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Physies. — “The equilibrium between a solid body and a fuid
phase, especially in~ the neighbourkood of the critical state.”
By Prof. J. D. vaNn pEr WaaLs.

After the publication of the experimenis of Dr. A, Syurs in the
proceedings of the September meeting, communicated by Prof. Baxnus
Roozesoon, I had a discussion with the latler chiefly on the question
if and in what way the liquid equilibriums and the gas equilibriums
which may exist by the side of a solid phase, must be thought to
be connected Dby a theoretic curve at given temperalure, in conse-
quence of the continuity belween liquid and gas. It is in agreement
with the wish of Prof. Baxnuis Roozesoom, that I communicale the
following obsecrvations. -

Let us imagine the y-surface of a binary mixture, anthraquinone
and ether, in shich we will call ether the second substance, at a
temperature slightly above 7% for ether. Then there is a liquid-
vapour plait, closed on the side for ether.

Let us add the wy-curve or the w-surface for the solid state,
the p-curve when the solid state has an invariable conceniration.
If only pure anthraquinone should be possible in the solid state,
this y-cneve would lie in the surface for which 2=0. For the sake
of perspicuity we shall start from this hypothesis in our first descrip-
tion. Then we find the phases which coexist with the solid anthra-
quinone, by rolling a plane over the -surface and the conjugate
P-curve,

On account of the slight compressibility of the solid body, we
can describe a cone, unless the pressure be excessively high. This
surface enables us {o find the coexisting phases; ils vertex lies viz.
in the point =0, v==v, and Y=, if v, represents the molecular
volume of the solid anthrayuinone and 1, the value of the free
energy, both ai the temperature considered. The curve of contact
of this cone and the w-surface represenis then the coexisting phases.
For shortness’ sake we will use for it the name of contact-curve,
though it is properly speaking also a connodal curve on the y-surface
of the binary mixture having its second or conjugate branch on the
p-surface of the solid state.

Now we can have three cases for the course of this contact-curve.
1st, It may remain wholly outside the liquid-vapour-plait, and will
form then a perfectly continuous curve. 2"d. Tt may pass through
that plait, in which case one part of this curve will represent gas
phases and another liquid phases, which two paris will be connected
by a thied part lying betwoen the two branclies of (he connodal
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curve and representing metastable and unstable phases. 3'4. It may
touch as intermediate case the connodal curve of the transverse plait
in a point which will be the plaitpoint, as will appear presently.

As to the course of the liquid part of the contact-curve we may
at once conclude, though this will be shown afterwards in a more
striking way, that two cases may occur. From the point on the
connodal curve where it enters the liquid part of the wp-surface with
increasing pressure, the curve will namely move more and more
towards decreasing values of x, and finally terminate at +=0 —
or it can move towards increasing values of ...

If we ftrace the wy-curve for w =0, and add a portion of the

(2)

!

fig. 1 (@

N

y-curve for the solid body to the figure, then if this portion has
position (x), so if the volume of the solid body is smaller than
that of the liquid, only one bi-angent can be drawn, and this
will represent a coexisting gas phase. If on the other hand the
added portion of the p-curve for the solid phase has position (4),

(&)

fig. 1 (b)

0 if the volume of the solid phase is larger than that of the liquid,
two bi-tangents may be drawn. At low pressuve, a coexisting gas
phase will exist, and at high pressure a coexisting liquid. In the
latfer case the liquid part of the coniaci-curve will move iowards
points for which & decreases when the pressure increases.

16*
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For a contact-curve which passes through the plait of the v-sur-
face, the property holds of course good that the pressure is the
same for the two points, in which it meets the connodal curve of
the transverse plait. If namely a bi-tangent plane is made to roll
simultaneously over the -curve (or the -surface) of the solid
substance, and over the gas part of the wy-surface of the binary
mixture, then if this tangent plane meets a point of the binodal curve
of the transverse plait, this tangent plane will also touch the w-surface
in a point of the othér branch of the binodal curve, and this point
will represent a liquid phase. Three phases are then in equilibrium,
The pressure that then prevails, is therefore the three-phase-pressure
at given temperature. If the temperature should be such that the
contact-curve no longer passes through the plait, then no three-
phase pressure exists any longer for that value of 7. For the
intermediate case the solid body is in equilibrivm with two phases,
which have become equal and the two points of the connodal curve
which the contact-curve has in common with it, have coincided in
the plaitpoint. -

Particulars as to the course of the contact curve ave found from
the differential equation of p, when & and 7 varies. If we represent
the concentration and the molecular volume of the solid body by
xs and v, and that of the coexisting phase, whether it be a gas phase
or a liquid phase, by xr and vj this equation may be brought under
the following form, which is perfectly analogous to that which holds
for the coexisting phases of a binary mixture :

! W,
vy dp = (#s—dy) (;lwﬁ"'),,z'dm -+ T’f ar

For the signification of v,y and 1V, s I refer-to Cont.II, p. 107 ete.
If T is kept constant, we have for the course of p the differential
equation :

v —diz(v -—&f) e
Vg, — T daf )

As long as the contact-curve does not pass through the plait,

2
da’y

If in the solid state only the pure first substance (in the case under
consideration anthraguinone) shounld oceur, then z, = 0.

But the same differential equation holds also, if @, should be
variable. For the case of anthraquinone and ether the value of @
in the gas phase is higher than that of the lignid phase for coexisting
liquid and gas phases, or @, > a,. It is thercfore to be expected,

is always positive.
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that the value of x; in the solid state will a fortiori be smaller than
that of the phase coexisting with it, whether the latter is a gas or
a liquid phase. We do not wish to state positively that there are
no exceptions to this rule. But for the case ether and anthraquinone
we may safely assume that »—z, is negative.

Now it remains only to know the sign of v, to be able to derive

d
the sign of E]i

zf
av,
The expression »y stands in the place of (v,—v)—(z,—27) (_jqj
/T

and represents the decrease of volume per molecular quantity when
an infinitely small quantity of the solid phase passesinto the coexist-
ing phase at constant pressure and constant temperature. If this
coexisting phase should be a vapour phase, this decrease of volume
is undoubtedly negative. But this quantity may also be positive, and
if we make the series of pressures include all kinds of values, so
if we make the pressure ascend from very low values up to very
high ones, there is undoubtedly at least once reversal of sign,
and for the case that the contact-curve under high pressure moves
towards increasing values of x there is even twice reversal of sign.

To demonstrate this, we inquire first into the geometrical meaning
of vgy. Let the point /£ be the representation of the solid phase,
with v, and @, as coordinates — and the point @ the represenfation
of the coexisting fluid phase with vy and 2 as coordinates. Let us
draw through @ the isobar and let us determine the point 7', in
which the tangent to this isobar of ( cuts the line which has
been drawn through P parallel to the volume-axis, then — v, r—=PPF".
If the point P’ lies on the positive side of P, then v, is negative.
For the special case that the tangent to the isobar of @ passes
through P, v,r = (). In the same way v, would be positive, if P’
should lie on the negative side of P.

In order to know the sign of w,,, the course of the curves of
equal pressure must therefore be known. In my “Ternary systems”
I (These proceedings Febr. 221 1902, p. 453) I have represented
for the analogous case of a binary system, for which the second
componenf has the lowest 77, the course of the isobars by the line
BEDD'IE'B’ in Fig. 2. I have added another isobar to the repro-
duction of this figure — and I have represented the solid phase
by the point £ The added isobar passes through the plaitpoint.
This isobar has an inflection point somewhai to the right of the
plaitpoint, Each of these lines of equal pressure having an inflection
point, there is a locus for these points, which I have left outin the
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v

fig. 2.

figure. 1t extends all over the width of the figure. Always when P lics
on the side of the small volumes of an 1sobar, {wwo tangents may
be drawn {o such o line from J%. These tangents touch the isobar
at points, lying on either side of the inflection point; and for these
points of contact ny = 0 Another isobar will furmsh twg other
points of contact, if we leave the pownt /% unchanged. We have
thevefore for every point P a loens, consisling of {wo branches,
for which vy ==0. If the point P lay al grealer volume, i. e, o
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the other side of the isobars, it would no longer be possible to draw
two tangents, and the locus for which, with regard to ., the value
of vy is 0, would have but one branch.

Now, however, the point P is variable, first because the volume
of the solid body depends on the pressure, and secondly when the
concentration should change. This enhances of course the difficulty,
if we wished to determine this locus. But this will not detract from
the thesis that for the contact-curve, when it ascends from low
pressure to high pressure, twice veris 0, when the solid body has
a smaller volume than it would have in fluid form at the same
temperature and under the same pressure — and that only once
vgr is 0 in the opposite case. When P is variable, the locus for
which v, = 0, is construed by drawing from every special position
of Ps the tangents to the isobar of the pressure of %, and by joining
the points of contact obtained in this way.

If the contact-curve does not pass through the plait, the value of
v 15 negative for the points outside the two branches of the locus
vy = 0, and positive for the points inside.

If however the contact-curve passes through the plait, the value
of vy is more complicated. In the figure the two tangents have been
drawn {o the isobar BEDD’E'B’, P, being supposed to be in the
position that corresponds to the pressure of this line. In this case
too the value of vy is negative for the points lying outside the two
points of contact. For the points between the points of contact we
cannot assume vy to be positive, however. This holds only till
the points D and D’ are reached. Between D and D', vy is again
negative, and the transition from positive to negative takes place
m the points D and I’ through infinitely great.

2

In the same way the value of ( ﬁ) is complicated for the
dar »T

points of a contact-curve, passing through the plait. I have stated this
already in “Ternary systems” I, Proceedings February 2274 1902
footnote p. 456. For the points between the connodal and the spinodal
curve this quantity is still positive; for the points between the

0?2

. . P, - .
spinodal and the curve for which a7 18 0, it is negative ; whereas
v

for the points inside this last curve it is again positive. This last

transition from negative to positive takes place through infini-
tely great.

. . d
Let us write the equation for the determination of EE in the fol-
&f

lowing form:




0% dp P 0%
S O Zey ") 5o an 3o
or
a’lp dp . 0%y 0%y 07y \?
dur® vf? LA dey = (2~ ‘yf) 0z, ? Ovy? - (amfavf)';'

In this way we simplify the discussion. The factor of z,—ar never
becomes infinitely great in this case. This factor is then positive
outside the spinodal curve and negative inside it” On the spinodal
curve itself it is zero. As @—ay is always negative in the case of
anthraguinone and ether, the second member of the last equation is
negative outside the spinodal curve and positive inside if. From this
last equation follows: 1stthat if we follow the contact-curve throughout
its course, there exists a maximum and a minimum value for the
pressure for the points lying inside the plait, that is when the spmodal

. ap . .
curve is passed. 2vd that when v, =0, the value of ;1_15 is either

twice or only once infinitely great. In the points where P 0,
vt

dp 0
— has the value of (p ) , as follows from the equation given if
day oy,

z

0
we put there a~v—q~: =0, but which also follows directly from :
f
0

dp = ap dieg - fdvf,

. Op
putting P =0.

For contact-curves which pass through the plait not far from the
plaitpoint, it appears clearly from the figure, that the points for
which C-iﬁ is infinitely great, lie outside those for which% =0.
That is to say, that the locus for which vy =0, lies outside the
spinodal curve. In the neighbourhood of the top of the plait they
lie even outside the connodal curve. Also for the isobar BEDD' I’ B’
1 have drawn them in ihe fignre given in such a way that the
points of contact of tangents from [° lie outside the spinodal curve.
I have not yet been able to decide whether there are any exceptions.
In the following figure (3) I have represented the relation between
p and a2 for a contact-curve, assuming that the points of coniact
lie as I have drawn them in fig. 2, and as they are sure to lie,
when we are in the neighbourhood of the plaitpoint. The gas phases
which are in equilibrium with the solid body lie below B.
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The liquid equilibriums lie above C. The position of the line BC
indicates the three-phase-pressure. The curve JCP denotes the
liquid-vapou: - equilibriums, of which the part tying below CB may
only be realized by retardation of the appearance of the solid state.

Let us now examine what happens at higher temperature as well
to the curve of the liquid-vapour equilibriums as to that of the
equilibriums between the solid siate and the fluid state. From the
theory of the binary mixtures (Cont. II, p. 107 etc.) we know, that
the first mentioned curve KCPBIE contracts and moves upwards. If
we assume d7 to be infinitely small, all the points of this curve
will be subjected to an infinitely small displacement, with the exception
of one point, i.e. that for which TV, — 0. This point ean lie on
the right or on the left of the plaitpoint P, according as the plait-
point curve descends or ascends. Also the curve of the solid and
fluid equilibriums is transformed and displaced. The modification
which this curve undergoes with increase of temperature has been
denoted by the dotted curve in fig. 4 and fig. 5. We shall presently
explain this further. Now t{wo cases may take place, which both
occur for mixtures of anthraquinone and ether.. Either the three-
phase-pressure rises with 7', or it falls. But in both cases such a
lemperature may occur that the straight line, which joins the two
fluid phases coexisting with the solid body, has eontracted to
a point.

To the former of these two cases applies fig. 4. In this case the
curve AB moves fowalds smaller values of @ with increasing tem-
perature. Not indefinitely, however. Near the highest value of T

\



Fig. 4

the branches AA’ and BB’ have met, and so there is a minimum
value for the value of z4.

To the second case applies fig. 5. Then the curve AB will move
to the right with decreasing temperature. With decreasing value of
T the branches A’A and BB’ will approach each other; and this

P

Fig. 5.

-10 -
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leads to the conclusion that there will be a maximum value of 25.
In fig. 6 the value of # for the two fluid phases of the three-phase-

Fig. 6.

pressure as function of 7" is graphically represented. The highest
temperature (the triple point of anthraquinone) applies to 2 — 0. The
lowest point of the part of the x, 7' figure lying on the left is one
plailpoint and the highest point of the part of the z, T figure lying
on the right is the second plaitpoint.

If we represented the relation between p and @ for the fluid phases
of the three-phase-equilibrium, we should also get two separate parts.
It is easy to see that for smaller values of # an ascending closed
branch is obtained, not unlike the closed p,x curve for a binary
mixture at constant temperature — and that for higher values of @,
& similar but descending curve is found.

The p,T projection for the three-phase-pressure, so of the curve
according to which the two p,a, T' surfaces intersect, consists of
two separvate curves, that for the higher temperatures being a
descending curve, lerminating in the p and 7" of the triple point of
anthraquinone. The pari for the lower temperalures is an ascending
curve, beginning in the {riple point of ether, if namely, we assume

-11 -
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perfect mixture also for the solid state. The two p, # 7" surfaces meant
in the preceding statement; are that for the coexistence of the two
fluid phases with each other and that for the solid state and the
fluid phases.

I shall proceed to give a few mathematical observations, which
may serve to gain a better understanding of the whole phenomenon,
and which are also required for the proof of some properties, which
have been given above.

First the assumed deformation in the shape of the p, # curve (solid
and fluid phase) for increase of lemperature.

From the equation :

ag; W ]
Vi dp = (a,—ay) E’z;;) Tda;f + fo ar
1 1 f'

follows that for constant zs the equation holds:

0%y
—_— W,
(P _ Wy 877
dT ‘pf_— qu—— a“lp
avpg Y

W being negative, the numerator of this expression is negative
2

outside the curve for which a—l‘E =0, and positive inside this curve.
v

The numerator is the same quantity as has been discussed before
(p- 235). From this follows that for constant ay the curve p,7" has
a tangent normal to the 7-axis in two points, and between them
two points, in which a maximum and a minimum value of p occurs
— just as was the case with the p, 2 curve at constant temperature.
One curve might be substituted for the other, but still, there is a
difference. The p, # curve has its maximum and minimum coinciding
in the plaitpoint. The p, 7" curve has it, when it runs through the
2
0v*
the point which would be the critical point, when the binary mixture
behaved as a simple- substance.') The consequence of this is, that if
we trace the two p,T" curves, {that for liquid and vapour and that
for solid and fluid), these iwo curves intersect in the plaitpoint for
the value of @ of a plaitpoint, and that they do not touch as isthe
case with the pa curves. Only for another value of # (the maximum

has two coinciding values equal to zero; so in

point for which

1) It has appeared to me tihat the course of the p,T' curve requiies further
elucidation. I mtend therefore to soon add some remarks on this subject to this

communication.

-12 -
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and minimum discussed above) the two p,T curves touch. This point
of contact yields of course an element for the three-phase-pressure.

The differcntial equation for the section of the two p, 1’ 2 sprfaces,
is found from the two relations which hold both at the same time :

} azg w,
o dp = (2,— 1) (a—) do, + 22 a7
1

-YZT
and 3
5 W, "
vydp = (s, (5‘2"_12) de, + Tl dT.
We find then:
9*8 aT
3. g7 d‘ul "m
dp _ aw12 Wr /
(‘”S"”"'l)wn'—(""z—w1)w\1 Vs Wyy— Vg, Wey (85—, )0y, — (2, &y JUsy

We shall shortly mention some obvious consequences. (1) If

T
maximum. So they exist for a plaitpoint. (2). For a maximum or

0? .
(a_;T) =0, the p, 2 and the 7, z figure show a minimum or a
@*/,

.. . w Wy
minimum of », — must be — .
Yy Va1
Now :

Oe,
Wyy == P,y + &—8&—(0,—a,) aT 7
¢ 1 1)

and :

0g,
w,, = pr., + &—&— (&, —a,) .
vy

(See Cont. II p. 110). From this we derive:
g F 0s, &s—§, (681) §,—6,  &—&,
"Es_—_‘:“z_l— (a_‘”_l)}'T &gy aml I A Y —_we—'ml
v,—0, dv T op—o, a.v) ov,—v, py—u,
2, — 1, awl)pfp Ly, (awl T Z—w, 25—,
This leads to (%) = (dpql) = s or in words, the direc-
ar ), a1 /. ar’ ’ ’
tion of the (p, 7). curve for liquid and vapour, and that of the
(p,2); cuxve for solid and fluid state are the same in the point of
maximum and minimum value of & and the same as that of the
b, T curve for the three-phase-pressure. The p,7" curve of the three-
Phase-pressure descending with the temperature in the case of minimum
@ and viece versa, we conclude concerning the point of contaet that

in the first case it lies between critical point of contact and maximum

pressure of the liquid vapour curve, in the second case on the vapour
branch of the curve.

-13 -
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If we suppose that the two critical phases with which the solid
body can coexist, and which differ considerably in concentration for
anthraquinone and ether, approach each other, the two separate
parts of the T, 2 figure and also that of the p, # figure and that of
the p, T'figure will approach each other. At the point of contact the
two parts of the 7« figure, and that of the p, a:ﬁgure’will intersect
at an acute angle. If we continue this modification further, the
two upper branches of these figures have joined, forming one con-
tinuous curve; in the same way the two lower branches. Then the
p, T curve shows a maximum. The existence of this maximum three-
phase-pressure has already been demonstrated and discussed by me
on the oceasion of former investigations by prof. Bakrurs Roozisoom ).
We find again the result obtained before, now under the following form:

p(o,—v,)+&,—¢, _P(vb—”1)+83_81 _P(vs—va)‘l‘ss"ea .

¥

&,— &, Bs— &, Bg—ay
which means, that if we write for that special point of the three-
phase-pressure :

ri_Aw
ar Av
the value of A w would be O.

If we now examine the course of the x,7 curve for the three-
phase-pressure more closely, making use of the formula on p. 241,
or what comes to the same thing according to the formula of
Verslag 1897, Deel 5, p. 491, it appears, that other complications
may occur; and that it is not perfectly accurate to say that the
p, T curve on the side of the anthraquinone is an ascending curve,
till the triple point of this substance has been reached. Then we can
also account for the asymmetric behaviour of the p, T curve. It ascends
from the triple point of ether and descends on the other side.

In this consideration we shall denote by 24, 21 and s the concen-
tration of the vapour, of the liquid and of the solid body. In the
same way we shall use &, & and & ; then we get for a very small
quantity of the admixture:

1 ¢ & + pvd
1 @ & + pu
dp 1 & & +pos Maq—as)— (2 —ag)(r+4-2) )
al'™ 1 ag v - (wa—as) (01—2s) — (T1—3) (vd—v,)
1w v
1 &g v
1) Verslag Kon. Akad. Amsterdam, 1885, 3e reeks, Deel I, pag. 380.
%) The more accurate value of the numerator of the last fraction is:
(g —) 24 (L—a) 4+ Ap o — (s—as) fra (L - 24) 4 75 4
In this we have, however, disregarded the heat of rarefaction.

-14 -



( 243)

We denote then the latent heat of liquefaction by A and the
heat of evaporation by ».

Let the principal component be anthraquinone atits triple point. If
we add a very small quantity of ether, #, and ay and a; will be
small but x> >a,. We may even assume by approximation
for this case, that no ether passes into the solid phase; hardly
any will be found in the lignid, but most of it in the vapour. So

2, = 0 and i very great. For the limiting case which may be

&y
supposed, in which #; would be zero, we have:
d; 2
% _
dI, V—7Us

The initial direction of the p,T curve is that of the melting curve,
and when »;>>wvs, this curve begins as an ascending curve with
increasing temperature. But as soon as after further addition of
T has become equal to ——— =, in which still a
L—2s V— Vs
very small valne of x; is supposed, the numerator of the expression

4P
for 71 T
numerator is reversed and the p,7" curve is no longer ascending,
but descending with increase of 7.

Now let ether be the principal component. In this case we have
to distinguish two different cases. 1°t. Ether and anthraguinone are
m solid state miscible in all proportions; then the solid substance
which we must think present, is solid ether and we start from the
triple poing of ether. 2. For all equilibriums anthraguinene remains
unmixed with ether. Then the temperature musi be thought slightly
above the triple point of ether.

In the first case, if at the triple point of ether a little of the
so much less volatile substance, anthraquinone is added, it is to
be expected neither in the vapour, nor in the solid body, but only
in the liquid; then we find:

T —dﬁ = rti
al'  wvg—vs

So an increase of p with 7, as occurs in the case of equilibrium
between vapour and solid, in concordance with the rule, that if
two phases of a mixture in which more phases are present, are of
the same concentration, the equilibrium conforms to these two phases.

In the second case, in which we think ether present in liquid
and vapour state ai slightly higher temperature than that of the

ether the value of

is infinitely large and on further addition the sign of the

.
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triple point, added anthraquinone in solid condition will not pass
into the vapour state. Then z; = I and xy=— 0. We get:
Ti}—’- _r—a(r 4 4)
dT' ™ vy — v (vg—10s)

The quantity 2 is now the latent heat of liquefaction of anthra.
quinone. B

For vanishing value of x; we find increase of p with 7', as is
found in case of equilibrium between liquid and-vapour. In neither
of these cases the numerator can become equal to zero when a
small quantity of the second substance is added to the principal
substance. ’

But I shall not enter into more particulars, nor discuss the treat-
ment of special circumstances. If they are brought to light by the
experiment, they can necessarily be derived from the above formulae.
Nor shall I discuss the v, 2, 7" curves, which would lead to greater
digressions. For this discussion we should have to make use of
two equations, of which that for the coexistence of liquid and vapour
occurs in Cont. II, p. 104. For the w».u projection of the three-
phase-equilibrium we get for anthraquinone and ether two separate
branches, lying outside the limits of the maximum and the minimum
value of 2 mentioned above. When these two values of « coincide,
these branches meet, intersecting at an acnte angle; at further
modification the two v,z curves, viz. those for liquid and vapour,
will yield a highest and a lowest value for the volume; at any
case the v,o curve for the vapour phase. As appeared in an oral
communication, Dr. Symirs had already arrived at this result.

I shall conclude with pointing out, that eases of retrograde
solidification must repeatedly occur, both when the temperature is
kept conmstant with change of pressure and when the pressure is
kept constant with change of temperature.

Chemistry. — “The possible forms of the meltingpoint-curve for binary
miztures of isomorphous substances.” By J. J. van Laan
(2rd communication). (Communicated by Prof. H. W. Baxsuis

Roozgsoom).

1. My investigations concerning the possible forms of the melfing-
point-curve for binary mixtures of isomorphous substances, commu-
nicated in the Proceedings of the meeting of the 27t of June 1903,
have, apart from the different theoretical considerations, led to the

following practical 'results. -
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