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- TAB LEV. 

p (15 0 .7) P (15 0 .7) 
ti 6.P 

181H 1893 

39820 26 29 26 36 o 27 

31790 32 85 3296 033 

26440 39.43 39 58 o 37 

22610 46.00 46.22 o 48 

19760 52.57 52 84 0.51 

17550 59 14 5945 
I 

0.53 

15790 65.71 66.04 050 

14340 72 28 72 60 o 56 

13140 78 85 7U 33 061 

12140 85 42 85.88 0.53 

-

su1'es, whel'eas the determination of the pressure in 1864 wUb 
an open manometer 65 meters high has been very difficult. 3nd Oom
parisoll of tbe accurate hydrogen isotherm of SCHALKWIJK (Diss. 1902) 
witb tbe values extrapolated from AMAGA'l"S determinations gives 
differences of about 0,1 0/0, 

Ohemistry. - "On t/te s/tape of meltingpoint-cu/'ves fol' bina1'y 
mz:vtures, w/ten t/te latent lwrlt 1>equil'ed f01> tlte mi.ving is vel'y 
small 01' = 0 in t/te two phases." (3rd commnnÎratlOn). By 
J. J. VAN LAAR. Commnnicated by Prof. H. W. BAKHUIS 

ROOZEBOOM. 

J. By the side of the ideal case, that tIle latent /teat of 1nixing in the 
liquid phase = 0, whel'eas it is 00 in Ihe solid phase (a = 0, a' = (0)
so that the solirl phase cOl1sists only of one component - the1'e is 
anothel' case, also ideal, viz. that the latent heat of mixing = 0 in 
bot/t phases, or may be neglected. (a=O;a'=O). The soHel phase 
consists then of the two components in a p1'opol'tion which is com
parable to that in the liqnid phase. 

The former ideal case is th at of the processes of solidification, 
in which no solid solutions (Ol' mixed crystals) are found, the lattel' 
may be appropriately called tbe ideal case of the mixed crystals. 

To consieler snch idea,l cases IJas always this use - apart from 
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the simplifications in the considerations and calculations - that these 
case::, may be adopted as the n01'mal ones, trom which all the other 
cases are to be con&idered as deviations in greatel' Ol' smaller degree. 

In our case the consideration of the limiting case a = 0, a' = 0 
offers another advantage, viz. that much of what will be deduced 
in what follows, may be transfel'red with same l'estl'ictions to the 
boilingpoint-lines for ideal liquid and gaseous phases. Fot' the thermo
dynamic relations of equilibrium agree perfectly, when the distinguish
ing feature betwE'en the two kinds of equilibrium, viz. the degree of 
the mutnal influence of the two components in each of the phases llas 
vanished. The dIffel'ence consists only in this, that for the pl'ocesses 
of melting the pure latent heat of melting Dlay be assumed to be inde
pendent of the temperature, whereas fol' the processes of hoiling the 
latent heat of evaporatioll will decrease with increasing temperature. 
Only in those cases, the1'efo1'e, in which the boiling points of t11e two 
components do not differ much, the following considerations may be 
transferred to boilingpoint-cul'ves of liquids, whel'e a may be put 
= O. When the difference between the boiling points is larger, this 
cannot be done any mOl'e. 

Il. The fundamental equations (2) of my fiTSt paper 1) become 

( fJ =!: = 0, fJ' = a' = 0) simply: 
q1 q1 

1'- 1'1 1', 
- Rl\ I-x' - R1'2 :u,···· (1) 
I+-log-- 1+-log-

q1 1-,v qs (IJ 

It is now possible to eliminate [V', and to expl'ess iV explicitly in 
7, and in the same wny to expre::,s the quantity :J)' expli.citly in T 
aftel' eliminating /l}. 

In the nrst p]ace we find: 

ql (1 1) 
I-x' 71 Ï'-T1 --=e 
1-<'1) 

. . . (2) 
{IJ 

so that, when for shortness we put: 

2:..(2. _ 2.) I l <J-=-(2. _ 2.) = l, . . (3) RTT 1 RTT 5 
1 2 

we get, in comequence of (i-x') + x' = i, the relation: 

( ) 11 + -Al 1 I-a) e ,'/Je =. 

1) These Proc, VI, June 27, 1903, p. 151. 
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In the same way 

From this we solve' 

-)1 1 e -
0/----

- --J,1 ~' 
e - e 

or, in a form convenient for the calculation' 

11 1 , e - ~ 
x = + j x=lc'e ....•. (4) /1 ~-1 

From these equatlOns, and also from equation (4) of the first COffi

mUlllcatlOn (m WhlCh Wl = ql and w, = q~) we find easily' 

dT RT' :C-3" dT RT' , 
x-a: 

dx = - (l-x')ql +x'q, . x(1-x) j dll! = - (l-lC)ql +iCq, x' (l-m')" 

For the initial cour~e of the meltingpomt-curve follows fl'om thlS 
(T= Tl) 

(dl') RTl' ( (x') ) (dT) Rl\' ((.'c) ) 
d:c 0 = - -;;: 1 - ;; 0 j dx' 0 = - -;;: ;; 0 - 1 , 

or, m connectlOn wüh (2): 

(
dT) RTl' ( -82 (dl') RT/ 82 - = - -- (1 - e ); -, = - -- (e - 1), 
dx 0 ql dx 0 ql 

. . (5) 

when we put 

~ (;2 - ;J = 8, . . . . . . . (6) 

The final course (for the lowest temperature T,) is found by 
rhangmg the letters, so, by putting furtherl-x=yandl-x'=y'. 

(dl') RT,' ( (Y')) (dT) Jl,T,' ((Y) ) 
dy 0= - 7 1 - Y 0 ; dy' 0= - q; Y' 0- 1 , 

i.e. taking (2) into account· 

(df) RT,' 81 (dT) RT,' -81 - =-(e -1); -, = -(1-e ), .... (Sa) 
dy 0 q, dy 0 q, 

when putting: 
ql (1 1) R T, - Tl = 8 1 , • • • • • • (6a) 

8 1 and 8, being both positive quantities (T, is always smaller 
8 8 • ~ ~ 

than Tl)' eland e' wIll always be > 1, eland e 2 always < 1. 

From this follows, that the quantities (ddT) and (dT,\ will always 
x Q iii)Q 
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be negative, (he quantIhes (~;)o and (~:} always positive. For the 

latent heat of mixing q1 and q2 ean never become negative. 
80 in the ldeal case a = 0, a' = 0 the meltingpoint-curve always 

begins to deseend at the lnglwst temperature, and to ascencl at the 
lowest temperature, so that m this case a mmimum is excluded. 
This appears a1so from the fact that the condition for a minimum 

T 1-T2 is fi' > ']' (loc. cIto p. 168), sa that for p' = 0 this can never 
1 

occur, and the meltingpomt-curve will therefore gradually descend 
from Tl to T,. 

That a maximum cannot occur in any case for norrnal components, 
whatever value a or a' may have, - provided a' be larger than a
bas been proved already m my fu'st communicatlOn (loc. cIto p. 156). 

The equatlOns (5) and (5a) glve rrse to the following diScussion. 

In the hmltmg case q1 = 0 (q2 fimte) we have (~:)o= - 00, 

(dT) (dD (dl') - .. = - 00, - = 0, -d' = 0, sa that the two meltingpoint-
dlv 0 dy 0 Y 0 

curves will approach to the type A (fig.1). 

0) 
p.. (q, ~ 
~~~ 

.fi.9_1 

For qt = 00, (~Do and (~'~)o will approach to 0, (~~} to 00 (on 

o (dT) RTs 
2 

-BI account of the term el), but d' to a limit, VIZ. --, as e 
y 0 q2 

converges to 0 TlllS glves the Imutmg-type B (fig.1). 

(dT) (dl') Whell q~ = 0 (ql fimte) , we have d,1] 0 and dal 0=0; (dT) 
dy 0 
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and (~~)o = CIJ. The meltingpomt-curves approach to the type C 

(fig.2). 

If, however, 1~ = CIJ, then (~:)o = - R;/, (~~)o= - 00, and 

(dT) and (~~) approach both to O. Now (dT) approaches to a 
dy 0 Y 0 d,v 0 

limit, as e -o~ converges to O. This gl yes rióe to the limiting-type 
D (fig.2). 

We shaH see presently, that accordmg to 11 bemg greater or 
smaller, the final course for T = f (:v') in tbe case C, and the initial 
course for T= f (a.') in the case D may vary as to their CUl'vature. 

All the other cases lie between these extl'emes, but we shaH see 
that there can yet be a great diffel'ence in course as to concavity 
and convexity. In order to form an opmion on this, however, we 
must write down the second differentml-quotients. 

liL We found for them in our second cornmulllcation I) for T = 1. I' 
W hen a and a' = 0 : 

(d
21') 1 (dT) [ (rv') I 'J' -2 = - - (ql - 4T1) - ~ (ql-4T1) - 2 (ql-qs) I 

dx 0 Ijl d.v 0 ,v 0 
, (7) 

(~:~)o= : (~~}[(ql + 41'1) - (;')J (ql +4T1) - 2 (ql- q2) n \ 
/ 

in which (~)o is e-8~ according to (2) and (6). For the corresponding 

dT 
expressions for 1.~ we find by the same changes as fol' dx 

(see above): 

(~;-)= ;, (~~J(q,- 4T,)- en !(q,-4T,J+ 2 (q,-q,)IJ 1 , 

(~:0D= :, (~;}[(qs + 4T,) - (;,)J(q,+4Ts) + 2 (ql-qS) tJ I 
(7a) 

in which (~1 = /1 according to (2) and (6a). 

That these equations can give rise to a point 01 injlecti'on in the 
meltingpoint-curve, so even at a' = 0, I have already proved In my 
second communication (loc. cito p. 256-257). 

1) These Proc. VI, Oct. 31, 1903, p. 256. 
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d'T 
For a concave beginnin,q (i. d. turned towards the X-axis) d:c' 

(
dl' ) d'T d'l' 

IS always negative fol' dx becomes larger negative . Hence dx2 : d:c 

poûtive. On the other hand this quotient will be negative for a convex 
beginning. In the same way for '1.' =! (x'). 

~T (dT With a concave end - wIll again be negahve -d becomes 
~' y 

) 
d'T dT . 

smaller posiilve , so - : -d negatwe. For a convex end this 
dy' y 

quantity wIll be positive. We have thel'efore the following tl'ansition 
conditions. 

I For T=!(x) concave I beginning 2(q\-q,)+(ql-4'P1)(e
D2 -1) ><0 

convex \ 

II For T=!(x) end concave I 
convex 

III For T=!(x') concave! beginning2(ql-q,)-(ql+4Tl)(1-e-B~ ><0 
convex \ 

IV For T=!(x') end concave! 
convex 

or in another form' 

. (8) 

The different regions with their limits, which occur in these 
conditions, are represented in fig. 3 (Plate). The figure holds for 
'1.'2 = 1/2 Tl' the values of q\ and 9.2 are expressed in multiples of Tl' 

Let us subject the limiting-curves to a closer examination (see fig. 3). 

a. CU7'Ve I, viz. 
, 2(q,-4T1) I 

21 = 4'1\ + . . . . . . . . (8) 
1+e6, 

Accol'dil1g to (8) all the curves T = j (x) with a concave beginning 
will lie above this curve, with a conve,7] beginning below it. For 9.1 
must then be respectively largel' or smaller than the values given 
by the second membel'. 
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The curve will also yield '11 = 0 for '1, = 0, for which ee, = 1. 
The initial di}'ection is given by '11 = '1, (45°). Further fol' '1, = 41\ 

is evidently also '11 = 41:1• and fol' q, = 00 ,~ /, becoming = 00 , 

'11 will again be 4T1 • ~ The ~curve I will therefol'e run- pretty l'apidly 
asyrntotically to the straight line ql = 4T1 for higher yalues of Q2. 

and will show a rnaxirnum somewhere past '1, = 41\. (MI in fig. 3). 

This maximum is represented by (~~: = 0) : 
(1 + /') - (q, - 4TJ ~(~ -~) /'= 0, 

R T. 'PI 

q2 ( 1 1 ) as 8. = R T, - Tl ' accol'ding to (6). We have then: 

or 

or (R = 2) 

-82 8, 
(1 + e ) - - (q, - 4T l ) = 0, 

'1, 

-8, 8, 
8, - e = 1 + 4T1 -, , q, 

-6. Tl 
8, - e - = 2 - - 1 

T, 
• (Sa.) 

From this we may find 8, by appl'oximation, 80 also q" and ql 

q, - -8 
is found from (8I ). As '1, - 4T1 = (j (1 + e' '), we have: , 

ql = 4T l + 2 ~' e-~2 = 41\ + 2 '1, (8, - 1 - 4T1 B,) , 
, 8, '1, 

hence ql = 2'1, - 4T l - 2 ~' , , 

or 
T' n =2q _ 4 __ 1 _ 

:Zl , T-T 
1 , 

• . . (Sb) 

Now fig.3 holds for Tl = 1/. T,. so (8a) becomes: 

() 
-6, 

2 - e = 3, 

yielding Os = 3,05. Consequently 9., = 2 (),TI = 6,10 Tl' Further 

according to (8b) Cll = 21, - 8Tl = 4,20 TI' 
Of the curve I (comp. 81) 1 have determined the following points 

with Tl = l/,T" so that B, = 2~ . 
I 
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q, = 1 Tl 
0 

e 2 = 1,65 ql = 1,73 Tl 
8 

q2=7Tl e 2 =33,1 ql = 4,17,& Tl 

2 
" 

2,72 2,92 " 8 " 54,6 4,14& " 

3 
" 

4.48 3,63 " 10 " 148 4,08 " 

5 12,2 4,15 " 15 1810 4,01 " 

6 "I 
" 

20,1 4,19 " "I 20" 22000 4,00 " 

Really the maximum 
above, that fol' q, = 4T1 

b. The curve lI, viz. 

lies just past q,=6Tl • (We saw already 
also ql = 4TJ. 

2 (ql-4T,) 
q. = 4T, + -0' 

1 + e 1 

. . . . . . (811) 

This curve separates the curves T = f (x) with concave end (left 
of this curve, because q. is then smaller than the second membel') 
from that with a convex end (1'ight of the curve, where q. is larger). 

For q1 = 0 also q. = 0, as 01 = 0; (initial direction again 
ql =..ia (45°)); for ql = 4T. also q2 = 4T" and for ql = 00, q, will 

approach to 2 ql - 4T" because e-61 approaches to O. The limiting 
di1'ection of the curve IJ is therefore given by q. =2ql' or ql = 1/. q •. 
(26"5). 

It will nece~sarily cut 1. When T, = I/,T!> this point of inter
section SI lies somewhat on the left of the maximum MI: It is 
found by combining 

_ 4T + 2 (q,-4Tl) d _ 2T + 2 (ql-2Tl) 
ql - 1 an q, - 1 ' 

1 + e q·/2T1 1 + e-q1
!2Tl 

By approximation we find q, = 5,90T,1' ql = 4,19T l • 

The further calculation leads to the following summary. 
-81 -91 91 = 1 Tl e =0,61 q, = 0,76 Tl ql =8 Tl e = 0,02 q.=13,8 Tl 

3 " 0,22 3,64 " 10 
" 

0,01 17,9 " 

4 " 0,13 6 5,52 " 15 " 0,00 28,0 " 

5 " 0,08 7,56 " 20 " 0,00 38,0 " 

6 " 0,05 9,62 " 

For ql = 2Tl (= 4T,) also q. = 2T l (see above). 

c. The curve lIl, i.e. 
__ 4T + 2 (q, + 4T l ) 

ql - 1 8 • 
1 + e-' 

. . • . • (8111) 
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For values of ql larger than the second member the beginning of 
T=j(x') is concave; these curves lie therefore above the curve. In 
the same way all the lines T = j (x') with convex beginning lie 
below this curve. 

Again ql=O, when q,=O,(initial di1'ection ~ (45°»). When q, 
approaches to 00, ql approaches to 2 q, + 4TI , so the limiting direc
tion becomes ql = 2 q, (63°,5). This curve lies entirely outside the 

two first, more to the lef 1. 

Some points of the curve III follow. 

-0, 
q, = 11\ e = 0,61 ql =2,20 TI 81' -0, ° q,= 1 e = ,02 ql = 19,6 1\ 

2 " 0,37 4,78 " 10 " 0,01 23,8 " 

4 " 0,13' 10,1 
" 15 " 0,00 34,0 " 

6 " 0,05 15,0 
" 20 " 0,00 44,0 " 

d. Tlte curve IV, i. e. 

q, := _ 41\ + 2 (ql + ;T,) . . . . . (8 IV) 

1 + el 

If fJ, is smaller than the second member, the end of T = j (x') 
will be concave; these lines lie accordingly lejt of the cnrve; on 
the rigM the lines T = j (x') with convex end are found. 

For 91 = 0 again 9,:= 0 (initial d~1'ection 91 = q, (45C». lf ql = 00, 

q, evidently approaches aSY1nlJtotically to q, = - 41'" just as the 
curve I appl'oached asymptotically to ql = 41\, when q, = 00. The 
curve IV lies therefol'e on1y for a small pal't within the region of 
the positive q" and will therefol'e necessarily cut the ql-axis some
where in 8" and yield a rn(lxirm.l1i1 value ],,1, for q, before that time. 
This curve too lies therefol'e entirely outside the preceding curves, 
and again more to the left. 

The ql-axis is cut, when (T, = 1/, TJ 

or when 

ql + 21'1 _ T 
- l' 

ql/2T\ 
1 + e 

This is satisfied by 

.!È- = 1,257, or ql = 2,51T1• 
2T1 
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The maximum is found in exactly the same way as in I, and is 
determined by 

fJ 
-Ol T, 

I - e = 2 - - 1, . . . . . . (Sc) 
TI 

to w hieh belongs: 
T' 

q, = 2ql - 4 '1' ':"'T . . . . . . . (Sd) 
I , 

If T, = 1/, TI' then (8c) yields: 
-Ol 

fJ I - e = 0, 

ti'om which fJ I = 0,567, or ql = 1,13TI • According to (8d) we have: 

q, = 2ql - 2TI = O,26T1 • 

Further we have the following values fol' q, for increasing yalues 

of ql' 

gl = 2 '1\lll = 2,72 q, = 0,16 Til qt = 10 TI /1 = 148 q~ = -1,84 Tl 

4 " 7,39 - 0,57 " 15 " 1810 -1,98 " 

6 " 20,1 - 1,24 " 
Already at qt = 15T1 the limiting direction q~ = -4T, (here 

= - 2 TI) has been all but reached. 

IV. So we have seen, that the fou!' limiting curves (see fig.3), 
which divide the qp q~-space into different fields, radiate from the 
ol'lgm (qt = q~ = 0) in the space. All of them touch in the origin 
the straight line ql = q" the former two on the right, the latter two 
on the left. Only I is intersected by Il; IV faUs tor the greater part 
out&ide the positive region , I and IV show maxima. 

Below I and on the right of II lies the field A of the convex 
shaped meltingpoint-eurves. 

Between land II on the left of the point of intersection SI lies 
a, small region BI' wh ere the end of T =/ (x) has become concave; 
on its right is the region B~, where the óeginning of T = f (x) has 
bccome concave. 

Between II and III (on the left of SI> between I and lIl) lies 
the field C, where T = f (a:) i& concave thl'oughollt its course, T = f (tV1

) 

convex. 
Between IIt aud the qt-axis (below S~ between lil mld IV) lies 

the field D, where only tbe end of T = / (x') is still convex. 
Finally tbel'e is still a very small region between IV and the 

g\-ax.is, whel'e the meltingpoint curve-both 1'=/(,'1:) and T=f(a/)
is concave througbout its comse. 

If we assume a fixed value tor C)" e.g. q, = 31'1' and vary ql from 
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o tot 00, we pass~successively through the four regions A, BI, C 
and D. For q, = iO Tl e.g. we -should pass through the region B, 
instead of through Bl' 

Jf ql is assumed to be constant, e.g. = iTI , we pass sllccessively 
thl'Ollgh the fields A, BI> C, D and E, when q, decl'eases from 00 tot O. 

Fig.4 gives a representation of the first mentioned transition, viz. 
for q, = 3Tl • 

Between the meltingpoint-curves, marked 2,4 and 2,8 (so holding 
for ql = 2,4 and 2,8TI ), the transition from A to BI (hatched) is 
situated. Between 3,4 and 3,8 (see the hatched parts) is the transition 
from BI to C. Between 7 and 8 (in this case for T=f(.'V')) that 
from C fo D. Further the cases ql = 1, ql = 2 CA), ql = 5 (G) and 

q2 = 3 Tl 

ql=1 lTI 

- 1
2TI 2.4Tl 2.8Tl 13.4TI 13 .STl I 5TI I 7TI jaTI 1 1011 

X'=0.008 0.010 0.019 0.022 0.026 0.029 0.038 0.051 0.057 0.069 

T=0.95 TI 
X =0.033 U.066 0.079 0.091 o.n 0.12 0.16 0.21 0.24 0.28 

---
x'=0.019 0.036 O.04a 0.052 0.058 0.060 0.080 0.10 0.11 0.13 

tl.90 " 
x = 0.072 0.14 0.16 0.185 0.22 0.25 0.30 0.39 0.43 0.50 

x' =0.039 0.052 0.072 0.082 0.098 0.10 0.13 0.161 0.171 0.19 
0.85 " 

X=0.114 0.21 0.25 0.28 0.33 0.36 0.44 0.55 I 0.59 I 0.67 

x'=0.053 0.091 0.11 0.12 0.14 0.15 0.18 022 0.231 0.256 

0.80 " 
0.67 x =0.16 0.29 0.34 0.38 0.44 0.47 056 0.72 I 0.785 

x' =0.08' 0.14 0.16 0.18 0.20 0.216 0.25 0.291 0.30 I U.3'2 
0.75 " 

x =0.22 o 39 0.44 0.48 0.55 0.58 0.67 0.78 I 0815 1 0.8i 

:/,'=0.125 0.20 0.23 0.25 0.28 0.29 0.38 0.36 0.381 039 
0.70 " 

X =0.296 0,48 0.54 0.59 0.65 0.69 0.77 0.86 0.89 I 0.928 

- --
x'=0.19 0.29 0.32 0.33 0.37 0.39 0,43 0.46 O.4i 0.48 

0.65 " 
x =0.38 0.59 0.65 0.69 0.73 0.78 0.83 0.918 0.938 0.964 

-
x'=0.306 0,43 0,46 0.48 0.51 0.526 0.5~G 0.58 0.59 060 

0.60 " 
x =0.50 0.71 0.76 0.80 0.84 0.87 0.916 0.960 0.971 0.006 

,7:'=0.52 0.64 0.666 0.696 0.71 0.72 0.735 0.75 0.75GI 0.76 
0.55 " 

x =0.68 0.84 0.87 0.918 0.927 0.94° 0.966 0.980 0.9911 0.997 
I 
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q! = 10 (D) have been traceel. The curves 2,8 and 3,4 l'epresent 
thel'efore the type BI with convex beginning and concave end for 
T = J (.'V). The calculations (according to formulae (4)) are summarized 
in the annexed table, i.e. fol' T~ = ~ Tl, to which fig.3 applies. 

With this change of ql we do not enter the region Ei therefore 
q~ would have io be smaller thau 0,26 Tl (see above). 

V. It remains to answer the question, to what modifications the 
fields and theil' limits dl'awn in fig. 3 are subjected, when Ts is 
not ~ Tl, but e.g. 0,9 Tl or 0,1 Tl' 

The initial dil'ections of the curves I to / IV remain quite the same, 
a1so t11e final ~ directions, bUt between them th ere are some modiil
cations; specially the place of the points of intel'section and of the 
maxima is changed. 

a. If 1', is no Jonger 0,5 Tl' but e.g. 0,9 Tl, so that 1'2 and PI 
are VeJ'y nea?' to each other, we find for the maximum 1111 from 
(Sa) aud (Bb): 

-0. 
0, - e • == l'jg ql == 2q, - 40Tl ! 

yielding Os = 1,455
, hence, as 0, = ~ (:, - ;'J is now 1:~1 

g2 = 26,21\. Fol' ql we find then ql = 12,4 T!. 
The maximum has now got quite outside thë limits of the values 

of q which occur practically, so that the curve I now gradually rises 
within these limits. (fig. 5). 

The point of intersection of I with II has not been displaced much. 
We find now for it q, = 5,85 1\ , ql = 5,55 Tl> so that the value of 

q2 has remained nearly constant. 
The consequence of the modified course of the curves land II 

is, that the region BI has all but disappeared; 011 the left of SI 
land II nearly coincide; the region B2 has strongly diminished. 

But also C and D have considerably dilllinished, so th at the greater 
part of the space is left fol' A and E. 

The considerable increase of the l'egion E is due to the fact, that 
the point of intersection of the curve IV with the ql-axis lies much 
higher than in fig. 3, and that the maximum has moved considerably 
10 the right. In fact we find for the point ofintersection mentioned: 

Ql+3,6T1 -18 T 
-, l' 

qljl8T1 l+e 

from which 1:;' = 3,577, so ql = 64,4 Tl' 
I 
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The maximum is given by (8e) and (8d), viz. 

8 1 - e-
61 = 0,8 i q~ = 2ql - 32,4 Tl' 

glvmg 81 = 1,125, so ql = 20,3 1\ , q~ = 8,2 T l ._ 

In the following table some more data are given, which have been 
used for the construction of fig.5., 
Curve I 

Curve II 

Curve III 

Curve IV 

q2/ Tl = 1 3 5 8 10 15 20 25 30 40 50 100 150 

ql/Tl =1,09 3,09 4,S36 7,13 8,37 10,7 11,9 12,3B 12,21 11,0 9,39 4,74 4,071 

ql/T
I 

= 1 2 4 6 8 10 15 20 30 40 60 100 

q2fTI =0,931,91 4,04 6,40 8,96 11,7 19,5 28,3 48.0 69,3 1125 196 

g2/ Tl = 1 2 4 6 8 10 15 20 30 40 60 100 

91/1i =1,14 2,33 4,88 7,65 10,6 13,8 22,5 3"2,1 53,2 75,4 120 203 

ql/71 = 1 3 5 8 1~ ~ 15 20 25 :0 40, 50 100 15~ I 
g2/T

l 
=0,872453,81 5,46 6,3t 7,67 8,09 7,82 1,08 4,93 2,68 -2,8 -3,53 

b. Let us now take T2 = 0,1 Tl' so that the two temperatures 

of melting lie vel'y lal' apart. This case (see fig.6) agrees more closely 
with that for which Tg = 0,5 Tl; only the maximum of the curve 
II has got neal'er to 9.g = 4 Tl, and the point of intersection of II 
with I has moved much farther to the right. This has made the field 
BI considerably largel' than in the case T2/ Tl' = 0,5, which field had 
nearly vanished for Tg/TI = 0,9. 

But nearly the whole of curve IV lies now outóide the positive 
region, so that the appearance o~ bi-concave meltingpoint-curves is 
almost excl nded. 

The maximum of I is determined by 

yielding 8g = 19. As 8g = g/q~, so qg = 42
/ g Tl' ql being 4,0 Tl' 

g 1 

o -
For the point of intersection of Il with I we find, as e 2 is ve1'y 

, -Ol 
large and e vel'y sm all , 

ql = 4,0 Tl , qg = 2 ql - 4 Tg = 8,0 Tl - u,4 Tl = 7,6 1\. 

The curve IV cuts the ql-axis, when 

O 2 '1
, _ ql + 0,4 Tl 

, 1 - , 

~ 
1 +/lgTI 

so when 
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ql 

or 2/~TI_ 10 ~-1 
e 9 . '/ l' -

~ 1 

This gives 2/q~, = 0,203, hence ql = 0,045TI • 
9 1 

The maximnrn is found from 

-Ol 
8 1 - e = - 0,8 ; q2 = 2 ql - 0,0444T1· 

This is satisfieq by 81 = 0,'1025, hellC'c ql = 0,02281'1' q, = 0,00121\. 

Wc can further calctllate the foHowing points of the four curves. 

Curve I Ih/li = I/~ 2/~ 4/~ elp sI; 101~ 20/~ 

ql/TI =- 1,06 1,97 3,15 3,68 3,8\) 3,00 4,00 

Curve II ql/TI = l/~ % 4/~ % Bfg 1% 'o/~ 3 4 

qJjTI = 0,0'/0 0,1<1 0,4R o,m 1,36 1,Rl 4,04 5,60 7,60 

Cm've III q~/TI = l/~ 2/~ 4/~ e/p s/p 1°/~ 'O/~ 3 

ql/'Ji = 1,12 2,17 3,83 4,89 5,60 6,15 8,44 10,0 

Curve IV ql/TI = lig '/g 4/~ e/~ 8/~ 10Ig 20/9 

ql/Tl = -0,014 -0,066 -0,20 -0,30 -0,35 -0,38 -0,40 

c. Rence when we draw near to the limiting case T, = Tu all 
four cnrves will evidently approach to the straight line ql = q" 

whiclt cuts the angle of the coordinates in two equal parts. Fig.5 is 
to a cel'tain extent al ready a l'epl'esentation of this case. 

If, ho wever, T, IS vel'y smaH, so that T2/TI approaches to 0, then 1 
passes evidently into the straight line ql = 4T1 i II into 11-. 2ql i 

III into q~ = 0, so into the ql-axis i IV into L - 41'2 = 0, so 

again into the ql-ftxis. Of t11is fig.6 gives already an idea. 
As to the two maxima and the t.wo points of intel'section, we 

have finally the following summary. 

11fl J.l1s 

T21TI = ° 0,1 0,5 0,9 1 ° 0,1 0,5 0,9 1 

q2/T
1 
= 4 4,2 6,1 26,2 00 ° 0,0012 0,26 8,2 00 

ql/T
1 
= 4 4,0 4,2 12,4 00 ° 0,0228 1,13 20,3 00 

SI Ss 
T'/T! = ° 0,1 \ 0,5 0,9 1 ° 0,1 0,5 0,9 1 

q2/TI = 8 7,6 5,9 5,85 4 ° Q ° ° ° 
qllTI = 4 4,0 4,2 5,55 4 ° 0,045 2,51 64,4 00 

And in this way I think that the ideal case a = 0, a' = 0 has 

been sllfficiently elucidated. 
35 
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