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tl'ipll3 point, added anthraqninone in solid condition will not pass 
into tlw vapom state. Then Xs = 1 and Xd= O. We get: 

l' dp = 1'-.VI (1' + ).) 
dl' Vj- VI-,VI (Vd-Vs) 

The quantity ). is now the latent heat of liquefaction of anthra. 
quinone. 

For vanishing value of Xl we find increase of 1) with 1', as is 
found in case of equilibrium betweell liqnid and-yapoUl', In neither 
of these cases t11e numeratol' can become equal to zero when a 
small quantiry of the second substance is added to the principal 
snbstance. I 

But I shall not enter into more particulal's, nol' discuss the t1'eat· 
ment of special circnmstances. If they are brought to light by the 
experiment, they can necesóarily be c1erived from the above formulae. 
Nor sha11 I discuss the v, X, l' curves, which would lead to greatel' 
digressions. For this discussion we should have to make use of 
two equations, of which that for the coexistence of liquid and vapour 
occurs in Cont. II, p. 104. For the v,ov projection of the three­
phase-equilibrium we get for anthraquinone and ether two separate 
branches, lying outside the limits of the maximum and the minimum 
value of X mentioned above. When these two values of X coincide, 
these branches meet, intersecting at an acnte angle; at ftuther 
modification the two v,x curves, viz. those for liquid and vapour, 
will yield a highest and alowest value fol' the volume; at any 
case the v,x curve for the vapour phase. As appeared in an oral 
communication, Dl'. SMITS had already al'rived at this result. 

I shall conclude with pointing out, that cases of ?'etl'ograde 
solidification must repeatedly occur, both when the temperature is 
kept constant with change of pressure and when the pressure is 
kept constant with change of temperature. 

Chemistry. - "nw p08sióle forms of tlte meltingpoint-c'll?'ve for bina1'l1 
mi.vtw'es of io;ollJorplwlls b'llbstances." Ey J. J. VAN LAAIt. 

(2nd communication). (Commnnicated by Prof. H. W. BAKHUIS 

ROOZEBOOM). 

1. My investigations cOllcerning the possible forms of the melting­
point-curve for binary mixtures of isomol'phous substallces, commu· 
nicatecl in the Proceedings of the meeting of the 27 th of June 1903, 
have, apart f'l'om the di1fet'ent theoretical considerations, led to the 
following practical 'tesults. 
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a. When the latent heat of mixing in the soUd phase a' = q1 fj' 
is great, the /,olid phaóe contains but very Httle of the second com­
ponent. The portion of the meltingpoint-curve which may be realized, 
bas a course as in fig. 1 (see the plate). The curves T = J (x'), viz. 
Aa and Bb show maxima at rn alld n, which maxima descend 
gradnally for smaller values of {j' tilt they are below a and b, the 
maximum at n sooner than that at m. (fig. 2). [We leave for the moment 
out of consideration what happens below the horizontal line through 
the point e, the eutectic point: for this see my preceding communication]. 

b. For smaller values of {j' we get the case of fig. 3, where the 
branch Be shows a minimum, no longer below the temperature of 
e, but exactly at e. Immediately aftel' (i. e. when (l' is still somewhat 
smaller), the meltingpoint-curve assumes a shape as in fig. 4. e 
remains the eutectic point, where the two branches of the meIting­
point-curve meet with a break. As appears from the figure, we 
have now got parts of the meltingpoint-curve, which may be 1'ealized, 
also below tne point e (see also fig. 14 and 14a of the communi­
cation referred tO). 

It is however very weU possible, that in the IDfantime the minimum 
at D has ah'eady diyappeared, and then we get a course as is 
represented in fig. 5 (observed i. a. by HISSINK for mixtures of 
AgNOa and NaN08 • (see also fig. 14b l.c.). 

c. For still smaller values of fJ' the curve T = f (x') becOInes 
continuously rea lizab le. The points band a coincide in a point of 
inflection b, a with horizontal tangent (fig. 6), which point of inflection 
soon \passes into one with an oblique tangent L (fig. 7), while in most 
cases it disappears afterwards altogether for still smaller values of 
p'. (fig. 8). 

The break at e has disappeared in the case of fig. 6 and from 
this moment th ere is no longer question of a eutectic point, and 
the rneltingpoint-curve assumes the perfectly con tinuou s shape of 
fig. 7 and 8. 

d. As has _ already been observed in ó, also the minimum at D 
will sooner or later disappeal'. For very small values of fj' we get 
then always a course as in fig. 9. I 

Obse'l'vation. As has been elaborately demonstrated in the preceding 
paper, a maximum at A for l10rmal components can ne1'e1' occur 
with positive values of the different absorbed latent heats of lique­
t'action and mixing (see p. 156 1. c.). When such a maximum is 
observed, as was done e. g. by F. M. JAEGER 1) for two isomeric 

1) Akademisch Proefschrift (1903), p. 173-174. 
17 

Proceedings Royal Acad. Amsterdam. Vol VI. 
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tribl'oom tolnols, this al \'\Tays points to difference in size of the molecules 
in the liquid and bolicl phase 1). ln fact JAEGER, found that -his 
isomers are vel'y likely bi-molecula1' in the solid phase '). 

2. We may now put the question : When wiJl the îninimllm at 
D, which wiII disappeal' in any case for values of /'1' smaller' than 
those 'fbI' which fig. 3 holds, clisappeal' before the case of fig. 6, so 
that a course as in fig. 5 becomes possible; and whén wi1l it disappeal' 
ajtel' the case of fig. 6, as has been assnmed in our figures 6 to 8. 

Ta answer this question, we shall fil'st state fbI' what~values of pi 
the case of fig. 6 occurs. 

a~~' 
The point b,a Iying then on the top of the curve aal' = 0 at 

al = lis B), we have, besides the equations (2) fol' ,'IJ'=1/2 (see p. 1531. c.), 
a~~' Rl' 

also the relation à ,~ = 0 Ol' '(1 I - 2 a' = 0, i. e. with R = 2 
.c dJ -i1J) 

the l'elation T = a' tIJ' (1-m'). 
1'he condition sought is accol'dingly : 

, 
for which with regat'd to the fundamental equations, some simplifying 
hypotheses pel'misbible for Dur purp0se have been made, which may 
be fOlmd on page 152 of the paper mentioned. 

Now we can solve (R = 2) : 

2 (1 -~ ~' -~ ~ ~I) 
0,5 4 4 Tl 

log I-a; = [3' j 

hence, as (1--m) + m = 1 : 

[ 1 1 ( ql ')J [1 1 ( q2)] -2 ï-- 1 +r~ -2 -,-- 1 +-
e [3 4 Tl - + e ql/q2 [3 4 T 2 = 2, (1) 

/-----
1) See p. 208 aud 209 of the "Proefschrift", where JAEGER gives the proof of 

this thesis, which I had communicated to him iu a letter. 

') See p. 208 and 194 of tbe "Proefschrift". 

S) Only if we assume .:trI = "'2 (so bI = b2), this parabolic curve wiJl be sym-
metrie and its top will be exactly at X' = 1/2, -



- 5 -

( 247 ) 

and this is the equation, from which [3' can be solved. Unfortllnately 
howeve,' ['J' cannot be solved from tlîis in an e.vplicit form. 

Now the minimum disappears, when (see p. 168, 1. c.): 

. . (2) 

That this takes-place exactly at the sanw moment as that at which 
the case of fig. 6 occurs, is eXEressed by the relation : 

_ 2 1 _ 1 + ~ -2 q~ 1 - - 1 + ~ 
[ 1' 1( ) [T l( )] 

e T1-T~ 4 Tl +e Q1 T1-1'2 4 1'2 = 2. (3). 

If we write tor shortn3ss: 

ql Q2 T2 ( q2 lfJ2) 
1'1 = lfJ1 ; 1'~ = lfJ2 ; Tl = J. so ql = lfJ1.1.. , 

the equation (3) becomes: 

- 2 [_1 __ ~ (1 + lfJJ] - 2 [lfJ2_)., __ ~ (1 + lfJ2)] 
I-À. 4 lf1 I-À. 4 (3 e + e = 2, a) 

where J. will always be < 1 (T~ is assumed < Tl)' 
It is now easy to see that the1'e are al ways correspollding value5 

of .1.., ([1 and lJ'2 to be found, which satisly (3), sa that the minimum 
may just as wen disappeal' before as aftel' the case of fig. 6. In 
order to define the limits of Tl' T~, q1 and q2' in which either the 
one or the other will occur, we shall express e. g. fJ'2 in function 
of fJ\ and J.. We get then surcessively: 

1 2 1 lfJ2 .I.. 
-(1 + lfJ1) - - -(1 + (h) - 2--
2 1-.1.. 2 9\ 1-.,.À. 

e +8 =2 
1 2 1 lfJ2 .I.. 

-2 lfJ1 -- 1-'. ~ lfJ~ - 2 ---,,~ lfJl1-.I.. - 1/2 e +e =2e, 

1 lfJ2 )., (- 1/2 1/2 lfJl __ 2_) 
-lJ'~ - 2 - -- = log 2 e - e 1-.1.. , 
2 fJ\ I-À. 

so finally: 

2 lfJl1-.I.. 

T ~ his will be equal to ° (fil'st limiting-value, as T cannot become 
~ 

<0), when 
17* 
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or 
2 _ 1/ 

1/2 PI - --) = log (2 e 2 - 1) = - 1,546, 
1- . 

so when 

or 

4 
PI = --, - 3,092 

1-1\. 

4À. 
PI = - + 0,908 Cr/!2 = 0) . . . . (5) 

I-À. 

The qualltit,y lp2 will be 00 (second limiting-vaille, as ~ may 
2 

have aU values up to (0), when 
1 2 À. 
-----=0, 
2 PI I-À. 

1. e. when 
4..1 

PI = 1'_..1 

It is evident that the difference 
is exactly 0,91. 

• • . (5a) 

between the two limits of PI 

We have now the followlllg survey for different values of ..1 . 

..1=1 

Cf2 = ° lpi = 0,91 PI = 2,24 Cfl = 4,91 PI = 12,91 PI = 00 

Fl'om this we see, that Ps = ~ may have all values from 0 to , 

00, but that the values of PI = ~ are limited to an interval, W hich 
1 

T 
varies with the value of..1 = T'. The greater À. becomes, i. e the more 

1 

T, approches to Tl' the smaller this interval comparatively becomes; 
so the value of CJI required must then become larger and larger. 

All this applies to the case that the minimum disappears at the 
same moment as in the case of fig. 6. It is easy to flee that when 
the minimum disappeal's be/m'e the case of fig. 6 the value of epI 
will have to be la1'fJe1' than ·that which is detel'lilined by (4) for 
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given valués of ljJ~ and 1. The opposite rase, i. e. that the minimum 
disappears afte7' the case of fig. 6: will take p]ace when PI is 
smaller than that value. 

For, when the minimum has ah'eacly cli~appea1'ecl, the value of 
T 1-T, 

~' in fig. (6) wm be smaller than -y--' We must accordingly 
1 

substitute a smaller value of (:l' in (1), or what comes to the same 
thing, give a higher value to 1'2' i. e. increase the value of i,. But 
it is obvious from the above table that when 1 incl'eases, a higher 
value of PI will corl'espond to the same value of p,. 

Let us take as first example Tl = 1000, T, = 500, q1 = 4500 
Gr. cal., q, = 250 Gr. cal. 1 is therefore = 1/~, PI = 4,5 and 9', = 0,5. 
The value of PI ranges therefore within the lllterva14 to 4,91, which 
holds for 1 = 1/~, so that it is possible, that the minimum disappears 
in the ne~qhbourlwod of (or exactly in) tbe case of fig. 6. The condition 
for its disappearance fol' tlle value of ,~' corresponding to that case, 
would be that there corresponded to ). = 1/~, PI = 4,5, according 
to (4), a value of P 2 , given by: 

-1,75 
log (1,2131 - e log 1,0322 

P~ = 05_ 4/ = 0,57l. 
, 0 1/18 

So to lP, = 0,50 corresponds a greater value of PI than the o11e 
given, viz. 4,5. This yalne is therefore too low, and the minimum 
will disappeal' aftel' the case of fig. 6. 

Second example. Let Tl be again 1000, T~ be 500, but now 
q1 = 3000, q, = 1000. 

We shall not have to execute any calculation now, as this value falls 
beyoncl the interval 4 to 4:,91, PI being 3 with À = 1/,; PI is much 
toa low to be able to cOl'l'espond with any value of (j', whatever, 
and again the minimum will have to disappeal' when the case of 
fig. 6 occurs. 

If on the other hand Tl had been 1000, T 2 = 500, q1 = 5000, 
q~ = 2000, then it would be clear without any t'alculation, that now 
the minimum 'tas already clwappea1'erl when tlle case of fig. 6 
OCCUl'S, P~ = 5 now lying bevond the interval on the high side. 
A course as in fig. 5 tl1erefore becomes now possible, when the 
value of [j' lies between that of fig. 3 and fig. 6. 

The case of fig. 5, observed among others by HrSSINl\ in mixtures 
of AgNO, and NaNOs, belongs therefore to the possibilities, and can 
Occur fol' given T\) T'J. and q., as soon as ql has a sufficiently 
l!Zfllt value, or what comes to the same thing, as sa on as for given 
1'1> T~ and q1 the quantity q2 has a sufficiently low value. The 
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va.Iue of ~~ or 'fJ~ must th~..n be smaller than that calculated from 
~ 

(4). If we then find a negative value for 'fJ
2

, the case of fig. 5 is 
entirely excluded for the given values of Tl' T, and Ql' In the 
equation (4) we have therefore at any rate a cl'iterion_to determine 
whether or no the case of fig. 5 ean OCCUl', when the value of ij' 
lies between those to which the figures 3 and 6 apply. -

3. Another impork'tnt question will be, when the point of infiection 
L with oblique tangent (fig. 7) will" disappeal', and whether it can 
still be present e. g. with fJ' = 0. -

dT d2 T 
Let us for this pUl'pose determine the values -, and -, . 

dte drc J 

We found before (l.c. p. 155). 

a2
; 

(.e-ml)-
dT , a.c2 

- = - 1 -----:-
d.'I; (l-m') w1 T.'U'w2 

a';' 
dT (.V-.'I;I) a.'U" 
-=-T------
d;c' (1-m)w1 +mw, 

wher~ 
RT 

----2a 
m(l-m) 

+ .2 , '2 w1 = ql a.'U - a.'U 

a2;1 RT 
-_ -2a', - am'2 .'U' (l-m') -

~IJ~=Q~ -t a(1-.'U)2-a'(1-.'I;')2. 

Hence we get: 

(x-.'I;') [RT 2aJ (,'11-3..')[ RT, 2 a'] 
dT r .'U (1-.'11) dT .'U'(l-tC) 
-=-T j -=-T , (6) 
dm (l-.'U') w1 +.1"W~ d,v' (1-.'11) W 1 +,vw~ 

dT dT 
from w hieh we see i. a., that when e.g. - has been calculated'-I 

d,'U d,v 

can be found by substituting a/ for x, - T for T, - a' for a' and 
- a for a' and by then reversing the sign of the second niembel'. 

d2T d~T 
Tbe sa,me holds fol' d '2' when d .~ is detel'mined. From (6) follows 

lil tV 

for the point A, whel'e T Tl' x=x'=O, W1=ql: 

(
dT) Rl\2( (,V')) (dT) RTl~((X) ) 
d.'U 0 = - -q: 1- -;; 0 j d.'I;1 0 = -7 ;; 0 - 1 . (7) 

The initial dire..:-tion depends therefore on the limit of the value of 
m' 

We found for this expl'ession (l.c. p. 156): 

. . . . . (8) 
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lV' 
from which appears, i. a. that for a' -= 00, - approaches to e- ao , henCé 

m 

it approacheE. rapidly to O. 
dT 

Let us now differentiate the expression (6) for - with respect 
- dx 

to m. We find th~n, logarithmically differentiated: 

d~ T dT .'IJ(I-:I) (1- ~:')-(X-X')(1-2X) R(X-lV') dT -2a(l- dal) 
- - RT + lV(l-lV) dte dx 
dtlJ~ dx x2(1-tlJ)~ 

dT = T + ( Rl') -
(x-.'IJ') - 2a 

d.e .'IJ(I--m) 

dm' , dW I , dW2 
(W2-WI ) a;; + (1-.'lJ) d;+''lJ & 

(l-m') W1 + .1J'W2 
I 

We find therefore for T T1,m=m'=O, wheretherefOl'e RT -2a 
.'lJ(I-.'lJ) 

Rl' dWl may be replaced by (1 )' and w here - is evidently 0: 
.v -x d.'lJ 

or 

(
d2:) =(dT) [~(dT) + -<l-.{l-~- ~.-.• )(l-2:.) + 
dx 0 die 0 1 J d,'lJ 0 .l! (lV-lV ) 

1 (dT) 2a.'lJ(1-~) (W2-Wl)~J 
+ 1\ die 0- (x-m') R1\ - w

1 
• 

Now we must calculate the value of (dm') . 
dm 0 

Fl'om (6) fo11ows immediately: 
RT 
~---2a 

dal .v(l- .v) 

RT dm 
2a' 

w'(l-m') 

2a.v (I-lV) 

d ' '(I I 1-I'lJ .c -,v) Rl' 

d,'lJ - m (I-x) 2a'm'(I-.'lJ') . 
1-----::--­

RT 

hence for '1' = Tl : 

(
d.e') tC'( ) ( 2a"'lJ'-2a,V) ( W - ti! ) -d. =- 1+ (.'IJ-x') 1+ ' 1+ (x _.'lJ')_2_-.2. , 

,IJ 0 .'IJ RTl w1 
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or (R = 2)· 

- =- 1+ , + (x- x)- . (
cI,'I]') tI/[~ a'.c'-a.c , W2J 
dx 0 X 1 1 W1 

,'1]' 
80 this approaches to -, but as will appeal' presently, for the 

x -

determination of the term 

.'1](1-,1) (1- ::') - (,1)-,1)') (1-2x) 

we must a]so l'etain the tel'ms of lowel' order, as those of higher 
order disappeal'. yt{ e have fUl'ther: 

,1) 1-- = (.1)-,1) - te + (te-te) - = ( 
d,1)') " [lX'.c'-atc , W2 ] 

& ~ ~ 

= (te-x') [1-,'1]' \ a'te'~a~ + w2 1J = (,1)-x') (l-b). ! (m-,1) )11 w1 \ 

The term mentioned becomes therefore: 

(:v-m') (I-iC) (I-Il) - (1-2,1)) = (m-a') (,'I]-Il). 

Hence we get: 

( m') erm 1--

(
d

2
T) (dl') [2 (dT) .1)-1l ,1) lIJ'W2-W1] 

dx2 0= d.e 0 1\ d,l.' 0+--;-- (.e-.e)1'l -; tv1 ' 

(
dT) 2T 2( ,1)') 

Ol' introducing the value of Il, and of -d = - __ 1 1- - : 
,1) 0 q1 lIJ 

(d
2T) =(dT) [_ 41\(1_ 'C')+I_::[ a'm'-allJ + W2'J_~_,1)'W2-W1J= 

dx2 0 d,e 0 ql lIJ ,1) (,1)-x') 1'1 w1 Tl ,'I] tvl 

= - -- 1-- -2---r------j-1-- = (
dl') [4T1 ( JJ') ,'1]' w l ,,1)' x' a'm'-a,v a J 
diIJ 0 q1 m ,'I] W1 lIJ ,'I] (,IJ-X')l'l 1\ 

=(dl') [(1--.!!..- _ 4T1) + ,1)'ll + 41\_2 ~02 - n'lIJ'-am IJ. 
\..d,'I] 0 J\ q1 x q1 tv1 (,1)-iC') 1\ \ 

Now (w2)o = q2 + a - a', (w1)o = ql> so that we finally get: 

-2 =- - q1 1--, -4/1\+ - Iq1 + 41\ - 2 (ql1 a-a)-(d
2 T) 1 (dl') [( a) (,1)')' , 

dm 0 q1 drc 0 1 1 .1) 0 I 

-i:."'l~~~)· \J . . . . . . . . . . . . . (9) 

,1) 0 

where (~) has the value given in (8). 
,1) 0 
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T ' , (d2 T). l' d f h hlS expresslOll for d,v' 0 is stIll very comp wate , even a ter t e 

great simplifications, which attend the introduction of x = x' = O. 

Besides by a direct ca1culation, the cOI'l'esponding value for (~:~) 0 

mayalso be found by changing letters and signs as mentioned 
above, and the latter method is even the easier. Then we get: 

(~:~)o=:l(~,~)Iq{l- ~J+4Tl+(;')o!ql-4Tl-2(q2+a-a')-

• . . . . • • • • . . . • (Ûa) 

In the discuS&IOn of the two quantities - and -, ,two (d'T) (d2T) 
dm 2 

0 dm' 0 

hmiting cases are chiefly worthy of consideration, viz. a' = 00 and 
a' = O. Let us fUlther always put a (latent heat required for the 
mixing of the liquid phase) = O. 

a. For a' = 00 

, 
lIJ 
- becomes exponentially = 0, hen ce 
:IJ 

Lim. (a' :'} will be O. The two expressions are then traosformed 

into: 

- =-- q-4Tt- a2---(d' T) 1 (dT) [ (,V') , I ql (,V') ! J 
dm' 0 ql dllJ 0 1 1 .'IJ 0 '1\ ,V 0 

- =-- --a+ - a 2----(d'T) 1 (dT) [ ql, (lIJ)'j ql (al) IJ 
dm" 0 ql d,v' 0 1\ o'lJ' 0 1\ .'IJ 0 

1. e. into: 

(d'T) 1 (dT) I ( -~ =- - (ql-41\) d.v 0 ql dllJ 0 , 
(<1=00) .. 

d'T 1 dT , .'IJ (-) =-(-) X2a (-)=-00 dal' q dal .'IJ' o 1 0 0 

. . (10) 

These expressions teach us, that in case the solid phase contains 

very little or nothing of the second component, (dd' :) becomes 0, 
lI, n 

when ql = 4 Tl' In this case thel'efore the point ofinflection appeal's 
in the curve T. f (x) exactly at x = O. 
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(dT) td' '1') - being negative, ~-d will also be ne,gative if ql?>4T. 
dtc 0 ,'IJ' 0 

The meltingpoint curve will then turn its concave side to the m-axis 
at A, and no point of inflection will occur. This is in perfect agree­
ment with what we found in our former paper. 1) 

(d
2 T) (dZ') As to -d' ,we see that this expression, just as -,- will 

\ .:v 2 0 d.:v 0 

always be negatively llZ1'ge. For great a' the concave side of the 
curve T = I (.:v'), running almobt vertically downward, is turned 
towards the m-axis, but the curve T = I (m') finally touching the 
ordinate m = 0 asymptotically at T = 0, a point of inflection must 
at any rate be present beyond the maximum of the curve T = I (m') 
(see fig. 1; at L). 

This point of inflection L "'Will OCCUl' immediately aftel' the maxi­
mum at rn for large values of a', and these two points gradually 
approach the point A, where T = Tl' m' = O. _ 

As to the maximum 111" this is of course represented by 
wl (1-m)w l +mw.=0 (see (6»)orm= . NOWwl=Ql-a'm'=Ql,and 

~Ol-1O. 

W. = g. - a' (1- m'): = - a', when a' is large and m' very sma11 , 
hence t11e maximum occurs at 

q1 ql 1 
tcm=--=-=-. . ..... (11) 

ql +a' a' fJ' 
If therefore fJ' approaches to 00, then mm (so al60 :.c'm) approaches to O. 
As to the point pf inflection at L, the following remarks hold 

good for it. 
d.v' 

From the exprebsion for d.v (see (a) follows, when a = 0 aud 

a' is large: 

dT dT. m(l-.v) 101 = dT .. t(l-.v) ~ = dT .v(l-m) _1_ . (b) 
dm' d.v .v'(l-m') 101 +tc(1O.-101) d,1J .v' Ql-.va' d.v (IJ' 1-[1'.v 

At 6111aU x' we get: 
'1' T- 1 

- ET ' 
1 - _1 log (l-.v) 

91 
hence: 

dT 1\ RTl 1 R7\' 1 
-=-----=--- , 
d.IJ N2 ql l-m ql (1-m)(1+2&.v) 

as N2 = (1-& log (l-,x»2 = (1 + &J] + .. )2 := (1 + 2 Om). 

1) These proceedings, Febr. 25th 1902, p. 427 i Juue 24th 1903, p. 29-30. 
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We have therefore: 
dT RT l' x 1 Rl\ ~ m 1 
------ =----, 
da/- q1 ic'(I+2&ic)(I-[3',v) ql m'l-fJ',v 

when [3' is great with respect to e, and hence: 

Ol' 

or 

,v' (1-[3'm) dm, _ m (1-[3' lc-[3'm' dm,) 
d'T Rl\ 'dm d,'/} 

---
da/' q1 tC" (1- fJ'm)' 

Consequently this is 0, whE'n 

x' (1-'-[3'm) - = ,v l-fJ' ,v-[3'm' - . dm ( dal) 
d,v' d,v' 

d,v 
Now Vi'e may write for -, (see (b»: 

d,v 

d,v ,v-el-al) 1 
--, 

dm' m' l-Wm 

31 (1-31) = m 1-[3 m - " ( 
, {J'm (1-31») 

I-{:1m 

I , (1 l-m) 
I-al = l=-pm + l-fJ'm ' 

1 = {J' (1 + 1-~_) = {J' (1 + _1,). 
I-ij ,v l--fJm 

Fl'om this we find: 
{J' 

1-{J'm = I-fJ' = -1, 

sa finally: 
I 2 

mL = (i" . . . • . • . . • (12) 

being the value of x, at which for large values of {J' the point of 
- 1 

inflection will be situated aftel' the max.imum at x = 7i' (see (11». 

S,9 this value of x too approaches to 0, when [3' approaches to 00. 

It is now evident that accol'ding to (10) for large values of {J' the 

quantity (dJ T) approaches to - 00. Fol' already in the imrnediate 
da/' 0 

neighbourhood of A the direction of the curve T = J (x'), which was 
initially abnost vertical, changes into a lJel'fectly vel'tical direction at 
the maximum. 
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b) 'fhe other limiting case is a' = O. The expressions (9) and-(9a) 
take then the form 

I 

(~::)o ~ (~~}[91-4T1+(~)0 !q1+4T
l-

292 tJ I 
(:~).= q~ (~3).[q'+4T,+(~).! q,-4T~-2q.IJ \'. , 

or 

(d2~) =~(dT) [(91-41'1)- (til') ~ (91-4~\)-2(91-9,) IJ; 
dm 0 91 dm 0 mol \ !(a'=O),(13) 

(~::)o = 9~ (~,~)I (91 +41') - (;')o! (91 +4T1)-2(q1-q2)/J J ' 

whel'e according to (8) the limit of the proportion (~} is l'èpreseuted by 

I 9,( I 1) - -
( lC) = e- R l's - '1'1 ...... (14) 

m 0 

We see from these expressions; that even with iJ' = 0 a point oJ 
injlection at x = 0 (and so also be/ore it) is possible for the two 
curves T= Jex) and T = / (x'). For this it is required for the 
curye l' = J (x), thai 

Ol' 

or 

1 
(

,'Cl) 91-41'1 
-; 0= (ql-41'1)-2(ql - q2) 1-2 ql-q2 

91- 41\ 

- ~-~ =log 1-2--,,- . 92( 1 1 ) ( 91"-92 ) 
R 1 2 '1 1 91 - 47 1 

If 2 ql -q2 is not large, we may write for it by approximation : 
91-4 1'1 

92 (1'-T)-2 91-92. 
21\ '1'2 1 2 - 4'1'1 -91 

We see that in any case 4 ~~ -=.Q2 must be positive. 
1 91 

The condition may now. be written as follows: 

ql-q, = (4Tl-91) (T1-T2 ) = (1-~) (Tl_I) 
9, 4T1 '1.'2 \ 4'1.\ 1', ' 

hence 
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ql T~ q2 
. . . . . . . (15) 

4Tl Tl _ 1 
T 2 

If e.g. TI = 1100, T~ = 900, '11 = 2200, q2 = 1980, the first 
- I~_l~ [ 

member is I/~, the second mem~~r 11i9_19, so also 1/,. The term 

q --q 440 ] 
2 ql ~4;\ under the log-sign is _here 22~0 = 1/6 . 

Even with (J' = 0 a point of inflection can very weU occur 
somewhere in the curve T = j (x). The corresponding condition for 
the occurrence of a point of inflection at x = 0 in the curve 
T = j (x') becomes: 

(
/lJ) ql+4TI 1 
-:d 0= ql+4TI-2(ql-q,) = 1-2 ql-q~ , 

, ql+4TI 

or 

i. e. ~ _ q~ T~ . . . . . . . (Ua) 
4TI ,Tl' 

--1 
T~ 

If e.g. TI = 1100, T2 = 900, qt = 2200, '12 = :1,650, the first 
4/ _11/ 

member is again 1/2, and also the second member is 1:/
9 
-!-; = 1/2, 

[ 
qt-q2' 1100 1 ] 

The term 2 41' IS now 6600 = (3 . 
ql+ 1 

Also in the cnrve -T = f (x') a point of inflection may occur even 
with {J' = O. 

And now we have given a 'complete answer to the question 
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raised in the beginning of t 3. The point of inflectioll at L (fig. 7) 
need not have disappeal'ed in e1the1' of the two meltingpomt-curves, 
w hen (:1' has reached the extreme value O. 

In a following paper we shall give a fuller discussion of the 
important limiting case (:1' = O. 

-/ 

4. Finally we wish to discuss more at length an important property 
of the ezttectic point C, which was only shol'tly ~mentioned in tho 
preceding communication. (l.c., p. 166):-

A ru Ie was namely given th ere of very general applic~tion, i. e .. 
When a' 1 = a', (i. e. latent heat required for the mixing of the fil'st 

component with x = 1 is equal to that of the second component with 
x = 0) the compositions of the two soliel )Jhases will be c0111l?lementa7'Y. 

We sha11 proceed to give the pro of of this thesis. 
Evidently the system of equations holds for the eutectic point (the 

compositions Xl' and x/ of the solid phase are there in equilibrium 
with that of the liquid x) : 

RT, {V~' 
1 + -log-

T{ 1-~ (:1' (1-,V/)2) 

RT - m' 
I + -'log..2. 

q, m 

Rl\ 1-:v,' 
1~-log--

'Ql l-,v 

. . . . . . . (16) 

q. m 
If we solve from this log (i-x) and log :1.', we get: 

log (I-x) = log (I-all) + ~ (~1 - ~,) + !~l (:1' xt" I 
log x - log x' + q~ (~-~) + ~ (.I' (I-x' )2 

- 1 RTT RTt' 1 
• 

log (I-x) = log (l-m',) + ~ (~1 - ~,) +- ~~(:1' x," \' 

l l ' + q. ( 1 1 ) + ql I:)' (1 ' )' og x = og X 2 R 1'. - T Rl' t' -,v, 

from which follows by equalization: 
1 ' v ' q log -'V1 = ~ QI(m IJ_x 12). log :2.. = _1 ,:}' [(l-,u ')2_(1_.'l) ')2] 
1 ' R'l' t' 2 l' 1 Rl' t' , l' -X

2 
a: 2 

which IS evidently satisfied by 
,rc2 ' == i-Xl' , . (17) 

q. e. d. 
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"On possible forms of the meltingpoint-curve for binary mixtures 

isomorphous substances ... (2nd communication). 
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The two above equations pass now_into one: 

1-IC/ ql , 
log ---:;;-;- = Rl' f1'(1- 2$1) . 

1 e 
. . . . (18) 

In this complementary composition we haye a distinct criterion, 
whether or no It is allo wed to put 0.'1 = a'2 (i. e. l' = 0). Further 
the equation (18) furnishes a simple means, when l' may really be 
put = 0, 1'01' calculating the quantity l f1'om the cornposition xt' of 
the solid plwse at the eutectic point. 

If we find e.g. X'l = 0,1, we may find by means of Tc = 500, 
ql = 2400. 

2400 
log 9 = 1000 tJ' X 0,8, 

hence: 
, 25 

f1 = 48 log 9 = 1,14. 

If x' had been 0,01, we should have found with the same vallles 
of Te and ql: 

12 , 
log 99 = 5' f1 X 0,98, 

hence. 
, 125 5 

(.I = - log 99 = 1,9 . 
IJ 294' 

It is seen, that a slight increase of W IS able to depress the 
composition Xl' of the solid phase at the eutectic point very strongly. 
This is of course in connection which the enol'mously strong decrease , 
of the- relation :. wlth increasing {1'. This relation was e.g. for T Tl 

IC 

and great {1' represented by 

verges very quickly to 0. 
(

IC') _ - _e 
tlJ 0 

a' 
RTl 

(see § 3), which con-

Chemistry. - "The phenomena of solidification and tmnsforrnation 
in the s.llsterns NIL NOa, AgNOa and KNOa, AgNO •. " By 
Professor H. W. BAKHUIS ROOZEBOOM. 

(Communicated in the meeting of September 26, 1903.) 

Of the nitrates of univalent metals, those of Li, Na, Ag, NR., K, Tl 
have been studied more in detail as to their mutual l'elations. lt 
has al ready been shown that the nitrates of the fil'st three are very 
pl'one to yield mixed crystals and the same takes pI ace with the 
last thl'ee. Li NO, and also Na NOB do not seem to form with the 


