
An accurate calculation of the value of _.(_.__) yields accor-
v ar p=0

ding to the relations chosen above:

(n—1)z{1+4

g(%)”""’: 1—-(n——1)[¢

et 1_zﬂ] —40-1) s

We will put » =1 and the following approximated relation:

T (dv . 2z
v \dT' on——l---Zz1

(sec p. 140) ‘this yields 0,4 for the value of Te, or

Pl
1—22 + (1—=2%)* E

1

With z2 = —
7

0
o = (f01 ether) = 0,00146. OQur assumptlons therefore appear to

lead 10 a value for the coefficient of dﬂatatlon which does not deviate
much from the experimental value.
T
11— —

If we had taken the form ne Tk for @, then the corresponding
! - \

1
value of z would have been T8E and we should have had:

T/d r 2
) =1+ 7 ) =
o \dT), T ) 1—22

which is only about °, of the frue value. From this we conclude

that the assumption that owr relalions ave satisfied and that at the
-7

same lime a has the form ae %i leads lo inaccurale results.

- 10*
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. : d 1
We might also write a value for (— %!—)) or rE but we will
v

culate the coefficient only indirectly from:

T( dv dp\ a .
v\d1l), 'UE T -

b 2
0,418 X 6000 = 27 py, (_”)

v
or with approximation:

Z

1,6 = ——
1422’

which agrees with z = R

The value of 8 calculated according to our relations may there-
fore be considered to be at any rate approximately accurate.

Yet it remains strange that for the liquid volume itself a caleulation
according to our suppositions yields a value which is much too small.

According to a table in Cont. I 20d p. 172 the liquid volume for

1 .
temperatures which do not differ much from 0 T is equal to 0,8 b,.

Even if we take into account that &y < b, we cannot diminish the
factor 0,8 to less than 0,7.
We have then the equation
0,70y =10, (1 4+ 22)
or 0,77 =1 -+ 22

1
With 7 = 2, this yields z = T which does not agree with the

1 .
value - which we must assume for z, as we saw above. I have

not yet been able to investigate, what modification must be made
in the relation assumed for ; e.g. to put n =1,8 or to suppose ),
really to be smaller at low temperatures. If we suppose b, o be
a function of the temperature, then the calculations become very
intricate and difficulties of another kind arise. Therefore I prefer 1o
regard the above considerations as conducing to point out that
everything shows that 0 must really increase with .

Let us investigate what consequences of general nature follow from
this variability of 0. In the first place we observe that the three
real values of v for given lemperature and given pressure cannot
be calculated any more by means of an equation of the third degree.
The equation of state namely may assume a very intricate form if
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we " substitute in it the expression for & which we get by solving
the equation which expresses the variability of 6 with v and 7' —
the possibility of a dependency of & on 7' being admitted. We shall
represent the solution of this eguation by

b=¢( T).

But the general course has remained the same; e.g. the fact that
for temperatures Dbelow the critical temperature a maximum and a
minimum pressure occurs. The critical temperature is that for which
this maximum and this minimum pressure coincide and the critical
point may again be calculated from the three equations:

p:F(v, T),

d
(—p):() '
dv /7

2
and (@ =0
dv?)

If therefore we could exclude all disturbing influences, if we
could neglect phenomena of capillarity and adsorption, if we cbuld
neutralize gravity, if we could keep the temperature absolutely
constant throughout the space occupied by the substance, if we
could perform the experimeuts with perfectly pure substances without
the slightest trace of admixtures and if we could suppose that the equi-
librium is established instantaneously, then we should have coexistence
of {wo homogeneous phases of well defined properties for all tempera-
tures below the critical one, and exactly at the critical temperature
only one homogeneous phase of well defined properties would exist.

But the requirements enumerated here can never be fulfilled.
Already below the critical temperature deviations occur. The straight
line representing the evaporation parallel with the v-axis has probably
never been realised as yet in connection with the circumnstance
that nobody has as yet experimented with a perfectly pure substance.
The boiling point always varies when the distillation is continued,
chiefly if we observe near the critical temperature. If in a closed
vessel we heat-a substance which is separated into a liquid and a
vapour phase, then the properties of the liquid- phase may be varied
by shaking the vessel (Evirsmemr. Phys. Zeitschr. 15th June 1903),
probably in conmection with the circumstance that the liquid expanding
during the heating is internally cooled in consequence of the expansion
and the evaporation and reaches the surrounding temperature only
very slowly by conduction; and also in connection with the always
occurring impurities. If furiher the subslance is subjected to gravity,
then neither vapour phase nor liquid phase is homogeneous. To
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every horizontal layer corresponds another density according to the
formula of hydrostatics: -
dp == — ogdh.

For temperatures far below the eritical one this circumstance is
of little importance; for the crilical temperature itself, however, the
influence of gravity is considerable. If we write namely the formula
of hydrostatics in the following form: |

ldp dh -
ede g

d dh "
then we see that 3}5: 0 01':{; = o at that point of the height of the

. . 9
vessel where the critical phase really occurs, i. e. where 7= 0.
(2

If therefore we consirnct a graphical representation of the successive
densities, laying out the height as abscissa and the densily as the
ordinate, then we get a continually descending curve. In the beginning
its concave side is turned downwards; at a certain point the {angent
is vertical and the curve has a point of inflexien; farther the convex
side is turned downwards. In the neighbourhood of the critical
phase we find therefore a rapid change in the density.

The equation of state can only account for the siate of equilibrium
described above as it deals only with states of equilibrium. Another
question is how that equilibrium is established and whether it is
established in a longer or shorter time according to the method of
investigation.

It has been observed several times in these latter years that the
state of equilibrium of a quantity of a substance which is contained
in a closed vessel slowly heated to the critical temperature, requires
so long a time before it has been reached that some investigators have
concluded that the liquid consists of other molecules than the vapour.
De Heex, Gavirzing, TravBe and others speak therefore of “molecules
liquidogénes” and “molecules gasogénes”. Some of them suppose the
“molécules liquidogénes” to be more complex, others suppose them
to be only smaller. This latter supposition agrees with the ideas
I have expressed in my “The equation of state and the theory of
cyclic motions.” And for an explanation of the fact that the equi-
librium is so slowly established, these investigators refer to the slow
diffusion of the heterogeneous molecules.

To this fact they refer however wrongly. The kinetic theory
accounts satisfactorily for the slowness of the diffusion and has even
enabled us to calculate the coefficient of diffusion for mixturcs of
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heterogeneous molecules which cannot pass inlo one another. Here
however we are dealing with molecules which can pass into each
other. And if in such a case the establishing of the equilibrium
requires a long time, then we must aeccount for the fact that in this
case more-alomic molecules only slowly conform their size to the
varied circumstances, though in other cases they can bring their
internal motions so quickly into harmony with, for instance, a variation
of the temperature. -

I therefore think it not to be proved, that the increase of b being
either a real or a quasiy increase, requires a noticeable time to be
brought about, till the real consiancy of the temperature throughout
the closed vessel and the perfect purity of the substance has been
proved, which as yet is not the case.

It must be granted that the summit of the boundary curve is
broadened and flaltened by the variability of & and that the critical
isothermal may be estimated to have a larger part which is nearly
parallel with the v-axis. And this causes considerable differences
of density to follow from small differences of pressure. But if no
causes even for small differences of pressure can be pointed out,
then the occurrence of differences of density larger than those that
follow from the action of gravity cannoteven be called phenomena of
retardation, these latter being also a kind of phenomena of equilibrium.

Another observation of general nature before I conclude at least
for the present these considerations on the influence of the variability
of 5. This variability accounts for the possibility of deviations
from the law of corresponding states. If the way in which & varies
with the volume is different for different substances i.a. in couse-
quence of a different ratio of 0, and b,, then the general course
remains the same, but the isothermals become different in details. I
have even begun to doubt whether the behaviour of substances
containing the vadical OH in the molecule — acids, alcohols, water
ete., which in gaseous state present no association to double molecules
and which are ofien indicated by the name of abnormal substances
— which behaviour deviates so markedly from that of other sub-
stances, must really be ascribed to association of the molecules in
the liquid state.

In connection with equation (6) (see p. 143) the question arises : Is the

07
quantity which I have denoted by _ab_b for these substances perhaps

small? Is the easy subsiitution of onc of the components perhaps an
indication of a feeble connection of the parts of the compound which
involves a sirong variability of the size of the molecule. The so called
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abnormal substances wonld then be those whose molceules can nndergo
large variations in size. More suchlike questions arise — but I will
no further discuss them without a closer investigation.

POSTSCRIPTUM. -

When the above paper was printed T received a kind letter from
Dr. Gustav Twricuner, who informs me that he has_sent me one of
his tubes filled with CCl, in which he has succeeded in sirikingly
showing he large differences in densily al the crifical {emperature
by means of floating glass sphercs whose specific gravity has been
determined accurately. He himself however acknowledges emphatically :
“dass diese Frscheinungen insofern keine Gleichgewichiszustande vor-
stellen, als die Phasen in Beruhrung mit einander sich ausserst lang-
sam (beim Ruhren sofort) zu einer homogenen Miscliung vereinigen.”

The equation of state deals only with stales of equilibrinm as I
have observed already before. Discussing these anomalies as I have
done in this paper, I treated questions which properly speaking lie
outside my subject. I have mentioned them, because I also expected
for a moment that the variability of J assumed by me, might account
for the slowly establishing of the state of equilibrium. Bui this is
only the case if we assume, that the molccule does not immediately
assume the size which agrees with the value of 7" and v — and this
seems after all to be improbable to me, though I acknowledge that
molecular transformations occur which proceed slowly. The expectation
of Dr. TEicHNER, that the theory would lead to two really homo-
geneous phases is inaccurate in consequence of the action of gravity —
as has been shown already before i. a. by Gouy. Not the phenomenon
itself as it is seen, is anomalous, only the differences of the density
are anomalously large. It is true that Dr. TricHNER writes to me
that he has ascertained that the temperature was constantbuteven a
difference of temperaturc of %6 degree yields a very comsiderable
difference in densily. Ifor densities which are lavger than the critical
one we have:

Tdp ¢
X

5 %, being comparable to wunity. If therefore in a point the iempe-

1
rature is 60 degree too low, a diminishing of the pressure with
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1
an amount of about 106 atmosphere will keep such a phase in equi-

librinm, at least as far as the pressure is concerned. And a cause
. . 1
which accounts for a difference of pressure of about 100 atmosphere
accounts also for considerable differences in density as the critical
isothermal runs nearly horizontally in the neighbourhood of the
critical point. ,
A return to the time when we thought to explain a thing by
speaking of solubility and insolubility, seems not to be desirable to me.

Chemistry. — “On the possible jforms of the meltingpoint-curve
Jor binary miztures of isomorphous substances.” By IJ. J.
vAN Laar. (Communicated by Prof. H. W. Baxnuis RoozeBoon).

T. The occurrence of so called “eutectic points” in meltingpoint-
curves does nol seem to agree with the supposition of perfect isomorphy
of the two solid components and of their mixtures. This fact has
heen rvepeatedly pointed out. It has becn assumed that an inter-
ruption in the curve representing the solid mixtures (as in fig. 1 of
the plate) can only occur for Zsodimorphous substances, and that the
series of mixtures in the case of isomorphous substances was necessarily
to be uninterrupted (as in fig. 2).

Lately STORTENBEKER ') expressed again the same idea and this induced
me to subject the question io a closer investigation. In the following
paper I hope to show that an interruption in the series of the
mixiures can very well occur even for perfectly ssomorphous sub-
stances. In order to do this we must keep in view that — especially
in the solid condition — wunstable phases may occur, and that in all
occurring cases it is possible to trace the meltingpoint-curve conii-
nuously through the eutectic point. Only the slable conditions which
generally lie above the eulectic point are liable to be realized, so the
series of the mixtures is interrupted only practically.

Prof. Baxmuis Roozepoom has expressed the idea of prolonging
the meltingpoint-curve beyond the eutectic point already before;
the way however in which we must think this to be performed is
wdicated inaccurately in the figure of an earlier paper of STORTENBEKER?).

1) Ueber Liicken in der Mischungsreihe bei isomorphen Substanzen, Zeitschrift
fur Ph. Ch. 48, 629 (1903).

) Ueber die Ledslichkeit von hydratierten Mischkrystallen, Z. f. Ph. Ch. 17,
645 (1895).
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