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1
an amount of about 106 atmosphere will keep such a phase in equi-

librinm, at least as far as the pressure is concerned. And a cause
. . 1
which accounts for a difference of pressure of about 100 atmosphere
accounts also for considerable differences in density as the critical
isothermal runs nearly horizontally in the neighbourhood of the
critical point. ,
A return to the time when we thought to explain a thing by
speaking of solubility and insolubility, seems not to be desirable to me.

Chemistry. — “On the possible jforms of the meltingpoint-curve
Jor binary miztures of isomorphous substances.” By IJ. J.
vAN Laar. (Communicated by Prof. H. W. Baxnuis RoozeBoon).

T. The occurrence of so called “eutectic points” in meltingpoint-
curves does nol seem to agree with the supposition of perfect isomorphy
of the two solid components and of their mixtures. This fact has
heen rvepeatedly pointed out. It has becn assumed that an inter-
ruption in the curve representing the solid mixtures (as in fig. 1 of
the plate) can only occur for Zsodimorphous substances, and that the
series of mixtures in the case of isomorphous substances was necessarily
to be uninterrupted (as in fig. 2).

Lately STORTENBEKER ') expressed again the same idea and this induced
me to subject the question io a closer investigation. In the following
paper I hope to show that an interruption in the series of the
mixiures can very well occur even for perfectly ssomorphous sub-
stances. In order to do this we must keep in view that — especially
in the solid condition — wunstable phases may occur, and that in all
occurring cases it is possible to trace the meltingpoint-curve conii-
nuously through the eutectic point. Only the slable conditions which
generally lie above the eulectic point are liable to be realized, so the
series of the mixtures is interrupted only practically.

Prof. Baxmuis Roozepoom has expressed the idea of prolonging
the meltingpoint-curve beyond the eutectic point already before;
the way however in which we must think this to be performed is
wdicated inaccurately in the figure of an earlier paper of STORTENBEKER?).

1) Ueber Liicken in der Mischungsreihe bei isomorphen Substanzen, Zeitschrift
fur Ph. Ch. 48, 629 (1903).

) Ueber die Ledslichkeit von hydratierten Mischkrystallen, Z. f. Ph. Ch. 17,
645 (1895).
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The following consideraiions are an abbreviated survey of a more
) S
elaborate paper which will be published elsewhere ?).

II. I have shown in a previous communication?), that we may
express the moleculnr thermodynamic potentials of the two compo-
nents of a liquid mixture — if we assume the equation of state of
VAN DER Waals — as follows

Al 1 (74l a
o=t —c¢ U —(k +ByTlog T+ ——— (1+ me —]—RTlog(1~ )
o L a(l—ay '
y,:eﬁ—czf—(lcz—t—R)Tlog'f—]—(;—_-l_;mT—{—RTlogtv

The different quantities nceurring in these equations have the well
known signification, indicated in the paper quoted above.
In order to simplify the ealculation we shall always assume in

b0,
the following, that » (._———+ ): 0, and therefore that the equa-

b b,*
a, 0.’ 201121) b, 4 a, 0. This assumption comes to the same as
the supposition that the molecular volumes of the two components
differ only slightly, which supposition may be considered to be
a,z a,(1—a)
—— and —
(14-rz)* (1+ra2)?
influence of the two components in the mxture only approzimately.
In the second place I shall assume that the above expressions also
apply to the solid state, an assumption which we may expect to be
satisfied in first approximation, as the case we are dealing with,
namely that of mized crystals or solid solutions*®), shows in many
respects the greatest analogy with liquid solutions.
If we also suppose # in the solid phase to differ little from zero, and if
we indicate all quantities in thal phase with accents, then we may write:
For the liquid phase:
py=e — ¢ I — (ky, + R) Tlog T 4 a a® 4+ RT log (1—a)
p,=¢, — ¢, I'— (b, + R) Tlog T+ ¢« (1—2)" + RT log
For the solid pha,se .. (1)
o,=¢, — — (&, + R) Tlog T+ o' 2" 4 RT'log (1—2')
w,=¢,—c, I'— (k- B) I'log T+ o' (1— 2')* + RTloga'

) In the Archives Teyler.

2) These proceedings April 24, 1903.

8) Mixed crystal will always be treated herc as solid solufions, though in these
latter years duficulties have sometimes arisen against this view. See i.a. STORTEN-

BEKER, Lc., p. 633, -

A
tions a, = =i and ¢, = —— are identically satisfied, A representing

iustified, as the terms represent the mutual
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The components are in equilibrium in both phases if
w=w s =
s0 that we get (the terms with 7'/og 7' cancel each other):
e,—¢, T4 aa*+RT log (1—z) = ¢ ,—¢, T4-o 2"+ RT log (1—2')
y
by—e, I'+a(l—a)+ BT loge = ¢',—¢', T+a' (1—2')* +RT log &'
or with
e,—e\=q, , 82_3'22(]2 r, 6,—¢. =1, > az_c'a:')’a:
!

z .
RT log 7 =¢—y I+ (e a’—a )

!

BT log

= g, Tl —af —d(1—)"]
&y

If we pay attention to the circumstance that for =0, #’=0 the
quantity 7' must be equal to 7), and in the same way 7'=17, for
a=1, =1 (7, and 7, arve the meltingtemperatures of the pure
components), then we may write-

_& &
71 - 1;1 1 Yﬁ— .IZT? ¢

o

We have thercfore

7 (?i + Rlog
'll

!

) = gt (@a'—d o)

1"-‘:1:
k3

_’l’ (-ZQTQ- + R log & ) —— 92+[a(1—=’u)2——(l'(1-——w')2]
&
or with :
a:qlﬁ ’ a’:qlﬁ’;
B ,
1 - 1—‘7, 2_ 1—.’?}! 2
g gy T PR
j—Tl ,_TQ ] ' ,_.(2)

BT, 1= "7, @

e 14+ ——log —

5 1—a 7 -

These arc the two fundamental equations from which we may cal-
culate the values of &' and 7' corresponding to each given value of
z, and which represent a course of the meltingpoint-curve which is
perfectly continuous, al least theoretically.

It is easy to see that in the case that no mixed crystals occur, a'
Is continvously equal to zero, and the equation is veduced to

2
T—T, 148

BT
. 1— 221 g (l—a)
g

1
an equation which I have already deduced in a previous paper.
But in the present paper we will assume that the mixing-proportion
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in which one of the components occurs in the solid phase; though in
the extreme case it can be exceedingly small (i. e. practically
equal to zero), yet in general can never be rigorously equal to zero.
In this way the confinuity remains preserved, and we may give all
possible values to the quantities 8 and 3' — as to 3’ from 0 to oo.

We shall observe here at once that the quantity which dominates
the whole phenomenon is the quantity ' of the solid phase. When
this quantity has a high value, the solid phase .will contain only a
very small trace of one of the two components, and only when the value
of this quantity becomes comparable with the corresponding quantity
g in the liquid phase, the case of fiz. 2 can occur. It is therefore
of the highest importance to know the exact signification of these
quantities # and ', or rather of the quantities ¢=g¢,fand &' = ¢, §'.

From the above deductions appears namely that the quantity ez’
does not represent anything else but the absorbed latent heat required
for the miming per Gr. Mol. for the case that an infinitely small
quantity of one of the components is mixed with the solution in
which the mixing-proportion for this component is 1 —z. In
the same way the quantily @ (1 —&)* represents the latent heat
for the other component in this solution. The quantity e itself is
therefore the latent heat for the first component for z —=1; i.e. for
the case that the first component is mixed with a solution which
consists exclusively of the second component — or we may
also say that e« is the latent heat for the second component for
2 =0; i.e. for the case that this component is mixed with a solu-
tion consisting exclusively of the first. The fact that these two
quantities of latent heat are the same is a consequence of our

A
supposition 6, = 4,, from which follows that «, = o is equal to
1

«, :b_j;—’ In reality these two quantities will not always be equal.

That the signification we have ascribed to the quantities ea* and
a(1—a)* is the true one, may be shown from the numerators of
equation (2), which being respectively multiplied with ¢, and ¢,,
represent the fotal latent heats of liquefaction w, and w,, namely
w, =¢, (1 + fo* — f'2"*) = ¢, + av® — o'a"

v, = q, (1 + g— 8 (1-a) - & (Lm’)“]) =g, + & (l-0) - d (1o’

The total latent heat required for the liquefaction is therefore equal
to the pure latent heat of liquefaction, augmented with the latent heat
vequired for the mixing of the liquid phase, diminished with that
required for the mixing of the solid phase.

- (8)
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A high value for a (or 8) means therefore a high value of the
latent heat of mixing, and when we shall presently see that a high value
of 8 leads to very small values of &’ or of 1—a’, this circumstance
may be interpreted as follows: )

If a large amount of energy is required in order to make one
of the solid components enter into the solid solution (or the mixed
crystal) then this solid solution will contain only a slight trace of
one of these two components.

III. We now proceed to the discussion of the fundamental equa-
tions (2).

. . .. daT d
Let us in the first place determine the quantities - and —-Z—‘, by
& v

i

totally differentiating the conditions of equilibrium — g', + g, = 0 and
— ' + p, /=0 according to T. After several transformations we get:

, aag ' aagl
a_ %% a0 \
dv (1—a'yw, 2w, ' dz' (1—z)w,+aw, @

These well known equations have been deduced several times?),
i.a. by Prof. vax per Waars for the analogous equilibrium of liquid
and gaseous phases.

ar oo g g
From (4) we may deduce the quantity (ZZZ) , 1. e. the initial direc-
0 .

tion of the meltingpoint-curve.

i} RT
As = — -+ 2 az, we have
oz l—z
025 1 o, RT
R I o Py 4
0z? z 0z a(l—a)

therefore, for 2 =0, T'= T,

we have: )

3%\ _ RT,
da?

if we write 2, “for 2=0. For =0 we havealso 2’ = 0. The

0 l’”D

arT
denominator of = appears therefore to be equal to (w,), = ¢,, hence
lv

RT
r ‘ (‘vu—w’o) —' 3 !
@q__T~_*ﬂ=_E£1_ﬂ)
dz /, ' B e Ty

) See i.a. my Lehrbuch der math. Chemie, p. 118 and 123—124. (Leipzig,
J. A, Banrra, 1901).
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from which follows {hat — ¢, being supposed to be positive —

aT - e @
the value of (Ez;) can only be positive if 20 should be greater than
4 0 ‘1'.0
!
unity. Let us therefore determine the limiling value of %o with

- 0

T=T, 2=0, 2’ =0 we may derive from the equations (2):
L+ 2@ 8
: RT, 2’ ~

14 —llog—~
9s & -

T=T

and we have:

1+ 26—
s

Pt B 1Y
z, R T, T,
Therefore the value of —° remains smaller {han unity, and the
wﬂ
meltingpoint-curve continues to descend, as long as we have:
g (1,
3—H<~Gm—0. N )
7: \T,
. . T,
In the following we will always assume 7, >7, or —— 1

T?
positive. The above condition will then the sooner be sutisfied, accor-
ding as @’ in the solid phase has a leigher positive value. Now
probably g will nearly always have a very small positive value and '
a rather large positive value. The condition will therefore probably
be nearly always satisfied. If we put 8 =20, then we get simply.

T
—“’:_916'<92(§;—'1)‘
2

If B’ (or «’) is positive, i.e. if heat is absorbed in mixing the solid

!

phase, then we shall always have i) <1 and therefore the melting-

o
point curve will always descend on the side of the highest temperature.
An initially ascending pari and in connection with this the occurrence
of a maximum-meltingtemperature is therefore almost fotally ex-
cluded. The possibility of a maximum exists only in the exceptional
and mearly inconceivadle case, that 8’ has a much smaller positive
value than $, or even a negative value.

arT
If we determine (E—) at the side of the lowest temperature quite
171'

=1
in the same way, then we find, denoting 1—wa by y.
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(dT) _ RT? ( 1 n’)
de Je=1 — g3 Yo ,

. &L_Q(LH@—M__EJ
7 R\ T T,)

2

where:

!

The quantity Y is therefore always smaller than unity if
¥

“ T
B—BF<Z—1 . . ... .. (3

The second member being negative, this condition can only be
satisfied if B has a high positive value. Two cases may therefore
occeur, according to B’ being larger or smaller. In the first case the
initial part of the curve near 7, descends again and a minimum
will therefore occur (fig. 2). In the second case the curve ascends
near 7%,; it will therefore descend continuously from 7', to 7', without
presenting a minimum. ‘

For the case T, = T, the conditions (3) and (57) pass into

13 - {3’ < O,
and a mimgmum will always in this case occur if 8 > 8, and
probably this will always be the case.

The same considerations apply of course for (Cd%) .

- 0

In the above considerations we have tacitly assumed that arnoma-
lous components occur in neither of the phases; formation of complex
molecules or dissociation are therefore always excluded in the cases
which we consider. When one or both of the components of the
solid phase for instance consist totally or partially of double molecules,
then the oceurrence of a maxinum is not excluded at all.

We now proceed to the discussion of the equations (2) for different
values of B/, starting with very high values.

IV. In the following we shall always put # =0 (in the liquid

phase). This simplifies the calculations in a high degree and it does
not alter the résults qualitatively. The equations (2) then take the

following form :
i .
’ ¢t Tn 1—=p1—- J)
L,0—ga") (1-pra—

7= = ()
RT, . 1—a RT, &
Tk Y i 14+ 228
Vel l—a 1, &

Let us further assume the following values, in order io be able
to execute the calculations numerically :
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T, =1200 7, = 2400 Gr. cal.,-
7, = 500 i g, = 2000
Then we get (R =2):

, 1200 (1—f'4")  500(1—128 (1—4)") - :
T= ( ,)= ( (, N (L]

— 1 =
l—i—log1 1+—§—log;-

—-—&

We will begin with assuming §' to be very large, e.g. §'= 5.
As we have o = ¢, #’ this means that the lateni heat of mixing for
the first component when 2=—=1 {or of the second when « = 0)
is five times as great as the latent heat of solidification of the fivst
component. From the above equation:

_1200(1—5a%) _ 500(1—6(1—a)?)

o 1-4 1, a
1-+-log 1% 1—[——2—logg

2l

we may calculate the temperature 7' corresponding to an arbitrarily
chosen value of z, the value of 2’ being exceedingly small. So we get
for T

1200 \
1 log(l—a) )
and for «':
1 & 25
1 __l _ = — — _— —d}).
+ 5 by — 7o (1= log (1—4))

The following table I (p. 159) gives a survey of the corresponding
values of @, «' and 7.

This represents the branch A4’ of the meltingpoint-curves whicl
starts from 1200° (see fig. 3). AB' is the curve 7= f ().

If we put 1—2 =y and 1—2' = y' then we have the equations
po B00(1—6y") _ 1200(1—5(1—y))
- 1 1—-_’!/'— yr !
- 14— 1 Z
+5 Wi, +log )

from which we may caleulate a new series of corresponding values
of @, 2 and T. So we get the branch BB siarting from 500° (B4'is
again the curve 7'= f(a)). The value of 3 being in this case very
small, 7" may again be calculated from
T 500 ,
1—0,5log(1—y)

and y' from
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TABLE 1. _ TABLEILL
,
m | T | Z0t @ X 100 y | 7 %Xdoﬁ 7' 3 407
0 |1200 |21 0 0 500 | 25 0
0.1 | 1086 | 14 14 04 | 43|15 15
0.2 | 981] 83 |17 0.2 | 40| 8.6 17
0.3 | 884| 4.8 |14 0.3 | 42| 45 14
0.4 | 94| 9.6 |10 04 | 298| 2.0 8
0.5 | 09| 1.2 | 6 0.5 | 31| 0.89 4
0.6 | 626| 0.46 | 3 0.6 | 843 0.31 2
0.7 | 545 | 044 | 1 .07 | 312| 0.018 | 05
‘ 08 | 460 | 0.0 | 02 0.8 | o | 0.1 0.09
0.0 | 36| 0.004 0.01 0.9 | 932| 0.00040 | 0.006
0.95| 800 | 0,... | 0,..." 0.95| 20| o0,... 0,...
097 26| 0, 0,.. 0.97 | 185 | o, 0,..
0.991 24| 0,... | O,.. 0.99 | 151 O,... 0,.
| o | o 0 1 0 |0 0
1+ logy?’ - — 4—?(1—— 0,5 log (1—y)).

The values calculated in this way are found in table II (see above).

The values found. for 3/ are even smaller than those for the first
branch. In both branches we clearly see the occurrence of a mazimum
in the curves 7= f(#), from which point the value 2’ (or ) does
nol increase any more, but falls again to zero.

The position of thal maximum may be easily found from the

, aT
general equation (4) for o The tangent running vertically, the

denominator (1-—a)w,-}aw,—=0 must be zero and therefore we have,
as we have assumed § to be equal to zero:

(1—a) g, (1—B2) + ag, (1— g- B (1—a)) = 0.

Neglecting &’ we get :

(1—z) g, + g, (1— %15) =0,

11

Proceedings Royal Acad. Amsterdam. Vol. VI,

-10 -
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and therefore

4 9,
Zpy = = U ()
. (g_z B’—l) $1—9.+ 08
Introducing our values for ¢, and ¢, and g'=35, we get #;,—=*/,,=—=0,19.
1200

With this value corresponds 73, = = 991°. Further we have

1,211
|

(f'—) = 0,00087, and therefore @, = 0,00017, which agrees with the
€ —————

value found in the first table for the first branch.
For the second branch we have exactly in the same way:

9, 72 .
m— ; - = . . . . . (T
I T =) fi—q 1.8 (7bis)

With §'=25 this yields y, = %,, = 0,17.
300 s (2} — 0.000010 d  theref
1,008 = ) ? . = U, , an therefore

Tn is there

¥n=0,0000017, which value again agrees with that found in the

second table.

If | and &', represent the proportions in which the second com-
ponent occurs in the two solid phases which coexist in the eufectic
point C with the liquid phase «, then the point C may be
found by solving a double set of equations (6), namely those with
a’, and those with a’,. From these equations the quantities 7’ 2, &,
and #/, may be solved.

If &/, and 1-—2', may be neglected, then we get simply:

T= RTZ’ = 22:’ N )
1-—lbg(l—a) 1— . 2 log &

1 2

\

from which follows after introduction of our values for 77, ete.
2=0,809, T=452°.

The corresponding values of &' and 3 (v, and l—2',) may be
calculated as has been done above. (Compare also the tables for
z=0,8).

A closer consideration of the equations (6) shows (comp. fig. 3),
that besides the branches mentioned above a third branch exists,
which may to some extent be regarded as the connecting curve of
the two former ones. This branch, however, lies wholly within the
region of the megative absolute temperatures and has therefore only
mathematical importance for the continuity of the meltingpoint-curve.
The curve I'=f(z), namely 4'DB' forms the connection between

-11 -
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AA' and BB. EDF is the corresponding curve 7= f(z'), which
touches A'DB' in the common minimum D, where £ = 2.
The point D is therefore determined by the equations

T=1T, (1—fs*) =T, (1~ 2_113'(1—~w)ﬂ),. .9

or with ounr values:
T = 1200 (1—52%) = 500 (1—B(1—=)?),

which gives @ =o' = 0,494, 7= — 264°.

The point [ indicates another value of &', corresponding to the
point 4' of the cwrve 7= f(z), where 2 =1, but now T=—0°.
This point is obviously de‘termined by the equation (comp. (6))

12 (1—2'* =0 (therefore w,=0),. . . (10)
9

which yields ' = 0,592.

The point [ indicates a value of #' corresponding to the point

B’ of the cuve T'=f (z), where £ =0, 7'=—0°. Now we have:
1—B%'* =0 (therefore w, = 0), . . . (10bis)
from which follows: a' = 0,447.

The’ curve 7'= f(z) has therefore obtained a continuous course
through the points 4" and B, the curve 7= f(«') however changes
abruptly at B' from B' to £, and at 4' from 4’ to #; further its
course is continuous from F through D to F.

The question might be put: in what case does the point £ come
in A" and the point F in B' and has the discontinuity in the curve
T = f (/) therefore reached its highest possible value? Obviously
this is the case for p' = co. For then w, =0 can vanish for £’ =1

and w, for 2'=0. In this case the lines A'D and ED coincide
over their whole length with the axis £ =1, and the lines B'D
and FD with the axis 2 =0.

At all temperatures above the absolute zero the values of ' and
y vanish in this case continuously; this represents therefore the
case, that the solid phase contains only one component.

The lines A'DB and EDF lie, as we have seen, wholly in the
region of negative absolute temperatures; besides this they lie with
their whole course in the region of the wunstable phases, as is
shown by a closer examination of the relations

¥  RT 0%  RT o
W a(l—a) e dl—a)

V. The value of §, for which the point D, where' z =2, is

found exactly at 7=0, may be calculated by solving the equations

-12 -
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0=17, (1—Bu%) =T, 1—L1—a)), -
- g

2

b A \* -
F=(1+v) d=(14v2) - D

i, e. 'with our values of ¢, and g, B'=38,659 and o' = 0,523.

The whole curve EDF or T=f (@) of fig. 3 has here contracied
to the single point D (see fig. 4), and the curve A'DB or 7'= f(v)
is degenerated into a straight line, all whose values coexist with
that one value of #'. ~

This line A'DB and the point D still represeni unstable phases.

If for this case we calculate the maxima for 2’ and ' of the two
principle branches as we have done above, then e find:

ap=0,26, T, =922°, u&'p=10,00088.
yn=10,24, T,,=—439°, ¢',=10,000062.

The maximum value for »' appears to have increased {o aboul 5
times the value it had with g'=>5, and that for #'lo about 36 times
its former value. The maximum value for y' now lies below the
eutectic point. A simple calculation may show that in our ecase this
already happens as soon as §' becomes smaller than 4,55. The

which yield :

—

maximum on the other side will require a much smaller value of 3
before it descends below the eutectic poini.

.-
As soon as B becomes smaller than (1 + 1/23) or with our
%

assumptions < 3,66, the curve A'DB' begins to twn upwards and
we get the course indicated in fig. 5 for e.g. §'=2,5.
The line A'DB' lies now wholly in the stable region for '= f (),

3 being henceforth always positive. The line ZDI" on the other
i

hand lies wholly in the wmsfable region for T'= f(a), as easily
0z

ever is not permanently fulfilled; by continually diminishing @, a
2

This latier circumstance how-

appears from the expression for

point of ZDI' may be reached for which is equal to zero and

awlz
this is a condition for a further change of the shape of the melting-
point curve. But this will be treated in another chapter.
The maximum values for #' and y' are now the following (namely
for B8 = 2,5):
" @p=10,375, T,=816° , a'n= 0,0044,
Ym== 0,857, T, =410° , ¥’ = 0,0016. -

-13 -



( 163 )

Gradually 2/ and 3 assume practically measurable values.
We find from (9) for the maximum D:

e =a = 0,b71; = 223°.
We find for £, &/ = 0,423; for F, 2/ = 0,633 (see (10) and (10%%)).

VI. We now proceed to the description of the further develop-
ment of the parts of the meltingpoint-curve lying below C.

According as B’ decreases, the curve A’DB mounts higher and
higher and finally it will touch the line BB, e.g. in P (Comp. fig. 6).
But the values of 2 and 7 of both curves I'= f(«) coinciding in
P, the values of &’ also will necessarily coincide — or in other
words the curves BA’ and EDF will meet at the same time, namely

gr!
in the point (. In this point however S must vanish, as P may be
&

regarded as a cusp in the continuous curve A4’ DPB. If therefore we

art

trace in the figure the curve-a——,;=0, —ie I'=d &' Q—d)=gq,32' (1—2),
£

which will be a parabolic curve, whose axis of symmetry is the
ordinate #=7/,, and whose summit lies lower according as §’
decreases — then the curves BA’ and ED/F meet this curve at
the same time in Q.

The direction of the two curves B4’ and EDI will there not be
horizontal, as appears immediately from the direction of the curve
2
g-,a% =0 in the point (. Therefore not only the numerators in the

. . al o
expressions for o of those two curves must vanish in consequence
:’U

ar!

of the factor 37 but also the denominators (1-&)w, +aw,. In other words:
&

the two curves will meet each other at the place of their maazima
for #’ and 1—a’, exactly at a point where both curves had a vertical

tangent a moment before. So the expressions for

- are undetermined
l’v

in Q and the real divection of the pieces BQ and 4’Q, DQand F'Q
must be determined in another way.

Fig. 7 represents the position of the different lines a moment
later. 3’ is here somewhat smaller than in fig. 6. It may be clearly
seen that the lower branches £/P'B’ and A’Q'F have got detached;
henceforth they are isolated and disappear more and more downwards
according as B’ decreases. They may be regarded as rudiments of the
original meltingpoint-curve. The upper parts form henceforth the proper
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meltingpoint-curve, namely A A’ DPB, constituting the line 7' = f (),
and AB’ED@B, constituting -the corresponding line 7=jf(z’). The

curves 7=7(2’) now run horizontally in @ and @', in consequence
P

of the relation 5o’ for the denominator (1—&)w, -+ aw, no longer’
&

vanishes for both curves at the same time. The places in the two
curves where this occurred before (we may imagine them to lie
between @ and Q') have henceforth disappeared. These points @Q
"and Q' of the curves 7= f(z") correspond to the two cusps P and
P’ of the curves T—=f(x). i

The process of detaching, described above, took place on the side of
B — i.e. on the side of the highest temperature — but we shall
see that the same process is repeated on the side of A, when 8’ still
further decreases, which is represented in the figures 8 and 9.

The second detaching takes place at B and S and gives rise to
two new rudimentary parts of the original meltingpoint curve on the
lower side. The proper meltingpoint-curve is now ARDPB for
T=f(z), and ASDQB for 7= f(z’). The two poinis S and S’,

where the curves 7= f(#’) run horizontally in consequence of the
2

relation TR 0 correspond with the new cusps B and R’ in the
&

lines 7= f ().
It is of course important to know at what values of 8’ the two
processes of detaching described above, take place.

In the point @ {fig. 6) we have in the first place Pl 0 or

T—gq, f'a' (1—2'); but we have there also (1—a)w,+aw,=0, from
which follows :
wl

&= I N .
w, —1w, w, —w,

._—.u;2

(12)

In connection with the equations (6) and taking into account the
equations (3) for w, and w,, we may deduce from these relations
a set of transcendental equations from which the quantities 7, " and 3’
may be solved by successive approximations. So we find for the
first detaching with the values assumed by us for 7', ete.:

B=1545 , o =09108Q) , o=02555(P) , T =301z

For the second we find as second solution:
B'=1,1020 , o =0,1149(S) , == 0,9705(R) , 7T ==268%9.

The case of fig. 9, i.e. just ajfter the second defaching, has been
calculated by me point for point {hroughout its course, putiing p'
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equal to 1,1.

ARDPB (T = f(#)), corresponding with ASDQB (T = f (), and
also the four rudimentary parts.

( 165 )

The following tables vepresent the chief branch

z z T z & T
(4 © 0 1200 4 1 0 (B o
0.417 | 0.05 749 - 0.995 | 0.05 193
0.882 | 0.1 391 () 0.981 | 0.104 (8 245
(B) 0.958 | 0.127 ()| 292 0.995 | 0.120 193
0.929 | 0.2 335 (4 1 0.130 (Z)| O
0.88 | 03 384
0.846 | 0.4 519
0.810 | 0.5 449
0.780 | 0.6 454
0.756 | 0.7 4583 m » 7
(D) 0.749 | 0.749 4585
(P) 0.748 | 0.776 (Q)| 458% B 0 1 (4 0
0.749 | 0.8 461 e—577 | 0,9997 168
0.795 | 0.9 465 (P e 0.990 (@) 25°
087 | 0.9 416 e—*6 | 0.970 16°
0.914 | 0.97 484 B 0 0.954 (F)| ©
0.967 | 0.99 494
3B 1 1 500

For the exact calculations, of which these tables give the results,
we refer to the more elaborate paper which will appear later. Also
the figures relating to them are to be found there.

The maximum [ has been calculated from the equation (9), which
yields # = &' = 10,7494, T'=458°,62.

The points P and Q, etc. are calculated from (6) in connection with’
a:;:

6::7—__0’ or T'=¢q,f2'(1—a). We find the following four solutions:
I)a = 07762 (Q | # = 0.7484 (P) | T' = 458°.60
I | & = 01268 (S) | » = 0.9579 (R) | T = 292°3
I | ¢ = 09901 (Q) | ¢ = e~ ()| T = 25°9
IV | o = 0.1085 (§') | « = 0.9808 (&) | T = 245°0
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The points £ and F are agam determined by~ (10) and (10x).
For I we have (=1, I'=0) @’ = 0,1296; for F' (2 =0, 7'=0)
2’ = 0,9535.

Combining equation (6) for 2" and «,,, we find finally for the
eutectic point C': ‘

r=0,80673; 2, =0,08893; »,’=0,91107; 1I'=466°,4].

Formerly, shen &’ could be neglected, we have found from (8),
x=10,809, T'=452° (see IV). -

It is remarkable that the value found for 2,” is exactly equal to
1—=,’. It is easy to show that this is an immediate consequence of
the equations (6) (compare our previous paper).

In cases however in which our assumption e,” = @, (which fol-
lows from 5, =b,’) is not satisfied, the value of z,” for the entectic
point will also not be equal to 1 —u,’,

When the amount of heat required jfor the muing of the first compo-
nent for v =1 s equal to that of the second component for &=0,
then the compositions of the two solid phases at the eutectic point will
be complementary.

VII. We shall now discuss the question, how the two parts
ending in the cusps 2 and R will gradually disappear. We may
follow this process step by step in the following figures.

a) In fig. 10 we see that the cusp P of the line "= f(v), which

2

tdl now was situated nside the curve 3 — =0, has reached that curve,
11/' -

in consequence of which the point Q of the line 7'= f (+) coincides
with [, and also with the maximum point D, which lies between
P and Q. The curves I'= f(x)} and 7 = f(2') run therefore both
horizontally in P, and henceforth the curve 7'—= f (") will no louger
touch the branch RZRP in D, Lut the branch PB (in a minimum).
After the lorizontal position in fig. 10 the cusp at [ will be turned
upwards instead of downwards.

This fransformation is apparently determined by the velations

, 0% .
z=a', 35, Le. by
T=1T, (1—f=) =T, (1—§ ‘(1—lu)2)=g1 Ba(l—s . . . (13)
3

This yields with the values assumed for 7', eie.:
B =1,0611 ; @ —0,7606 ; T = 468°,5.

b. The figures 11 and 12 show a second peculim-ily'qf the tran-
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sition. Here the cusp P lies at the same height as C; we find
therefore at the temperature of the eutectic point for the first time
four valucs of #’: @,” and =,” corresponding to C, and the coinciding
points @,” and z,’ corresponding to . These latter two points still
represent unstable .conditions. A moment later P has risen above
C and the two coinciding points @,” and &,” have separated (fig. 12).
The values @’ and #,” always correspond io C, »,” and 2,” to two
other points of the line I'=F(z). .The phase to which z,” relates, is
unstable, that to which @,” velates metastable.

The transition of fig. 1l is determined in combination of (G)
for 2 and 2, (with 2.), for x,” (with z,), in connection with
the relation 7'= ¢, 8’ #,’ (1—w=,’). By means of these relations we
may delermine 7, &, ,, z,", ,", #,", #’, if we moreover take into account
z,’ =1 —ua,’ (compare VI above).

¢. The figures 13 and 14 represent a new and very imporfant
case of transition. Formerly the branch AR intersected the branch
BP always on the left of the maximum (or minimwm) D in the
eutectic point 5 m fig. 13 it passes exactly through the point D.
Ifrom this follows, that the point @, coincides in C with’' z,' (both
= a), which point represents a stable phase from this moment.
Afterwards the minimum 2D lies on the left of the euteclic point
C (see fig. 14) in consequence of which the realizable part of the
meltingpoint curve begins to show a totally different shape, namely
with @ mingmum  (see fig. 14a). The point #,' which till now lay
on the left of C, lies in future on the right of that point. On the other
hand 2, has got on the left of ' and it corresponds to a point of
the line 7'= f (z) between 3 and D.

It will not escape our notice that the case drawn in fig. 14a
occurs to some extent in the mixtures of AgNO, and Na NO,, inves-
tigated by Mr. Hissink (see fig. 140). The difference is only that the
minimum D in the line 7'= f(») in the case of fig. 14) appears
beyond =1 and has therefore already disappeared. In our case
we have supposed this to occur in a later stage.

The case of transition of fig. 13 is calculated from the equations
©) for &' and &/, taking into account z=wa,’, and moreover
%) (=a,) =1—a,. The numerical solution of these equations yields
ihe following values :

B =0,9247 ; ' =0,1940 ; 2, = 2,/ = 2, = 10,8060 ; T'=479°,1.

We may then calculate @' and 2, from equation (6).

d. Finally the figures 15 and 16 represent the most important
case of transition.

-18 -



( 168 )

2

Here Q and S coincide with the summit of the curve é—g =0, and
T

so also P and R with C. The parts with the cusps have now
disappeared once f01 all tluough the eutectic point. -

The points z,’, «,” and ,” coincide with the horizonial tangentin
the point of mﬂeuon Q,S. ThlS point @,S lies apparently ata’ =14,

ax/

as the curve 5%__0 or I'=qpz-(1—2') is. pe1fectly symmetrical
@

on either side of the summit at 2/ =14 accmdmg fo our supposition
e, =@, (in consequence of b, =125,").

Not before this instant we may say that the meltlngpomt curve
has obtained a peltecly normal course, running continuously without
any cusp from A to B with a minimum in D where z = 2’ (fig. 16). The
point of inflexion with a horizontal tangent has passed into an ordinary
point of inflexion with an oblique tangent. This point of inflexion also
will gradually disappear when B’ conlinues to diminish, and for still
smaller values the minimum also will disappear from the melting-
point line which will then show a continuously ascending course from
B to 4. It is of course possible that the minimum has disappeared
already before, of which fig. 140 gives an example.

The transition of fig. 15 is determined by the equatlons (6) for

ﬂgl .
— =0 or szgﬁ'

# (v =&, =) =1}, in connection with 5

We find:
B=08226 ; 2=08080 ; T=49206 . (2, =a, =, = 0,5).
The points 2,' and , may further be calculated from equation (6).

¢). The minimum disappears apparently (see III equation (5bis),
when
ySTt "
< Tl . - . : . . . '.
. . C . I,-T,
For with 8 =0 formula (5 0is) passes into — B’ <C 7

1
]

T -1 '
or B’ > —1—]—;—1 This formula expresses the condition for the occur-
1
rence of a minimum. Formula (14) expresses consequently that 7o

minimum will occur. _
The minimum disappeavs therefore in our case as soon as §’

7
becomes equal to B or 0,56823.

f. In the above considerations we have lost sight of the rudi-
mentary pieces which have been detached (compare VI).
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We shall now investigate when they also disappear. Apparently
this is the case, when the summits P’ and @', R’ and & lie at
T=0; i.e. when these points coincide with B’ and A’. These summits
are determined by the equations (6), in connection with T—=gq, §' ' (1—=).
Now P’ coincides with B and @’ with A4, if these equations are satis-
fied by 7=0, =0, #’ =1. It is clear that this requires _{.?_:f_i_

Further R’ coincides with 4’ and & with B’, if the equation’ are
satisfied by 7'=0, #=1, #’=0. And this can only be the

5
case when f’ ::—'q‘—, in our case 8 = §=0’8333'

72

VIII. It is easy to see that the results of the above investigation
would remain unchanged qualitatively, if we had not neglected the
quantity ~ in the term eaz®, and if we had not omitted the quantity 8 for
the liquid phase by the side of the corresponding quantity 8’ (3 being
nearly always very small compared with 8’). Then all the values given
for ', x, «’ and T would be slightly changed numerically, but the
transformations and transitions which we have discussed, would have
occurred in the same order and exactly in the same way as we have
described above.

We conclude from the above considerations, that the occurrence
of a eufectic point and the apparent interruption in the series of
the solid mixtures caused by it, necessarily follow from the theory
represented by the equations (2) or (6), which teaches that high values
of B’ (or &), i.e. of the heat required for the mixing of the solid
phase, cause the oceurrence of unstable conditions. In reality the
curve is continuous, as is shown in the different figures, but in
general only « part of the continuous meltingpoint-curve is liable
to be realized. And only this part of course is found by means of
the experiments. .

Finally I regard it as an agreeable duty to express my thanks to
Prof. Baxuuis RoozesooM, who has encouraged me to undertake this
investigation, and who has given me many a useful hint also for
my former papers on the meltingpoint-curves of amalgams and
alloys.

(August 27, 1903).
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