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triple point, added anthraquinone in solid condition will not pass
into the vapour state. Then z; = I and xy=— 0. We get:
Ti}—’- _r—a(r 4 4)
dT' ™ vy — v (vg—10s)

The quantity 2 is now the latent heat of liquefaction of anthra.
quinone. B

For vanishing value of x; we find increase of p with 7', as is
found in case of equilibrium between liquid and-vapour. In neither
of these cases the numerator can become equal to zero when a
small quantity of the second substance is added to the principal
substance. ’

But I shall not enter into more particulars, nor discuss the treat-
ment of special circumstances. If they are brought to light by the
experiment, they can necessarily be derived from the above formulae.
Nor shall I discuss the v, 2, 7" curves, which would lead to greater
digressions. For this discussion we should have to make use of
two equations, of which that for the coexistence of liquid and vapour
occurs in Cont. II, p. 104. For the w».u projection of the three-
phase-equilibrium we get for anthraquinone and ether two separate
branches, lying outside the limits of the maximum and the minimum
value of 2 mentioned above. When these two values of « coincide,
these branches meet, intersecting at an acnte angle; at further
modification the two v,z curves, viz. those for liquid and vapour,
will yield a highest and a lowest value for the volume; at any
case the v,o curve for the vapour phase. As appeared in an oral
communication, Dr. Symirs had already arrived at this result.

I shall conclude with pointing out, that eases of retrograde
solidification must repeatedly occur, both when the temperature is
kept conmstant with change of pressure and when the pressure is
kept constant with change of temperature.

Chemistry. — “The possible forms of the meltingpoint-curve for binary
miztures of isomorphous substances.” By J. J. van Laan
(2rd communication). (Communicated by Prof. H. W. Baxsuis

Roozgsoom).

1. My investigations concerning the possible forms of the melfing-
point-curve for binary mixtures of isomorphous substances, commu-
nicated in the Proceedings of the meeting of the 27t of June 1903,
have, apart from the different theoretical considerations, led to the

following practical 'results. -
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a. When the latent heat of mixing in the solid phase & = ¢, '
is great, the solid phase contains but very little of the second com-
ponent. The portion of the meltingpoint-curve which may be realized,
has a course as in fig. 1 (see the plate). The curves 7= f(a), viz.
Aa and Bbd show mazima at m and n, which maxima descend
gradually for smaller values of ' till they are below « and &, the
maximum at 7 sooner than that at m. (fig. 2). [We leave for the moment
out of consideration what happens below the horizontal line through
the point C, the eutectic point: for this see my preceding communication].

6. For smaller values of 8 we get the case of fig. 3, where the
branch BC shows a minimum, no longer below the temperature of
C, but exactly at C. Immediately after (1. e. when § is still somewhat
smaller), the wmeltingpoint-curve assumes a shape as in fig. 4. C
remains the eutectic point, where the two branches of the inelting-
point-curve meet with a break. As appears from the figure, we
have now got parts of the meltingpoint-curve, which may be realized,
also below the point C (see also fig. 14 and 14a of the communi-
cation referred to).

It is however very well possible, that in the meantime the minimum
at D has already disappeared, and then we get a course as is
represented in fig. 5 (observed i. a. by Hisstnk for mixtures of
AgNO, and NaNO,. (see also fig. 145 lc.).

c. TFor still smaller values of 8 the curve T'= f(z’) becomes
continuously realizable. The points b and a coincide in a point of
inflection b6, a with horizontal tangent (fig. 6), which point of inflection
soon ‘passes into one with an obligue tangent L (fig. 7), while in most
cases it disappears afterwards altogether for still smaller values of
g. (fig. 8).

The break at C has disappeared in the case of fig. 6 and from
this moment there is no longer question of a eutectic point, and
the meltingpoint-curve assumes the perfectly continuous shape of
fig. 7 and 8.

d. As has already been observed in 4, also the minimum at D
will sooner or later disappear. For very small values of §' we get
then always a course as in fig. 9. '

Observation. As has been elaborately demonstrated in the preceding
paper, a maximum at 4 for normnal components can never occur
with positive values of the different absorbed latent heats of lique-
faction and mixing (see p. 156 L c¢.). When such a maximum is
observed, as was done e. g. by F. M. Jakcer®') for two isomeric

) Akademisch Proefschrift (1908), p. 178—174.
- 17
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tribroomtoluols, this always points to difference in size of the molecules
in the liquid and solid phase®). In fact Jamcer, found that his
isomers are very likely bi-molecular in the solid phase *).

2. We may now put the question: When will the minimum at
D, which will disappear in any case for values of B’ smaller than
those for which fig. 8 holds, disappear before the case of fig. 6, so
that a course as in fig. 5 becomes possible; and when will it disappear
after the case of fig. 6, as has been assnmed in our figures 6 to 8.

To answer this question, we shall first state for what-values of g’

the case of fig. 6 occurs.

Yo

The point b,a lying then on the top of the curve PR 0 at

=/, *), we have, besides the equations (2) for a’="/, (see p. 153 1. c.),
0% RT B
also the relation 'Q =0 o ———2d¢ =0, i. e. with B=2
0. &(1—a')
the relation 7'=— e’2’(1—a’).
The condition sought is accordingly :

1 " 1g
r(i-g#) n(i-ge)
T 4 _ 4 q, :l._

~—  RT, 05 7T, 05 40k
1+'—"‘l091 1+ log———

1 2

for which with regard to the fundamental equations, some simplifying
bypotheses permissible for our purpose have been made, which may
be found on page 152 of the paper mentioned.

Now we can solve (B ==2):

I g lg, laaq )
20148 = ' A0 43 11
0.5 ( 8- 4TB) 10’5 2(1 4q, 4T,g,ﬂ
y  0g— = 1

lo
I1Te g & 2 g
9

hence, as (1—a) +a=1:

1 1
—[5-10+22)] lme-1C )L
¢ ke w b =2, (1)
N : T
) See p. 208 and 209 of the “Proefschrift”, where JaegEr gives the proof of
this thesis, which I had communicated to him in a letter.
%) See p. 208 and 194 of the “Proefschrift”.
3) Only if we assume a2y ==&y (s0 b =), this parabolic curve \ull be sym-
metric and its top will be exactly at 2'=1,.
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and this is the equation, from which 8’ can be solved. Unfortunately

however g’ cannot be solved from this in an explicit form.
Now the minimum disappears, when (see p. 168, 1. c.):
T —-T

fm 2 . 2

B="5 @)

That this takes place exactly at the same moment as that at which
the case of fig. 6 occurs, is expressed by the relation:

T 1 T 1
—2|pmg-1(4) | e+ 3]
e 17 3 1 +G Grd1— 4, 2 — 9. (3)

If we write for shortness :
T dq T, ( 9. P, )
—=p, i =g . s0 ——=—12
T, ' T, ? T, 7, P ’
the equation (3) becomes:

@, A
_ 2[_5___1_(1 +¢1)J —2[—’1’-—-—~—~1-(1 T 9.)

o 1—2 4 Le ¢ 1—2 4
where 2 will always be < 1 (T is assumed < T7).

It is now easy to see that there are always corresponding values
of 2, ¢, and ¢, to be found, which satisfy (3), so that the minimum
may just as well disappear before as after the case of fig. 6. In
order to define the limits of 7}, T}, ¢, and ¢,, in which either the
one or the other will occur, we shall express e.g. ¢, in function
of ¢, and 2. We get then successively:

:lz 2, (3a)

1 2 1 P, 2
—(1 _—— — (1 —9Xli_~
A+ —7— U+ 0. 127
7 +€ =2,
1 0 2 1 ¥,
27t 1= 2 1—i -1
o . 1=t _ o~ ’
1 Py A _1/9 1/2 (pl_'—?—
—p, — 2 == 2 — -
5 R o 1—2 log( e ¢ 1 ).),
so finally:
2
1 1 _—
log (23 /s e/2 71 1) .
i : 1 2 4 )

This will be equal to O (first limiting-value, 252 cannot become

7,
<0), when
17*
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-2
__1/ _ 1/29) PO —
2e 2"—3 ' 1_2':17
or
1 2 "'1/3
/2¢1'—-1——7:Z09(26 _1):—"'115467
50 when -
4
¢, = —— — 3,002
T 1—4
or
42
931—_—’1‘:3‘}‘01908 (p,=0). . . . (5

The quantity ¢, will be o (second limiting-value, as %?— may
2

have all values up to o), when

1 2
T el
i. e. when
42
wl:i_—__}: (q)ﬂ:oo), . . . (5(’4)

It is evident that the difference between the two limits of ¢,
is exactly 0,91.
We have now the following survey for different values of 2.

A=—=0 A=1, A=/, 2=7?, 2a—=1

P, =0 | ¢, =091 ¢, =224 | ¢, =491 |, =1291] ¢, =
g, =0 | ¢, =20 0, =133 | ¢, =4 ¢, =12 P, == ®

From this we see, that ¢, = %’- may have all values from O to
2

o, but that the values of ¢, :—g,i are limited to an inferval, which
1

varies with the value of 2 = . The greater 4 becomes, i. e the more

Tl
T, approches to 7, the smaller this interval comparatively becomes;
so the value of ¢, required must then become larger and larger.
All this applies to the case that the minimum disappears at the
same moment as in the case of fiz. 6. It is easy to see that when
the minimum disappears before the case of fig. 6 the value of ¢,

will have to be larger than-that which is determined by (4) for



( 949 )

given values of @, and 2. The oppoiite case, 1. e. that the minimumi
disappears after the case of fig. 6, will take place when ¢, is
smaller than that value.

For, when the minimum has already disappeared, the value of
Tl;é. We must accordingly

1

substitute a smaller value of 8 in (1), or what comes to the same
thing, give a higher value to 7, i. e. increase the value of 4. But
it is obvious from the above table that when 2 increases, a higher
value of ¢, will correspond to the same value of ¢,. -

Let us take as first example 7, = 1000, 7, = 500, ¢, = 4500
Gr. cal., g, = 250 Gr. cal. 2 is therefore = */,, ¢, = 4,5 and ¢, = 0,5.
The value of ¢, ranges therefore within the interval 4 to 4,91, which
holds for 2="1/,, so that it is possible, that the minimum disappears
in the neighbourkood of (or exactly in) the case of fig. 6. The condition
for its disappearance for the value of g’ corresponding to that case,
would be that there corresponded to A =1/,, ¢, =— 4,5, according
to (4), a value of ¢,, given by:

g in fig. (6) will be smaller than

»

 log(1,2181 — ¢ 1,78 _ log 1,0822
$= 0,5 "'4/9 o l/w

So to ¢,=10,50 corresponds a greater value of ¢, than the one
given, viz. 4,5. This value is therefore foo low, and the minimum
will disappear afier the case of fig. 6.

Second example. Let 7, be again 1000, T, be 500, but now
g, = 3000, ¢, = 1000.

We shall not have to execute any calculation now, as this value falls
beyond the interval 4 to 4,91, ¢, being 3 with A =1/,; ¢, is much
too low to be able to correspond with any value of ¢, whatever,
and again the minimum will have to disappear when the case of
fig. 6 ocecurs.

If on the other hand 7} had been 1000, 7', = 500, ¢, = 5000,
g, = 2000, then it would be clear without any calculation, that now
the minimum ZAas already disappeared when the case of fig. 6
occurs, ¢, =25 now lying bdeyond the interval on the Aigh side.
A course as in fig. 5 therefore becomes now possible, when the
value of B’ lies between that of fig. 3 and fig. 6.

The case of fig. 5, observed among others by Hissivk in mixtures
of AgNO, and NaNO,, belongs therefore to the possibilities, and can
occur for given 1, 7, and ¢, as soon as ¢, has a sufficiently
lagh value, or what comes to the same thing, as soon as for given
T, T, and ¢, the quantity ¢, has a sufficiently low value. The

— 0,571,
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value of %f— or ¢, must then be smaller than that calculated from

H]
(4). If we then find a negative value for ¢,, the case of fig. 5 is

entirely excluded for the given values of T, 7, and g¢,. In the
equation (4) we have therefore at any rate a criterion to determine
whether or no the case of fig. 5 can occur, when the value of g
lies between those to which the figures 3 and 6 apply.

3. Another important question will be, when the point of inflection
L witk oblique tangent (fig. 7) will disappear, and whether it can
still be present e.g. with 8'=0. B

) . d arT
Let us for this purpose determine the values;!‘—,and 7o

7
We found before (l.c. p. 155).

0*¢ 0'¢'

' ! —_— L-__‘-’ —_—
ar , (e w)a.e;’ ] ar (= z)am"
e (—d)w, 2w, 'odd (1—2)w, 42w, ’

where
0% RT 0*¢  RT .

_ —_— 2 ’ —_—— ) a,
0®  a(l—a) “ T2 &' (1—a) -

w, =gq, + a2’ — da’”® w,=¢, + a(l—a)*—a'(1—a).
Hence we get:

J_RT | BT o
— _ -y _
aT_ T(”’ T 4T N o=

——= ; s o= T » (6)
da (1 —2")w, +a'w, da' (1—a)w, +aw,

’

T ar
from which we see i, a., that whene.g. o has been calculated,d—TJ;

can be found by substituting 2’ for 2, — T for 7, — a’ for &’ and
—a for & and by then reversing the sign of the second member.

2 37"

a7
The same holds for T when -

for the point 4, where T'=T,, a=a'=0, w,=q¢,:

@)= 0-C)) @) =" o
dz /, 4 & Jg da' /, & T/

The initial direction depends therefore on the limit of the value of
/

2. We found for this expression (L.c. p. 156):
&

& 1 +o-—d
Zo.q (—) = 72—(?“_5[?———'— — -g;"- ) . . . . . (8)
v Q 1 2

is determined. From (6) follows
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w!
from which appears, i.a. that for o’ = oo, —approachestoe—=, hence
X

it approaches rapidly to 0.
ar
Let uws now differentiate the expression (6) for . with respect

to 2. We find then, logarithmically differentiated :

da'
(1 -— |(z-2')1-2 -2y dT da'
BT 4T RT@(I ) (1 da:) (z-2"Y(1-22) R 'c) 2a(1__w)

W @ 20—y + .z(l—a;) dw dz
E ST * (z—a") ( i - Za) -
die 2(l—=z)

da' dw dw

2

(w5 + (1—a) =24 o =

&

1—2z)w, + .7)"@02

We find therefore for 7=71,, z=2z'=0, where therefore ( )——2a
oL —a
RI dw, | )
may be replaced by w2 and where =, evidently O:

de'
pTN _(dr 1 74T ia;(l )( ) (e—2a') (1—2%)
(Z{é?)n_(%)olig_vl(%)o l x (z—a') +
dz da'
sy 2us(1-F) (w,—wl)ﬁ

T \dx (x—a') RT, w

1

d
Now we must calculate the value of ( ;) }
& 0

From (6) follows immediately :
RT

—_— 2
' wl-a) o wda (w—w) @
—= — . - B
da R1 94 w,+a' (w,—w,)
w'(1—a')
or )
' | 1 202 (1—a) 1_{_ﬂ}w,—_w_1
de'  &'(1—a') RT . w,
dv  a(l—z), 2do'(l—2) —w,’
122278 BT
RT o w,

hence for 7'= 7,:

dw @' . 2e's’—2a0) L aW—wy
o)+ )
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)

(—%) :’EJF e w)—}

!
So this approaches to Z:—, but as will appear presently, for the

or (R:ﬁ)

determination of the term B

2(1—a) (1— g_:-') — (z—a') (1—24)

we must also retain the terms of lower order, as those of higher
order disappear. We have further: -

de' . [ed'—az _
w(l—gg):(m—zv)——mli T. +(w—w)—]_

= (a—a) [1_m' (ﬂ%#_‘i ]—(m_m)a 2).

The term mentioned becomes therefore :

(z—a') ((1 —a) (1—A4) — (1—2:1:)) = (z—a') (z— 4).

Hence we get :

ml
(d’T) (dl) Z(dT LoD “"”(1"2) m'wﬂ—wil

da? du T\ dw & (e—u2)T, & w,

71
BT _ d_]_ —__4_:1; 1___’ +1_.z aa a.'w_l_z_v_ __ﬁ_f:wz‘“ﬁ _
do* ), \de J,| ¢ @ | (w-2)T, T, » w,
dT I~ 4T z' dw, & o da'—ax
el -2 e s e 1 =
az /| q ew, @ we—a)7, .[1
'd’]') —( a 4T, :I
BTN 14T \ |
= 1—— | =47 -47', -2 —a) —
(dw“ )o 7 (d:v) [91( T) 1+( ) ,(]1‘} 1 (9,1 e—e)

Now (w,)n_q,-|-a-—a wl)o_gl, $0 that we finally get:
&'
a’(—)—a
& 8 u@)

_/dTl aTz/. o
or introducing the value of A, and of (—v—) =— (1—-):

47 w oz’ —ax

1+—._—2—=*—

!
where (3> has the value given in (8).
& 0

-10 -
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. e (BTN : :
This expression for ~= | is still very complicated, even after the
2/,

great simplifications, which attend the introduetion of # =2’ = 0.

aT
Besides by a direct calculation, the corresponding value for ( d’c”)
“ 0

may also be found by changing letters and signs as mentioned
above, and the latter method is even the easier. Then we get:

()72 Lo (7)o (G
](9)

aT T
In the discussion of the two quantities and ,» two
da? /, da'* /|

limiting cases are chiefly worthy of consideration, viz. o’ — o and
e’ =0. Let us further always put « (latent heat required for the
mixing of the liquid phase) =— 0.

(v
a. For ¢ = — becomes exponentially = 0, hence
T

4T, —2(g,Fe—a) —

ml
Lim. (a' ;) will be 0. The two expressions are then transformed
0

into :
4T 1/7dT & q, (&
= — —4T —ldl2— L =
(d“" )o 7 (dx)ol:gl 1+(‘”)oa Tl(""')o :|
PIN LAV 8y y (2 plg . (™
da* ), ¢, \dv'/, T, 2/, T\ /,
1. e. into:

d*1 dT
47
&)=z (d )41
(@) =0 () e ()=
daz'? ‘]1

These expressions teach us, that in case the solid phase contains

very little or nothing of the second component, ( ) becomes 0,
<

(f=0). . . - (10)

da®
when ¢, = 4 7. In this case therefore the point of inflection appears
in the curve T, f(z) exactly at 2 =0.

-11 -
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i | ey o
— | being negative, | — | will also be negatwe if ¢,>47"
dz /, ds* /| ‘

The meltingpoint curve will then turn its concawve side to the z-axis
at A, and no point of inflection will occur. This is in perfect agree-

ment with what we found in our former paper.?) -
a'T . S al .
As to {-=; ), we see that this expression, just as [~} will
) da' /, dz J,

always be negatively large. For great o« the concave side of the
curve T = f(a'), running almost vertically downward, is turned
towards the az-axis, but the curve 7I'=— f(z') finally touching the
ordinate # =— 0 asymptotically at 7’=0, a point of inflection must
at any rate be present beyond the maximum of the curve 7'= f ()
(see fig. 1; at L).

This point of inflection L -will occur immediately after the maxi-
mum at m for large values of «, and these two points gradually
approach the point 4, where T'= T, 2/ = 0. )

As to the maximum m, this is of course represented by

(1—a)w,~4zw,=0 (see (6)) or z = . Now w,—=¢q,—d'z*=¢q,, and

W, — W,
w,=q,—dl—2a)=—4d, when o is large and #' very small,
hence the maximum occurs at

q ¢, 1
By == — ,=_——f—;—_-—r. (11)
G ta @ i3

If therefore ' approaches to oo, then &, (so also 'y,) approaches to 0.
As to the point of inflection at L, the following remarks hold
good for it.
W

iH
— (see (@) follows, when « =10 and
l?l'

From the expression for =

d is large:
dr 4T &(1-z) w, _dT a(l-a) ¢, _ dT a(l-2) 1 0

dd ~ da a'(l-a")w, +a@w,~w,)  de & gq-ed  de o 1-fa

At small z' we get:

T = =
- RT '
1——"2log(l—a)
1
hence :
dT _ T,RT, 1 _ RI; 1
de N l—a g ()1 +26)

as NP=({1—blog(l—a))* = 1 4+6u4.) = 1+ 268,
1) These proceedings, I'ebr. 25th 1902, p. 427 ; June 24th 1908, p. 29--30.

-12 -
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We have therefore :
dT _ RTja 1 _ RT¢s 1
@~ ¢ ¢(0+200)(1—Fa) ¢ o 1-Ba
when B is great with respect to #, and hence:

dw dx
lf A — 1___!‘___ I‘l'_____
eor  prpt0TEA e ( Fa—p d.ru’)
da™ 7, - a2t (A-Ba)y
Consequently this is 0, when

dz du
2 (1—pz 7 = (1-—6’ a—p'a Ez?)

da
Now we may write for 7 (see (0)):

dv _ a(l—a) 1
e o 1—@z’
2

$0 that ——— =20, when
d=
! 1__
z(l—z) ==z (1—6’ & — E‘f_(__,f))’

1—B=
or

C g == 1fl (1 + 11:;.@)’

, 1—z N\ 1

From this we find:

or

1—fa=

B!’
L=,
128
so finally :

v 2

mL:—_E,.........(12)

being the value of z, at which for large values of §' the point of
. . . . . 1
Inflection will be situated after the maximum at sz’ (see (11)).

So this value of z too approaches to 0, when 3 approaches to .
It is now evident that according to (10) for large values of £ the

2T

quantity ( = m) approaches to — co. For already in the immediate
L?l‘ 1Y

neighbourhood of A the direction of the curve 7'= f (2'), which was
Initially afmost vertical, changes into a perfectly vertical direction at
the maximum.

-13 -
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) The other limiting case is & = 0. The expressions (9) and (9a)
take then the form )

@@t Q) Jrrera ]|
(ﬁ)o‘%@f) [aamor (5) famsraal])
D HDfomr-orrrn]
(G) = ()| a+en— ()j@1+4’m ||

where according to (8) the limit of the proportion (T) is represented by

(ﬁ):e-—%(%—-;—l) N T

&

We see from these expressions, that even with 3’ =0 a point of
inflection ai #=0 (and so also defore it) is possible for the two
curves T'=f(x) and T =jf('). For this it is required for the
curve 7 = f(x), that

(m') . q,—4T. 1
z u_ (g, —47T)—2(g, - ga) 19 N7 ‘i Qn
q,— 47T,

o/l 1 7,4,
e Y= log [ 1—g 21 ;
R(T 7’) og( 7 — 47')

If 2 —g:!% is not large, we may write for it by approximation:

or

%4 ‘
9.4
T'—T)=2_—-"—. ‘
2 11 g ( 2) 4_([1'1_91 R
We see that in any case 4?[:—% must be positive.
—

The condition may now be written as follows:

Gi—9 (4T, —q,) (1\—1T)) —{1— iy i,l._l
s - AT, T, - 4T 7, ’

_T o (T,
7. T, 4T \7, /)

or

hence

-14 -



T, q
) o T, ¢
R 6 14
AT, T, (13)
T

If eg. T, =1100, 7, =900, ¢, = 2200, ¢, =1980, the firs

11 10
member is 1/, the second member 1{; / —, so also '/, I:The term
¢4 o 440
der tl - —— =1L
AT, under the log-sign is here 300 — /5]
Even with 8 =0 a point of inflection can very well occur
somewhere in the curve 7"—= f(z). The corresponding condition for
the occurrence of a point of inflection at 2 =0 in the curve

T = f () becomes:

(ﬁ): ¢ +47, 1
' 0 gl+4T1_2(QI'—92) 19 2143 91— 9s

91 +4T,
or
(1 1 ¢,
2 | = —log | 1—2
H(m—w) = ()
for which we may write for small values of ¢, —g,:
qs v —4
- (T, —-T)=
2T1112 ( 1 2) 2 +4:T

This is only possible when ¢, > q.. Aga,m we may write:

@1 — (91+4’T )(T T) (1 + 411) T1 1)’

7 AT\T, T,
9 T, q (T,
] —=— ——1],
' gﬂ T3 + 4T1 (1‘2
o_ T
i e. 91 ga T,
— N A 1
T I (15a)

If eg. T,=1100, T, =900, g = 9200, g, —1650, the first
4/3_11/9

member is again !/,, and also the second member is = ) =1/,
9

7:—9q, . 1100 1
2 = —— =,
[The term 4T, I8 NOW e = &
Also in the curve 7'= f(2') a point of inflection may occur even
with g/ =0.

And now we have given a ‘complete answer to the question
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raised in the beginning of § 3. The point of inflection at L (fig. 7)
need not have disappeared in erther of the two meltingpomt-curves,
when f’ has reached the extreme value 0.

In a following paper we shall give a fuller discussion of the
important limiting case §'=0. -

4. Finally we wish to discuss more at length an important pﬂ)/perty
of the eutectic point (, which was only shortly mentioned in the
preceding communication. (l.c., p. 166).

A rule was namely given there of very general application, i.e..

When o, =o', (i.e. latent heat required for the mixing of the first
component with =1 is equal to that of the second component with
& =10) the compositions of the two solid phases will be complementary.

We shall proceed to give the proof of this thesis.

Evidently the system of equations holds for the eutectic point (the
compositions z,” and 2,” of the solid phase are there in equilibrium
with that of the liquid «):

' 1 1__6’ 1—?/ ) m ! 13

re D008 T2 0-a7)  pa_pen

- T,, l—a _[' -z’ . RT,, l1—g
1 —|- log 14 log — 1e—Zlog —2

—u 25 % l1—a

T, (l———B’(l a,)’)

= , .o .o R € 1))

1—{-— ’lo_q—

If we solve from tlus log (1—=) and log 2, we get:

1 2,
T, )+Rf

log (1—a) = log (1—d',) + =

11 . [’
7 oT) Tl

1 1
log & = log &', R (.’[’ T) 3' (1—d )
#(r.)

log (1—a) = log (1— 2',) +

1
logz =log 2, -l—q’( )-l—l%:' (1—a,)

from which follows by equalization :
1__‘,311 !

"v
R0 9Y: log L —
1__312, RI‘S (rﬂ a’l )’ Og wn

which 15 evidently satisfied by
e =1—a', . . . . . . . 17

log =5 B [ —2,) —(1~a,)],

Rl'

g.e. d.
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!

The iwo above equations pass now_into one:
1_'7"1 4

= '"1—22 . . . . . . (1
l?}1/ Rz’e ‘3(1 a’l ) ( 8)

In this complementary composition we have a distinet criterion,
whether or no 1t is allowed o put o', = ¢, (i.e. » =0). Further
the equation {18) furnishes a simple means, when r may really be
put =0, for calculating the quaniity 3 from the composition z,' of
the solid phase at the eutectic point.

If we find e.g. 2/, =0,1, we may find by means of 7, = 500,
q, = 2400.

log

2400
log9 = —— 8' % 0,8
og 9 1000 8 < 0,8,

4:8

If 2’ had been 0,01, we should have found with the same values
of T, and ¢, :

12
log 99 = — 8 X 0,98,

hence .
125
' = — log 99 = 1,95.
' B=554"0 95
It is seen, that a slight increase of ' 1s able to depress the
composition z,' of the solid phase at the eutectic point very strongly.

This is of course in connection which the enormounsly strong decrease

4
- z . . .
of the relation ~ with increasing p’. This relation was e.g. for 7'=17T",

al

z' Ei'_l .
and great B’ represented by (—— —e (see § 3), which con-
& /o
verges very quickly to O.
Chemistry. — “The phenomena of solidification and transformation
in the systems NH, NO,, AgNO, and KNO,, 4gNO,.” By
Professor H. W. Bakuuis RoozeBoom.

(Communicated in the meeting of September 26, 1903.)

Of the nitrates of univalent metals, those of Li, Na, Ag, NH,, K, Tl
have been studied more in detail as to their mutual relations. It
has already been shown that the nitrates of the first three are very
prone to yield mixed crystals and the same takes place with the
last three, LiNO, and also NaNO, do not seem to form with the

-18 -



