Huygens Institute - Royal Netherlands Academy of Arts and Sciences (KNAW)

Citation:

J.J. van Laar, On the shape of meltingpoint-curves for binary mixtures when the latent heat required for the mixing is very small or $=0$ in the two phases, in:
KNAW, Proceedings, 6, 1903-1904, Amsterdam, 1904, pp. 518-531

This PDF was made on 24 September 2010, from the 'Digital Library' of the Dutch History of Science Web Center (www.dwc.knaw.nl)
> 'Digital Library > Proceedings of the Royal Netherlands Academy of Arts and Sciences (KNAW), http://www.digitallibrary.nl'

0	$p\left(15^{\circ} .7\right)$		
1864	$p\left(15^{\circ} .7\right)$	$\Delta p 93$	Δp
39820	26259	2636	027
31790	3285	3296	033
26440	39.43	3958	037
22610	46.00	46.22	048
19760	52.57	5284	0.51
17550	5914	5945	0.53
15790	65.71	66.04	050
14340	7228	7269	056
13140	7885	7933	061
12140	8542	85.88	0.53

sures, whereas the determination of the pressure in 1864 with an open manometer 65 meters high has been very difficult. $3^{\text {nd }}$ Comparison of the accurate hydrogen isotherm of Schalkwijk (Diss. 1902) with the values extrapolated from Amagat's determinations gives differences of about $0,1 \%$.

Chemistry. - "On the shape of meltingpoint-curves for binary mixtures, when the latent lient required for the mixing is very small or $=0$ in the two phases." (3rd communication). By J. J. van Laar. Communicated by Prof. H. W. Bakhuis Roozeboom.
I. By the side of the ideal case, that the latent heat of mixing in the liquid phase $=0$, whereas it is ∞ in the solid phase ($\alpha=0, a^{\prime}=\infty$) so that the solid phase consists only of one component - there is another case, also ideal, viz. that the latent heat of mixing $=0$ in both phases, or may be neglected. ($\alpha=0, a^{\prime}=0$). The solid phase consists then of the two components in a proportion which is comparable to that in the liquid phase.

The former ideal case is that of the processes of solidification, in which no solid solutions (or mixed crystals) are found, the latter may be appropriately called the ideal case of the mixed crystals.

To consider such ideal cases has always this use - apart from
the simplifications in the considerations and calculations - that these cases may be adopted as the normal ones, from which all the other cases are to be considered as deviations in greater or smaller degree.
In our case the consideration of the limiting case $a=0, a^{\prime}=0$ offers another advantage, viz. that much of what will be deduced in what follows, may be transferred with some restrictions to the boilingpoint-lines for ideal liquid and gaseous phases. For the thermodynamic relations of equilibrium agree perfectly, when the distinguishing feature between the two kinds of equilibrium, viz. the degree of the mutual influence of the two components in each of the phases has vanished. The dufference consists only in this, that for the processes of melting the pure latent heat of melting may be assumed to be independent of the temperature, whereas for the processes of boiling the latent heat of evaporation will decrease with increasing temperature. Only in those cases, therefore, in which the boiling points of the two components do not differ much, the following considerations may be transferred to boilingpoint-curves of liquids, where a may be put $=0$. When the difference between the boiling points is larger, this cannot be done any more.
II. The fundamental equations (2) of my first paper ${ }^{1}$) become $\left(\beta=\frac{\alpha}{q_{1}}=0, \beta^{\prime}=\frac{a^{\prime}}{q_{1}}=0\right)$ simply :

$$
\begin{equation*}
T=\frac{T_{1}}{1+\frac{R T_{1}^{\prime}}{q_{1}} \log \frac{1-x^{\prime}}{1-2}}=\frac{T_{2}}{1+\frac{R T_{2}^{\prime}}{q_{3}} \log \frac{x^{\prime}}{x}} \tag{1}
\end{equation*}
$$

It is now possible to eliminate x^{\prime}, and to express x explicitly in I, and in the same way to express the quantity x^{\prime} explicitly in T after eliminating x.

In the first place we find:

$$
\begin{equation*}
\frac{1-x^{\prime}}{1-x}=e^{\frac{q_{1}}{M}\left(\frac{1}{T}-\frac{1}{T_{1}}\right)} \quad ; \quad \frac{x^{\prime}}{x}=e^{-\frac{q_{2}}{R}\left(\frac{1}{T_{2}}-\frac{1}{T}\right)}, . \tag{2}
\end{equation*}
$$

so that, when for shortness we put:

$$
\begin{equation*}
\frac{q_{1}}{R}\left(\frac{1}{T}-\frac{1}{T_{1}}\right)^{\prime}=\lambda_{1} \quad ; \quad \frac{q_{3}}{R}\left(\frac{1}{T_{2}}-\frac{1}{T}\right)=\lambda_{3}, \tag{3}
\end{equation*}
$$

we get, in consequence of $\left(1-x^{\prime}\right)+x^{\prime}=1$, the relation:

$$
(1-x) e^{\lambda_{1}}+u e^{-\lambda_{2}}=1
$$

${ }^{1}$) These Proc. VI, June 27, 1908, p. 151.

In the same way

$$
\left(1-x^{\prime}\right) e^{-\lambda_{1}}+x^{\prime} e^{\prime 2}=1
$$

From this we solve -

$$
x=\frac{e^{\lambda_{1}}-1}{e^{\lambda_{1}}-e^{-\lambda_{2}}} \quad, \quad x^{\prime}=\frac{e^{-\lambda_{1}}-1}{e^{-\lambda_{1}}-e^{\lambda_{2}}},
$$

or, in a form convenient for the calculation-

$$
\begin{equation*}
x^{\prime}=\frac{e^{\lambda_{1}}-1}{e^{\lambda_{1}+\lambda_{2}}-1} \quad ; \quad x=x^{\prime} e^{\lambda_{2}} . \tag{4}
\end{equation*}
$$

From these equations, and also from equation (4) of the first communcation (in which $w_{1}=q_{1}$ and $w_{3}=q_{2}$) we find easily.
$\frac{d T}{d x}=-\frac{R T^{2}}{\left(1-x^{\prime}\right) q_{1}+x^{\prime} q_{2}} \cdot \frac{x-x^{\prime}}{x(1-x)} ; \frac{d T}{d x^{\prime}}=-\frac{R T^{2}}{(1-x) q_{1}+x q_{2}} \cdot \frac{x-x^{\prime}}{x^{\prime}\left(1-x^{\prime}\right)}$.
For the initial course of the meltingpoint-curve follows from this ($T=T_{1}$)

$$
\left(\frac{d T}{d x}\right)_{0}=-\frac{R T_{1}^{2}}{q_{1}}\left(1-\left(\frac{x^{\prime}}{x}\right)_{0}\right) ;\left(\frac{d T}{d x^{\prime}}\right)_{0}=-\frac{R T_{1}^{2}}{q_{3}}\left(\left(\frac{x}{x^{\prime}}\right)_{0}-1\right)
$$

or, in connection with (2):

$$
\begin{equation*}
\left(\frac{d T}{d x}\right)_{0}=-\frac{R T_{1}^{2}}{q_{1}}\left(\left(1-e^{-\theta_{2}}\right) ;\left(\frac{d T}{d x^{\prime}}\right)_{0}=-\frac{R T_{1}^{x}}{q_{1}}\left(e^{\theta_{2}}-1\right),\right. \tag{5}
\end{equation*}
$$

when we put

$$
\begin{equation*}
\frac{q_{3}}{R}\left(\frac{1}{T_{2}}-\frac{1}{T_{1}}\right)=\theta_{3} \tag{6}
\end{equation*}
$$

The final course (for the lowest temperature T_{s}) is found by changing the letters, so, by putting further $1-x=y$ and $1-x^{\prime}=y^{\prime}$.

$$
\left(\frac{d T^{\prime}}{d y}\right)_{0}=-\frac{R T_{3}^{3}}{q_{2}}\left(1-\left(\frac{y^{\prime}}{y}\right)_{0}\right) ;\left(\frac{d T}{d y^{\prime}}\right)_{0}=-\frac{R T_{3}^{2}}{q_{3}}\left(\left(\frac{y}{y^{\prime}}\right)_{0}-1\right)
$$

i.e. taking (2) into account-

$$
\begin{equation*}
\left(\frac{d T}{d y}\right)_{0}=\frac{R T_{2}^{3}}{q_{2}}\left(e^{\theta_{1}}-1\right) ;\left(\frac{d T}{d y^{\prime}}\right)_{0}=\frac{R T_{3}^{3}}{q_{\mathrm{s}}}\left(1-e^{-\theta_{1}}\right), \ldots \tag{5a}
\end{equation*}
$$

when putting :

$$
\begin{equation*}
\frac{q_{1}}{R}\left(\frac{1}{T_{2}}-\frac{1}{T_{1}}\right)=\theta_{1} \tag{6a}
\end{equation*}
$$

θ_{1} and θ_{2} being both positive quantities (T_{z} is always smaller than $\left.T_{1}\right), e^{\theta_{1}}$ and $e^{\theta_{2}}$ will always be $>1, e^{-\theta_{1}}$ and $e^{-\theta_{2}}$ always <1. From this follows, that the quantities $\left(\frac{d T}{d x}\right)_{0}$ and $\left(\frac{d T}{d x^{\prime}}\right)_{0}$ will always
be negative, the quantities $\left(\frac{d T}{d y}\right)_{0}$ and $\left(\frac{d T}{d y^{\prime}}\right)_{0}$ always positive. For the latent heat of mixing q_{1} and q_{2} can never become negative.

So in the ideal case $a=0, a^{\prime}=0$ the meltingpoint-curve always begins to descend at the hughest temperature, and to ascend at the lowest temperature, so that in this case a minmum is excluded. This appears also from the fact that the condition for a minimum is $\beta^{\prime}>\frac{T_{1}-T_{2}}{T_{1}^{\prime}}$ (loc. cit. p. 168), so that for $\beta^{\prime}=0$ this can never occur, and the meltingpoint-curve will therefore gradually descend from T_{1} to T_{2}.

That a maximum cannot occur in any case for normal components, whatever value α or α^{\prime} may have, - provided α^{\prime} be larger than α has been proved already in my first communication (loc. cit. p. 156).

The equations (5) and ($5 a$) give rise to the following discussion.
In the limiting case $q_{1}=0$ (q_{3} finite) we have $\left(\frac{d T}{d x}\right)_{0}=-\infty$, $\left(\frac{d T}{d x^{\prime}}\right)_{0}=-\infty,\left(\frac{d T}{d y}\right)_{0}=0,\left(\frac{d T^{\prime}}{d y^{\prime}}\right)_{0}=0$, so that the two meltingpointcurves will approach to the type A (fig.1).

For $q_{1}=\infty,\left(\frac{d T}{d x}\right)_{0}$ and $\left(\frac{d T}{d x^{\prime}}\right)_{0}$ will approach to $0,\left(\frac{d T}{d y}\right)_{0}$ to ∞ (on account of the term $\left.e^{\theta_{1}}\right)$, but $\left(\frac{d T}{d y^{\prime}}\right)_{0}$ to a limit, viz. $\frac{R T T_{2}^{2}}{q_{2}}$, as $e^{-\theta_{1}}$ converges to 0 This gives the limiting-type B (fig.1).

When $\underline{q_{2}=0}$ (q_{2} finite), we have $\left(\frac{d T}{d x)_{0}}\right)_{0}$ and $\left(\frac{d T}{d x^{\prime}}\right)_{0}=0 ;\left(\frac{d T}{d y}\right)_{0}$
and $\left(\frac{d T}{d y^{\prime}}\right)_{0}=\infty$. The meltingpomt-curves approach to the type C (fig. 2).

If, however, $q_{2}=\infty$, then $\left(\frac{d T}{d x}\right)_{0}=-\frac{R T_{3}{ }^{2}}{q_{1}},\left(\frac{d T}{d x^{\prime}}\right)_{0}=-\infty$, and $\left(\frac{d T}{d y}\right)_{0}$ and $\left(\frac{d T}{d y^{\prime}}\right)_{0}$ approach both to 0 . Now $\left(\frac{d T}{d x}\right)_{0}$ approaches to a limit, as $e^{-0_{2}}$ converges to 0 . This gives rise to the limiting-type D (fig.2).

We shall see presently, that according to q_{1} being greater or smaller, the final course for $T=f\left(x^{\prime}\right)$ in the case C, and the initial course for $T=f(x)$ in the case D may vary as to their curvature.

All the other cases lie between these extremes, but we shall see that there can yet be a great difference in course as to concavity and convexity. In order to form an opmion on this, however, we must write down the second differental-quotients.
III. We found for them in our second communication ${ }^{1}$) for $T=I_{1}$, when α and $\alpha^{\prime}=0$:
$\left(\frac{d^{2} T}{d x^{2}}\right)_{0}=\left.\frac{1}{q_{1}}\left(\frac{d T}{d x}\right)_{0}\left[\left(q_{1}-4 T_{1}\right)-\left(\frac{x^{\prime}}{x}\right)_{0}\left\{\left(q_{1}-4 T_{1}\right)-2\left(q_{1}-q_{3}\right)\right\}\right]\right|_{, ~(7)}$
$\left(\frac{d^{3} T}{d x^{\prime 2}}\right)_{0}=\frac{1}{q_{1}}\left(\frac{d T}{d x^{\prime}}\right)_{0}\left[\left(q_{1}+4 T_{1}^{\prime}\right)-\left(\frac{x}{x^{\prime}}\right)_{0}\left\{\left(q_{1}+4 T_{1}\right)-2\left(q_{1}-q_{2}\right)\right\}\right]$ in which $\left(\frac{x^{\prime}}{x}\right)_{0}$ is $e^{-\theta_{2}}$ according to (2) and (6). For the corresponding expressions for T_{2} we find by the same changes as for $\frac{d T}{d x}$ (see above) :

$$
\begin{align*}
& \left(\frac{d^{3} T}{d y^{2}}\right)_{0}=\frac{1}{q_{2}}\left(\frac{d T}{d y}\right)_{0}\left[\left(q_{2}-4 T_{2}\right)-\left(\frac{y^{\prime}}{y}\right)_{0}\left\{\left(q_{2}-4 T_{2}\right)+2\left(q_{1}-q_{2}\right)\right\}\right] \tag{7a}\\
& \left(\frac{d^{3} T}{d y^{\prime 2}}\right)_{0}=\frac{1}{q_{2}}\left(\frac{d T}{d y^{\prime}}\right)_{0}\left[\left(q_{3}+4 T_{2}\right)-\left(\frac{y}{y^{\prime}}\right)_{0}\left\{\left(q_{2}+4 T_{2}\right)+2\left(q_{1}-q_{2}\right)\right\}\right]
\end{align*}
$$

in which $\left(\frac{y^{\prime}}{y}\right)_{0}=e^{\theta_{1}}$ according to (2) and (6a).
That these equations can give rise to a point of inflection in the meltingpoint-curve, so even at $\alpha^{\prime}=0$, I have already proved in my second communication (loc. cit. p. 256-257).
${ }^{1}$) These Proc. VI, Oct. 31, 1903, p. 256.

For a concave beginning (i. e. turned towards the X-axis) $\frac{d^{2} T}{d x^{2}}$ 1s always negative (for $\frac{d T}{d x}$ becomes larger negative). Hence $\frac{d^{3} T}{d x^{2}}: \frac{d T}{d x}$ positive. On the other hand this quotient will be negative for a convex beginning. In the same way for $T=f\left(x^{\prime}\right)$.

With a concave end $\frac{d^{3} T}{d y^{3}}$ will again be negative $\left(\frac{d T}{d y}\right.$ becomes smaller positive), so $\frac{d^{3} T}{d y^{2}}: \frac{d T}{d y}$ negative. For a convex end this quantity will be positive. We have therefore the following transition conditions.
$\left.\begin{array}{l}\left.\text { I } \quad \text { For } T=f(x) \begin{array}{l}\text { concave } \\ \text { convex }\end{array}\right\} \text { beginning } 2\left(q_{2}-q_{3}\right)+\left(q_{1}-4 T_{1}\right)\left(e^{\theta_{2}}-1\right) \geq 0 \\ \left.\text { II } \quad \text { For } T=f(x) \begin{array}{l}\text { concare } \\ \text { convex }\end{array}\right\} \text { end }-2\left(q_{1}-q_{3}\right)-\left(q_{3}-4 T_{2}\right)\left(1-e^{-\theta_{1}}\right) \leq 0\end{array}\right\}$
III For $\left.T=f\left(x^{\prime}\right) \begin{array}{l}\text { concave } \\ \text { convex }\end{array}\right\}$ beginning $\left.2\left(q_{1}-q_{3}\right)-\left(q_{1}+4 T_{1}\right)\left(1-e^{-\theta_{2}}\right) \geq 0\right\}$,
IV For $\left.T=f\left(x^{\prime}\right) \begin{array}{l}\text { concave } \\ \text { convex }\end{array}\right\}$ end $-2\left(q_{1}-q_{3}\right)+\left(q_{2}+4 T_{3}\right)\left(e^{\theta_{1}}-1\right) \leq 0$ or in another form .
$\left.\begin{array}{ll|ll}\text { I } & q_{1} \geq 4 T_{1}+\frac{2\left(q_{2}-4 T_{1}\right)}{1+e^{\theta_{2}}} & \text { III } & q_{1} \geq-4 T_{1}+\frac{2\left(q_{2}+4 T_{1}\right)}{1+e^{-\theta_{2}}} \\ \text { II } & q_{3} & <4 T_{1}+\frac{2\left(q_{1}-4 T_{3}\right)}{1+e^{-\theta_{1}}} & \text { IV } \\ q_{3} & >-4 T_{3}+\frac{2\left(q_{1}+4 T_{2}\right)}{1+e^{\theta_{1}}}\end{array}\right\}$.
The different regions with their limits, which occur in these conditions, are represented in fig. 3 (Plate). The figure holds for $T_{2}=1 / 2 T_{1}$, the values of q_{1} and q_{2} are expressed in multiples of T_{1}.

Let us subject the limiting-curves to a closer examination (see fig. 3).
a. Curve I, viz.

$$
\begin{equation*}
q_{1}=4 T_{1}+\frac{2\left(q_{\mathrm{s}}-4 T_{1}\right)}{1+e^{\theta_{3}}} \tag{8I}
\end{equation*}
$$

According to (8) all the curves $T=f(x)$ with a concave beginning will lie above this curve, with a convex beginning below it. For q_{1} must then be respectively larger or smaller than the values given by the second member.

The curve will also yield $q_{1}=0$ for $q_{3}=0$, for which $e^{\theta_{2}}=1$. The initial direction is given by $q_{2}=q_{2}\left(45^{\circ}\right)$. Further for $q_{3}=4 T_{1}$ is evidently also $q_{1}=4 \dot{T}_{1}$, and for $q_{3}=\infty, e^{\theta_{2}}$ becoming $=\infty$, q_{1} will again be $4 T_{1}$. The curve I will therefore run pretty rapidly asymtotically to the straight line $q_{1}=4 T_{1}$ for higher values of q_{2}, and will show a maximum somewhere past $q_{3}=4 T_{1}$. (M_{1} in fig. 3). This maximun is represented by $\left(\frac{d q_{2}}{d q_{2}}=0\right)$:

$$
\left(1+e^{\theta_{2}}\right)-\left(q_{2}-4 T_{1}\right) \frac{1}{R}\left(\frac{1}{T_{2}}-\frac{1}{T_{1}}\right) e^{\theta_{3}}=0
$$

as $\theta_{2}=\frac{q_{2}}{R}\left(\frac{1}{T_{2}}-\frac{1}{T_{1}}\right)$, according to (6). We have then:
or

$$
\begin{equation*}
\text { or }(R=2) \tag{8a}
\end{equation*}
$$

$$
\begin{gathered}
\left(1+e^{-\theta_{2}}\right)-\frac{\theta_{2}}{q_{3}}\left(q_{2}-4 T_{1}\right)=0 \\
\theta_{2}-e^{-\theta_{2}}=1+4 T_{1} \frac{\theta_{3}}{q_{2}} \\
\theta_{3}-e^{-\theta_{2}}=2 \frac{T_{1}}{T_{2}}-1
\end{gathered}
$$

From this we may find θ_{2} by approximation, so also q_{2}, and q_{1} is found from (8I). As $q_{3}-4 T_{1}=\frac{q_{3}}{\theta_{1}}\left(1+e^{-\theta_{3}}\right)$, we have:

$$
q_{1}=4 T_{1}+2 \frac{q_{3}}{\theta_{2}} e^{-\theta_{3}}=4 T_{1}+2 \frac{q_{3}}{\theta_{2}}\left(\theta_{1}-1-4 T_{1} \frac{\theta_{2}}{q_{2}}\right)
$$

hence

$$
q_{1}=2 q_{2}-4 T_{1}-2 \frac{q_{2}}{\theta_{2}}
$$

or

$$
\begin{equation*}
q_{1}=2 q_{2}-4 \frac{T_{1}{ }^{2}}{T_{1}-T_{2}} \cdot \cdot \cdot \cdot \cdot \cdot \tag{8b}
\end{equation*}
$$

Now fig. 3 holds for $T_{1}=1 / 2 T_{2}$, so ($8 a$) becomes:

$$
\theta_{2}-e^{-\theta_{2}}=3
$$

yielding $\theta_{2}=3,05$. Consequently $q_{2}=2 \theta_{2} T_{1}=6,10 T_{1}$. Further according to (8b) $q_{1}=2 q_{2}-8 T_{1}=4,20 T_{1}$.

Of the curve I (comp. 8I) I have determined the following points with $T_{1}=1 / 2 T_{3}$, so that $\theta_{2}=\frac{q_{3}}{2 T_{1}}$.

$q_{3}=1 T_{1}$	$e^{\theta_{2}}=1,65$	$q_{1}=1,73 T_{1}$	$q_{3}=7 T_{1}$	$e^{\theta_{2}}=33,1$	$q_{1}=4,17^{5}$
2 ,	2,72	2,92 "	8 "	54,6	,146 ${ }^{\text {b }}$
3 ,	4.48	3,63 "	10 ,	148	4,08
5,	12,2	4,15 "	15,	1810	4,01
6 ,	20,1	4,19 "	20 "	22000	4,00

Really the maximum lies just past $q_{2}=6 T_{1}$. (We saw already above, that for $q_{3}=4 T_{1}$ also $q_{1}=4 T_{1}$).
b. The curve II, viz.

$$
\begin{equation*}
q_{\mathrm{r}}=4 T_{\mathrm{a}}+\frac{2\left(q_{1}-4 T_{9}\right)}{1+e^{-q_{2}}} \tag{8II}
\end{equation*}
$$

This curve separates the curves $T=f(x)$ with concave end (left of this curve, because q_{2} is then smaller than the second member) from that with a convex end (right of the curve, where q_{3} is larger).

For $q_{1}=0$ also $q_{2}=0$, as $\theta_{1}=0$; (initial direction again $q_{1}=q_{2}\left(45^{\circ}\right)$); for $q_{1}=4 T_{2}$ also $q_{2}=4 T_{2}$, and for $q_{1}=\infty, q_{3}$ will approach to $2 q_{1}-4 T_{2}$, because $e^{-\theta_{1}}$ approaches to 0 . The limiting direction of the curve II is therefore given by $q_{2}=2 q_{1}$, or $q_{1}=1 / 2 q_{2}$. $\left(26^{\circ}, 5\right)$.

It will necessarily cut I. When $T_{2}=1 / 2 T_{1}$, this point of intersection S_{1} lies somewhat on the left of the maximum M_{1}. It is found by combining

$$
q_{1}=4 T_{1}+\frac{2\left(q_{3}-4 T_{1}\right)}{1+e^{q_{2} / 2 T_{1}}} \text { and } q_{3}=2 T_{1}+\frac{2\left(q_{1}-2 T_{1}\right)}{1+e^{-q_{1} / 2 T_{1}}} .
$$

By approximation we find $q_{3}=5,90 T_{11}, q_{1}=4,19 T_{1}$.
The further calculation leads to the following summary.

For $q_{1}=2 T_{1}\left(=4 T_{2}\right)$ also $q_{2}=2 T_{1}$ (see above).
c. The curve III, i.e.

$$
\begin{equation*}
q_{1}=-4 T_{1}+\frac{2\left(q_{3}+4 T_{1}\right)}{1+e^{-\theta_{2}}} \tag{8II}
\end{equation*}
$$

For values of q_{1} larger than the second member the beginning of $T=f\left(x^{\prime}\right)$ is concave; these curves lie therefore above the curve. \ln the same way all the lines $T=f\left(x^{\prime}\right)$ with convex beginning lie below this curve.

Again $q_{1}=0$, when $q_{3}=0$ (initial direction $q_{1}=q_{3}\left(45^{\circ}\right)$). When q_{3} approaches to ∞, q_{1} approaches to $2 q_{2}+4 T_{1}$, so the limiting direction becomes $\underline{q}_{1}=2 q_{2}\left(63^{\circ}, 5\right)$. This curve lies entirely outside the two first, more to the left.

Some points of the curve III follow.
d. The curve $I V$, i.e.

$$
\begin{equation*}
q_{2}=-4 T_{3}+\frac{2\left(q_{1}+4 T_{3}\right)}{1+e^{\theta_{1}}} \tag{8IV}
\end{equation*}
$$

If q_{2} is smaller than the second member, the end of $T=f\left(x^{\prime}\right)$ will be concave; these lines lie accordingly left of the curve; on the right the lines $T=f\left(x^{\prime}\right)$ with convex end are found.

For $q_{1}=0$ again $q_{3}=0$ (initial divection $q_{1}=q_{3}\left(45^{\circ}\right)$). If $q_{1}=\infty$, q_{2} evidently approaches asymplotically to $q_{3}=-4 T_{3}$, just as the curve I approached asymptotically to $q_{1}=4 T_{1}$, when $q_{2}=\infty$. The curve IV lies therefore only for a small part within the region of the positive q_{2}, and will therefore necessarily cut the q_{1}-axis somewhere in S_{2}, and yield a maximum value M, for q_{2} before that time. This curve too lies therefore entirely outside the preceding curves, and again more to the left.

The q_{2}-axis is cut, when ($T_{1}=1 / 2, T_{1}$)

$$
\frac{q_{1}+2 T_{1}}{1+e^{q_{1} / 2 T_{1}}}=T_{1}
$$

or when

$$
e^{q_{1} / 2 T_{1}}-2 \frac{q_{1}}{2 T_{1}}=1
$$

This is satisfied by

$$
\frac{q_{1}}{2 T_{1}}=1,25^{7}, \quad \text { or } \quad q_{1}=2,51 T_{1} .
$$

The maximum is found in exactly the same way as in I, and is determined by

$$
\begin{equation*}
\theta_{1}-e^{-\theta_{1}}=2 \frac{T_{3}}{T_{1}}-1 \tag{8c}
\end{equation*}
$$

to which belongs :

$$
\begin{equation*}
q_{3}=2 q_{1}-4 \frac{T_{2}{ }^{3}}{T_{1}^{\prime}-T_{3}} \cdot . \cdot . \cdot . \tag{8d}
\end{equation*}
$$

If $T_{2}=1 / 2 T_{1}$, then (8c) yields:

$$
\theta_{1}-e^{-\theta_{1}}=0
$$

from which $\theta_{1}=0,567$, or $q_{1}=1,13 T_{1}$. According to ($8 d$) we have:

$$
q_{3}=2 q_{1}-2 T_{1}=0,26 T_{1}
$$

Further we have the following values for q_{2} for increasing values of q_{2}.

Already at $q_{1}=15 T_{1}$ the limiting direction $q_{2}=-4 T_{2}$ (here $=-2 T_{1}$) has been all but reached.
IV. So we have seen, that the four limiting curves (see fig.3), which divide the q_{1}, q_{2}-space into different fields, radiate from the origin ($q_{1}=q_{2}=0$) in the space. All of them touch in the origin the straight line $q_{2}=q_{2}$, the former two on the right, the latter two on the left. Only I is intersected by II; IV falls for the greater part outside the positive region, I and IV show maxima.

Below I and on the right of II lies the field A of the convex shaped meltingpoint-curves.

Between I and II on the left of the point of intersection S_{1} lies a small region B_{1}, where the end of $T=f^{\prime}(x)$ has become concave; on its right is the region B_{2}, where the beginning of $T=f(x)$ has become concave.

Between II and III (on the left of S_{1}, between I and III) lies the ficld C, where $I^{\prime}=f(x)$ is concave throughout its course, $T=f\left(x^{\prime}\right)$ convex.

Between III and the q_{2}-axis (below S_{2} between III and IV) lies the field D, where only the end of $T=f\left(x^{\prime}\right)$ is still convex.

Finally there is still a very small region between IV and the q_{1}-axis, where the mellingpoint curve - both $T=f(x)$ and $T=f\left(x^{\prime}\right)$ is concave throughout its course.

If we assume a fixed value for q_{2}, e.g. $q_{2}=3 T_{1}$, and vary q_{1} from

0 tot ∞, we pass successively through the four regions A, B_{1}, C and D. For $q_{3}=10 T_{1}$ e.g. we should pass through the region B_{2} instead of through B_{2}.
If q_{1} is assumed to be constant, e.g. $=1 T_{1}$, we pass successively through the fields A, B_{1}, C, D and E, when q_{3} decreases from ∞ tot 0 .

Fig. 4 gives a representation of the first mentioned transition, viz. for $q_{3}=3 T_{1}$.

Between the meltingpoint-curves, marked 2,4 and 2,8 (so holding for $q_{1}=2,4$ and $2,8 T_{1}$), the transition from A to B_{1} (hatched) is situated. Between 3,4 and 3,8 (see the hatched parts) is the transition from B_{1} to C. Between 7 and 8 (in this case for $T=f\left(x^{\prime}\right)$) that from C to D. Further the cases $q_{1}=1, q_{1}=2(A), q_{1}=5(C)$ and

$q_{1}=$	${ }^{1} T_{1}$	$2 T_{1}$	$2.4 T_{1}$	$2.8 T_{1}$	$3.4 T_{1}$	$3.8 T_{1}$	$5 T_{1}$	$7 T_{1}$	$8 T_{1}$	$10 T_{1}$
$T=0.95 T_{1}$	$\begin{aligned} & x^{\prime}=0.00 \mathrm{~s} \\ & x=0.03^{3} \end{aligned}$	$\begin{aligned} & 0.01{ }^{6} \\ & 0.06{ }^{6} \end{aligned}$	$\begin{aligned} & 0.019 \\ & 0.07^{9} \end{aligned}$	$\begin{aligned} & 0.022 \\ & 0.091 \end{aligned}$	$\begin{aligned} & 0.020 \\ & 0.11 \end{aligned}$	$\begin{aligned} & 0.029 \\ & 0.12 \end{aligned}$	$\begin{aligned} & 0.038 \\ & 0.16 \end{aligned}$	$\begin{aligned} & 0.052 \\ & 0.21 \end{aligned}$	$\begin{aligned} & 0.057 \\ & 0.24 \end{aligned}$	$\begin{aligned} & 0.06^{9} \\ & 0.28 \end{aligned}$
0.90 "	$\begin{aligned} & x^{\prime}=0.01^{9} \\ & x=0.07^{2} \end{aligned}$	$\begin{gathered} 0.03^{6} \\ 0.14 \end{gathered}$	$\begin{aligned} & 0.043 \\ & 0.16 \end{aligned}$	$\begin{aligned} & 0.05^{2} \\ & 0.18^{5} \end{aligned}$	$\begin{aligned} & 0.05^{8} \\ & 0.22 \end{aligned}$	$\begin{aligned} & 0.066^{a} \\ & 0.25 \end{aligned}$	$\left.\begin{gathered} 0.080 \\ 0.30 \end{gathered} \right\rvert\,$	$\begin{aligned} & 0.10 \\ & 0.39 \end{aligned}$	$\begin{aligned} & 0.11 \\ & 0.43 \end{aligned}$	$\begin{aligned} & 0.13 \\ & 0.50 \end{aligned}$
0.85 \%	$\begin{aligned} & x^{\prime}=0.03^{9} \\ & x=0.11^{4} \end{aligned}$	$\begin{gathered} 0.052 \\ 0.21 \end{gathered}$	$\begin{aligned} & 0.072 \\ & 0.25 \end{aligned}$	$\begin{aligned} & 0.08^{2} \\ & 0.28 \end{aligned}$	$\begin{aligned} & 0.098 \\ & 0.33 \end{aligned}$	$\begin{aligned} & 0.10 \\ & 0.36 \end{aligned}$	$\begin{aligned} & 0.13 \\ & 0.44 \end{aligned}$	$\begin{aligned} & 0.16 \\ & 0.55 \end{aligned}$	$\begin{aligned} & 0.17 \\ & 0.59 \end{aligned}$	$\begin{aligned} & 0.19 \\ & 0.67 \end{aligned}$
0.80 "	$\begin{aligned} & x^{\prime}=0.053 \\ & x=0.16 \end{aligned}$	$\begin{aligned} & 0.095 \\ & 0.29 \end{aligned}$	$\begin{aligned} & 0.11 \\ & 0.34 \end{aligned}$	$\begin{aligned} & 0.12 \\ & 0.38 \end{aligned}$	$\begin{aligned} & 0.14 \\ & 0.44 \end{aligned}$	$\begin{aligned} & 0.15 \\ & 0.47 \end{aligned}$	$\begin{aligned} & 0.18 \\ & 056 \end{aligned}$	$\begin{aligned} & 0.22 \\ & 0.67 \end{aligned}$	$\begin{aligned} & 0.23 \\ & 0.72 \end{aligned}$	$\begin{aligned} & 0.25^{6} \\ & 0.78^{5} \end{aligned}$
0.75	$\begin{aligned} & x^{\prime}=0.08^{2} \\ & x=0.22 \end{aligned}$	$\begin{aligned} & 0.14 \\ & 039 \end{aligned}$	$\begin{aligned} & 0.16 \\ & 0.44 \end{aligned}$	$\begin{aligned} & 0.18 \\ & 0.48 \end{aligned}$	$\begin{aligned} & 0.20 \\ & 0.55 \end{aligned}$	$\begin{aligned} & 0.215 \\ & 0.58 \end{aligned}$	$\begin{aligned} & 0.25 \\ & 0.67 \end{aligned}$	$\begin{aligned} & 0.29 \\ & 0.78 \end{aligned}$	$\begin{aligned} & 0.30 \\ & 081^{5} \end{aligned}$	$\begin{aligned} & 0.32 \\ & 0.87 \end{aligned}$
0.70 \%	$\begin{aligned} & x^{\prime}=0.12^{5} \\ & x=0.295 \end{aligned}$	$\begin{aligned} & 0.20 \\ & 0.48 \end{aligned}$	$\begin{aligned} & 0.23 \\ & 0.54 \end{aligned}$		0.28 0.65	0.29 0.69	0.33 0.77	0.36 0.86		$\begin{aligned} & 039 \\ & 0.92^{8} \end{aligned}$
0.65 "	$\begin{aligned} & x^{\prime}=0.19 \\ & x=0.38 \end{aligned}$	$\begin{aligned} & 0.29 \\ & 0.59 \end{aligned}$	$\begin{aligned} & 0.32 \\ & 0.65 \end{aligned}$	$\begin{aligned} & 0.3 \overline{3} \\ & 0.69 \end{aligned}$	$\begin{aligned} & 0.37 \\ & 0.75 \end{aligned}$	0.39 0.78	0.43 0.85	0.46 0.918	0.47 0.988	0.48 0.964
0.60 "	$\begin{aligned} & x^{\prime}=0.30^{5} \\ & x=0.50 \end{aligned}$	0.43	$\begin{aligned} & 0.46 \\ & 0.76 \end{aligned}$	0.48 0.80	0.51 0.84	0.525 0.87	0.555 0.915	0.58 0.960	0.59 0.97^{1}	060 $0.98{ }^{8}$
0.55 "	$\begin{aligned} & x^{\prime}=0.5 \mathcal{Z} \\ & x=0.68 \end{aligned}$	0.64 0.84	0.665 0.87	0.695 0.918	0.71 0.927	0.72 0.940	0.735 0.965	0.73 $0.98{ }^{6}$	0.755	0.76 0.997

$q_{1}=10(D)$ have been traced. The curves 2,8 and 3,4 represent therefore the type B_{1} with convex beginning and concave end for $T=f(x)$. The calculations (according to formulae (4)) are summarized in the annexed table, i.e. for $T_{2}=\frac{1}{2} T_{1}$, to which fig. 3 applies.
With this change of q_{1} we do not enter the region E; therefore q_{2} would have to be smaller than $0,26 T_{1}$ (see above).
V. It remains to answer the question, to what modifications the fields and their limits drawn in fig. 3 are subjected, when T, is not $\frac{1}{2} T_{1}$, but e.g. $0,9 T_{1}$ or $0,1 T_{1}$.
The initial directions of the curves I to IV remain quite the same, also the final directions, but between them there are some modifications; specially the place of the points of intersection and of the maxima is changed.
a. If T_{3} is no longer $0,5 T_{1}$, but e.g. $0,9 T_{1}$, so that T_{2} and T_{1} are very near to each other, we find for the maximum M_{1} from (8a) and (8b):

$$
\theta_{1}-e^{-\theta_{1}}=12 / 2 \quad ; \quad q_{1}=2 q_{3}-40 T_{2}
$$

yielding $\theta_{3}=1,45^{5}$, hence, as $\theta_{3}=\frac{q_{2}}{2}\left(\frac{1}{T_{2}^{\prime}}-\frac{1}{T_{2}^{\prime}}\right)$ is now $\frac{q_{3}}{18 T_{1}}$ $q_{2}=26,2 T_{1}$. For q_{1} we find then $q_{1}=12,4 T_{1}$.

The maximum has now got quite outside the limits of the values of q which occur practically, so that the curve I now gradually rises within these limits. (fig.5).
The point of intersection of I with II has not been displaced much. We find now for it $q_{2}=5,85 T_{1}, q_{1}=5,55 T_{1}$, so that the value of q_{3} has remained nearly constant.
The consequence of the modified course of the curves I and II is, that the region \mathcal{B}_{1} has all but disappeared; on the left of S_{1} I and II nearly coincide; the region B_{2} has strongly diminished.
But also C and D have considerably diminished, so that the greater part of the space is left for A and E.
The considerable increase of the region E is due to the fact, that the point of intersection of the curve IV with the q_{1}-axis lies much higher than in fig. 3, and that the maximum has moved considerably to the right. In fact we find for the point of intersection mentioned:

$$
\frac{q_{1}+3,6 T_{1}}{1+e^{q_{1} / 18 T_{1}}}=1,8 T_{1}, \text { or } e^{q_{1} / 18 T_{1}}-10 \frac{q_{1}}{18 T_{1}}=1
$$

from which $\frac{q_{1}}{18 T_{1}}=3,577$, so $q_{1}=\underline{64,4 T_{2}}$.

The maximum is given by ($8 c$) and ($8 d$), viz.

$$
\theta_{1}-e^{-\theta_{1}}=0,8 \quad ; \quad q_{2}=2 q_{1}-32,4 T_{1},
$$

giving $\theta_{1}=1,125$, so $q_{1}=\underline{20,3 T_{1}}, q_{3}=8,2 T_{1}$.
In the following table some more data are given, which have been used for the construction of fig.5.,
$\left.\begin{array}{llllllllllllll}\text { Curve I } & q_{2} / T_{1}=1 & 3 & 5 & 8 & 10 & 15 & 20 & 25 & 30 & 40 & 50 & 100 & 150 \\ & q_{1} / T_{1}=1,09 & 3,09 & 4,86 \\ 7,13 & 8,37 & 10,7 & 11,9 & 12,38 & 12,20 & 11,0 & 9,39 & 4,74 & 4,07\end{array}\right\}$
b. Let us now take $T_{2}=0,1 T_{1}$, so that the two temperatures of melting lie very far apart. This case (see fig.6) agrees more closely with that for which $T_{2}=0,5 T_{1}$; only the maximum of the curve II has got nearer to $q_{2}=4 T_{1}$, and the point of intersection of II with I has moved much farther to the right. This has made the field B_{1} considerably larger than in the case $T_{2} / T_{1}=0,5$, which field had nearly vanished for $T_{2} / T_{1}=0,9$.

But nearly the whole of curve IV lies now outside the positive region, so that the appearance of bi-concave meltingpoint-curves is almost excluded.

The maximum of I is determined by

$$
\theta_{2}-e^{-\theta_{2}}=19 \quad ; \quad q_{1}=2 q_{2}-4^{4} / T_{1},
$$

yielding $\theta_{2}=19$. As $\theta_{2}=\frac{q_{2}}{2 / 9 T_{1}}$, so $q_{2}=\underline{4^{2} / 9 T_{1}}, q_{1}$ being $\underline{4,0 T_{1}}$.
For the point of intersection of II with I we find, as $e^{\theta_{2}}$ is very large and $e^{-a_{1}}$ very small,

$$
q_{1}=\underline{4,0 T_{1}}, \quad q_{2}=2 q_{1}-4 T_{2}=8,0 T_{1}-v, 4 T_{1}=7,6 T_{1} .
$$

The curve IV cuts the q_{1}-axis, when
so when

$$
\begin{aligned}
& 0,2 T_{1}^{\prime}=\frac{q_{1}+0,4 T_{1}}{1+e^{\frac{q_{1}}{2 / 2 T_{1}}}} \\
& 0,2 e^{\frac{q_{1}}{2 / 2 T_{1}}}=\frac{q_{1}}{T_{1}}+0,2,
\end{aligned}
$$ or $=0$ in the two phases."

Proceudurgs hoyal Arad dmelerdam. Vol. Yi
or

$$
e^{\frac{q_{1}}{2 / T_{1}}}-\frac{10}{9} \cdot \frac{q_{1}}{2 / 9 T_{1}}=1
$$

This gives $\frac{q_{1}}{2 / g T_{1}}=0,203$, hence $q_{1}=\underline{0,045 T_{1}}$.
The maximum is found from

$$
\theta_{1}-e^{-\theta_{1}}=-0,8 ; q_{2}=2 q_{1}-0,0444 T_{1}
$$

This is satisfied by $\theta_{1}=0,1025$, hence $q_{1}=\underline{0,0228 T_{1}}, q_{2}=\underline{0,0012} T_{1}$.
We can further calculate the following points of the four curves.
Curve I

$$
\begin{array}{llllllll}
g_{2} / T_{1}= & 1 / 0 & 2 / 0 & 4 / 9 & 8 / 9 & 8 / 9 & 10 / 9 & 20 / 9 \\
g_{1} / T_{1}= & 1,06 & 1,97 & 3,15 & 3,68 & 3,89 & 3,96 & 4,00
\end{array}
$$

$q_{2} / T_{1}=\begin{array}{lllllllll}0,1140 & 0,14 & 0,48 & 0,01 & 1,36 & 1,81 & 4,04 & 5,60 & 7,60\end{array}$
Curve $\begin{array}{llllllllll}\text { CII } & q_{1} / T_{1}= & 1 / 9 & 1 / 9 & 4 / 9 & \% & 8 / 9 & 10 & 30 & 3\end{array}$
$q_{1} / T_{1}=\begin{array}{llllllll}1,12 & 2,17 & 3,83 & 4,89 & 5,60 & 6,15 & 8,44 & 10,0\end{array}$
Curve IV $\quad q_{1} / T_{1}=\quad 1 / 8 \quad 2 / 9 \quad 1 / 8 \quad \% \quad 8 / 9 \quad 10 / 8 \quad 20 / \%$
$q_{2} / T_{1}=-0,014-0,066-0,20-0,30-0,35-0,38-0,40$
c. Hence when we draw near to the limiting case $T_{3}=T_{1}$, all four curves will evidently approach to the straight line $q_{1}=q_{7}$, which cuts the angle of the coordinates in two equal parts. Fig. 5 is to a certain extent already a representation of this case.
If, however, T_{2} is very small, so that T_{2} / T_{1} approaches to 0 , then I passes evidently into the straight line $q_{1}=4 T_{1}$; II into $q_{2}=2 q_{1}$; III into $\underline{q_{2}=0}$, so into the q_{1}-axis; IV into $\underline{q}_{2}=-4 T_{2}=0$, so again into the q_{1}-ixis. Of this fig. 6 gives already an idea.

As to the two maxima and the two points of intersection, we have finally the following summary.

M_{1}					$M_{\text {\% }}$				
$T_{2} / T_{1}=0$	0,1	0,5	0,9	1	0	0,1	0,5	0,9	1
$q_{2} / T_{1}=4$	4,2	6,1	26,2	∞	0	0,0012	0,26	8,2	∞
$g_{1} / T_{1}=4$	1,0	4,2	12,4	∞	0	0,0228	1,13	20,3	
							S_{5}		
$T_{2} / T_{1}=0$	0,1	0,5	0,9	1	0	0,1	0,5	0,9	1
$\overline{q_{2} / T_{1}=8}$	7,6	5,9	5,85	4	0	1	0	0	0
$q_{1} / T_{1}=4$,0	4,2	5,55	4	0	0,045	2,51	64,4	∞

And in this way I think that the ideal case $a=0, a^{\prime}=0$ has been sufficiently elucidated.

Proceedings Royal Acad. Amsterdam. Vol. VI.

