Huygens Institute - Royal Netherlands Academy of Arts and Sciences (KNAW)

Citation:

J.J. van Laar, On the shape of meltingpoint-curves for binary mixtures when the latent heat required
for the mixing is very small or = 0 in the two phases, in:
KNAW, Proceedings, 6, 1903-1904, Amsterdam, 1904, pp. 518-531

This PDF was made on 24 September 2010, from the 'Digital Library' of the Dutch History of Science Web Center (www.dwc.knaw.nl)
> 'Digital Library > Proceedings of the Royal Netherlands Academy of Arts and Sciences (KNAW), http://www.digitallibrary.nl'



( 518 )

- TABLBE V.
2 15°.7) | p (15°.7)
v
1864 1893 or

39820 96 99 2636 | 097
31790 32 8 3296 | 0833
26440 39.43 39058 | 037
29610 46.00 46.92 | 048
19760 59,57 5284 | 0.51
17550 59 14 59 45 | 0.53
15790 65.71 66.04 | 050
14340 72 98 7269 | 056
13140 78 85 7983 | 061
12140 85 42 85.88 | 0.53

sures, whereas the determination of the pressure in 1864 with
an open manometer 65 meters high has been very difficult. 32 Com-
parison of the accurate hydrogen isotherm of ScHarkxwiuk (Diss. 1902)
with the values extrapolated from AwmaeaT’s determinations gives

differences of about 0,1 °/,.

-

Chemistry. — “On the shape of meltingpoint-curves for binary
maztures, when the latent heat rvequired for the miving is very
small or=0 in the two phases.”” (3 communication). By
J. J. vaN Laar. Communicated by Prof. H. W. Bakhuis

RoozeBooM.

I. By the side of the ideal case, that the latent heat of mixing in the
liquid phase = 0, whereas it is oo in the solid phase (¢ = 0, «' = o0) —
so that the soli/ phase consists only of one component — there is
another case, also ideal, viz. that the latent heat of mixing = 0 in
both phases, or may be neglected. (a=0,«'=0). The solid phase
consists then of the two components in a proportion which is com-
parable to that in the liguid phase.

The former ideal case is that of the processes of solidification,
in which no solid solutions (or mixed crystals) are found, the latter
may be appropriately called the ideal case of the mawed crystals.

To consider such ideal cases has always this use — apart from
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the simplifications in the considerations and calculations — that these
cases may be adopted as the mormal ones, from which all the other
cases are to be considered as deviations in greater or smaller degree.

In our case the consideration of the limiting case ¢ =0, ¢ =0
offers another advantage, viz. that much of what will be deduced
in what follows, may be transferred with some restrictions to the
botlingpoint-lines for ideal liquid and gaseous phases. For the thermo-
dynamic relations of equilibrinm agree perfectly, when the distinguish-
ing feature between the two kinds of equilibrium, viz. the degree of
the mutnal influence of the two components in each of the phases has
vanished. The dafference consists only in this, that for the processes
of melting the pure latent heat of melting may be assumed to be inde-
pendent of the temperature, whereas for the processes of boiling the
latent heat of evaporation will decrease with increasing temperature.
Only in those cases, therefore, in which the boiling points of the two
components do not differ much, the following considerations may be
transferred to boilingpoint-curves of liquids, where « may be put
= 0. When the difference betiveen the boiling points is larger, this
cannot be done any more.

II. The fundamental equations (2) of my jfirst paper') become

(3: g 0, ﬁ':f- = 0) simply :
1 1
1‘1 T2
RT,  1—2' RT, P M
log 14+ log —

& 1 3 @

It is now possible to eliminate 2/, and to express & explicitly in
7, and in the same way to express the quantity 2’ explicitly in T
after eliminating .

In the first place we find:

7=

1+

—

el 1 G2yl 1
1—a'  #7T) d BT T
1_“{”:9 3 ;_—:e N )
so that, when for shortness we put:
'a 1\’ 4.1 1
2l — =2 ; e —— | =] .
R\T Tl) h R(Z; T ¥ ®)

we get, in consequence of (1—&') 4- 2' =1, the relation:
(1~—2) & +oae =1

1} These Proc. VI, June 27, 1903, p. 151.
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In the same way -

(l_w) —4 + r 2
From this we solve-
8)1 _1 5 ‘ e—-—ll _ 1
r= , = ——
PP e g
or, in a form convenient for the calculation-
X
¢ —1 i
¥ =—— ; z=2a'e’. . . . . . (4
ell+£9 . 1

From these equations, and also from equation (4) of the first com-
munication (in which w, = ¢, and w, = ¢,) we find easily"
ar RT? a-o' aT RT? z-2'
da (g tag e(lw) A (Id)q tag, @ (1)
For the inutial course of the meltingpoint-curve follows from this
(r'=1T)

@)= 0-0)) @ =50
de o~ 0 Z /g " \da' o_ ¢, 23 0 ’

or, 1n connection with (2):

aT RT? —8 ar RT
—_— - — 1 1—~ ’ H -—_ == — -—_ gy v .
(@)= (= (@) =T o
when we put
. (1 1 "
R(T, T,)_a, Y ()

The final course (for the lowest temperature 7,) is found by
changing the letters, so, by putting further 1 —z=yand 1—z'=yv’.

2= (-0 @ =% ()-)

i.e. taking (2) into account-

d RT? aT RT;
(—-— =11y (~' =—2 (1— . (50)
/e ¢ g,

when putting :
. (1 1
—_R- (F’ — -j_'-l') - 61 . . . . . . A (6“)

#, and 6, being both positive quantities (T, is a.lwa.ys smaller

6

than T7), ¢ and ¢ will always be >1, ¢ * and e * always < 1.

From this follows, that the gquantities (———) and ( T) will always
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‘ d 4T .
be negative, the quantities (Ey— and c—l?) always positive. For the
0 0

latent heat of mixing ¢, and ¢, can never become negative.

So in the 1deal case ¢ =0, &' == 0 the meltingpoint-curve always
begins to descend at the highest temperature, and to ascend at the
lowest temperature, so that i this case a mimmum is excluded.
This appears also from the fact that the condition for a minimum

Tr—-T
is 8 > T * (loc. cit. p. 168), so that for § = O this can never
1
occur, and the meltingpomt-curve will therefore gradually descend

from T, to T,.

That a maximum cannot occur in any case for normal coraponents,
whatever value « or ¢ may have, — provided «' be larger than & —
has been proved already mn my first communication (loe. eit. p. 156).

The equations (5) and (5a) give rise to the following discussion.

arT
In the hmiting case ql_O (g, fimte) we have TZ;)Z—_OO’
“ /o

ar
( d@) , ( d:) ——) =0, so that the two meltingpoint-

curves will approach to the type 4 (fig.1).

77

———

[
1
]
i
\
!
!
]
!

LN

'H ~—T<

For ¢, = o, ( T) and ( ‘,) will approach to O, (—-) to ® (on

RT? o,

account of the term ¢ ‘), but ( ,) to a Lmit, viz. , as €
dy'/, 4

converges to O This gives the hmuting-type B (fig.1).
Whe =0 (g, fimt 1 ol d a1 0; o
n g, =0 (¢, fimte), we have o uzm (dw o_ (dy)o
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—

aT
and (@—,) ==co. The meltingpomt-curves approach to the type C

(fig.2).

aT RT:® rdr
If, however, ¢, = o, then (—- =—_1 (——,) = — o, and
—— dz /, ' da' ),

aT aT
( dy) and (—) approach both to 0. Now (E) approaches to a
v/

limit, as ¢ —h converges to 0. This gives rise to the limiting-type
D (fig.2).

We shall see presently, that aceording to ¢, being greater or
smaller, the final course for 7'= f (/) in the case C, and the initial
course for T'=f(2) in the case D may vary as to their curvature.

All the other cases lie between these extremes, but we shall see
that there can yet be a great difference in course as to concavity
and convexity. In order to form an opmion on this, however, we
must write down the second differential-quotients.

III. We found for them in our second cornmunication *) for 7'= 7,
when « and « = 0:

(D=2 s1o-(2) o]
- oo (-]

&

in which (;_—) is ¢ according to (2) and (6). For the corresponding

. aT
expressions for 7, we find by the same changes as for =

(see above):

(D)= 2D ero- (Y fomsrsssmn]|
(=2l r0-(3) s 200

in which (‘;) =" according to (2) and (6a).
0

That these equations can give rise to a point of inflection in the
meltingpoint-curve, so even at o’ = 0, I have already proved in my
second communication (loc. cit. p. 256—257).

1) These Proc. Vi, Qct. 31, 1903, p. 256.
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For a concave beginming (i.e. turned towards the X-axis)

dz?
1 tive for X b 1 tive ). Hence ok . 4L
1S & W«‘lys nega 1ve ( Or dz ecomes arger nega 1V e). ence I H —(_l;

positive. On the other hand this quotient will be negative for a convex
beginning. In the same way for T'= f(z’).
2

dT
_ With a concave end @; will again be negative (-@- becomes

, ST dT _ ,
smaller positive |, so — : — mnegative. For a convexr end this
dy*  ady
quantity will be positive. We have therefore the following transition
conditions.

concave . s
I  For I'=f(x) convex beginning 2(9,~¢,)+(q,-477) (eo -1) >'O

<

concave

II F ' jmnne
or T f@) convex

end —2(9,-¢,)—(¢,-47)) (1—6"'0‘)§0

concave

I For T=f(@) oo {beginningd(g,—o)—(q:+47)(A-¢ " zo

concave

IV For T'=f(2') convex

end  —2(g-g)Hos 4T ("~ 1) §o

or in another form -

I 7. 2 4TI _+_ 2(Q=_‘tTl) III 7, 2“4]11-{- 2(9:""491.’1)
1-te” 14e "
(8)
< p o Ag—4T)) < 2(g,+47,)
Hoa > i+ 1+e—91 IV g, > AT, + —1+eo,

The different regions with their limits, which occur in these
conditions, are represented in fig. 3 (Plate). The figure holds for
T,="/, T, the values of ¢, and g, are expressed in multiples of T’,.

Let us subject the limiting-curves to a closer examination (see fig. 3).

a. Curve 1, viz.

v 2g—4Ty)

g, =41+ ——1;—;0;:—
According to (8) all the curves 7'= f(2) with a concave beginning

will lie above this curve, with a convexr beginning below it. For ¢,

must then be respectively larger or smaller than the values given

by the second member.

(8%
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The curve will also yield ¢, =0 for ¢, =0, for which e =1,
The initial direction is given by ¢, = ¢, (45°). Further for ¢, = 47,

is evidently also ¢, = 4Tl, and for ¢,= ,’eo’ becoming = o,
q, will again be 47,. The ‘curve I will therefore run- pretty rapidly
asymiotically to the straight line ¢, = 4T, for higher values of g,,
and will show a mazimum somewhere past ¢, = 47,. (M, in fig. 3).

d
This maximum is represented by (d—gf = O):
2

8 1/1 1Y s
1 2y . __4:’[1 o 3: -
0+ =@ — i) 5(7 -7 )P =0

_a(l 1 A .
as 6, “E(T, T,)’ according to (6). We have then:

A+ _g —ary=o, x

— 8
or B, —¢ P=144T, 2,
—, T
01-(322) 9,—6 :25,—— - e e e e .. (8a)

From this we may find #, by approximation, so also ¢,, and ¢,

is found from (80). As ¢, — 47T, = g—’ a3+ et_o’), we have:

_ 6
g =AT, 422, f’=41'1+29-’-(e9,—1_421—1),
o, 6, s

hence ql=2q,-4T1—2q—’,
6,
T b 1
or g9, = 29, — 4 31:?11—1: e e e e e e a (Sb)

Now fig.3 holds for T, ="/, T,, so (8a) becomes:

0y
6,—e =28,

yielding 8, = 3,05. Consequently ¢, =26,7, = 6,10 7,. Further
according to (80) ¢, ==2¢, — 8T, =420 T,.
Of the curve I (comp. 82) I have determined the following points

; —1 1
with 7', =*/,T,, so that 6,__21,1.
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g, =1T,|=1,65]g =173 T,|jg,=7T,| =33, |g,=4,17° T,
2, 2,72 2,92 ,, 8 54,6] 4,14 ,,
3 ., 4,48 3,63 ., 10, | 148 4,08
5., 12,2 4,15 ,, 15 , | 1810 4,01
6, 20,1 419 ,, 20 ,,| 22000 4,00 ,

Really the maximum lies just past ¢,=67,. (We saw already
above, that for ¢, = 4T, also ¢, =4T)).
b. The curve II, viz.

9 (q.—AT
q’ — 4:T, + (QL ?)

14 T

This curve separates the curves T = /(%) with concave end (left
of this curve, because g, is then smaller than the second member)
from that with a convez end (right of the curve, where g, is larger).

For ¢,=0 also ¢q,=0, as 6, = 0; (initial direction again
q, = g, (45%)); for q, = 4T, also ¢, =47, and for ¢, =, ¢, will

(84)

approach to 2 ¢, — 4T,, because P approaches to 0. The lmiting
direction of the curve II is therefore given by ¢,=2¢,, or ¢,="/, g,.
(26°,5).

It will necessarily cut I. When 7, =7?/,T), this point of inter-
section S, lies somewhat on the left of the maximum M. It is
found by combining

2 (q,—47T, 2 (q,—2T,
g = 4T, 4 (Q= 1) and g, =2T, + (QI 2 ‘
&afo, —q/aT,
146 1450

By approximation we find ¢, = 5,901, ¢, = 4,197, .
The further calculation leads to the following summary.
—b,

0= 1T | %= 0,61 |g, = 0,76 T,||g, =8 T,|¢ "= 0,02|¢,=13,8 T,
3, 0,22 3,64 ., 10 ,, 0,01 17,9 ,,
4, 0,138 5,52 ,, 15 ,, 0,00 28,0 ,,
5 ,, 0,08 7,56 ,, 20 ,, 0,00 38,0 ,,
6, 0,05 9,62 ,,
For ¢, = 2T, (= 47T,) also g, = 2T, (see above).
¢. The curve III, i.e.
2 (g, 1 4T
g =— 47, 4 2B T2 (811
14¢ 7
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For values of ¢, larger than the second member the beginning of

= f(#') is concave; these curves lie therefore above the curve. In
the same way all the lines 7'= f(2") with convex beginning lie
below this curve. -

Again ¢,==0, when ¢,=0 (initial direction g,=g,(45%)). When g,
approaches to o, ¢, approaches to 2 ¢, + 47), so the Iimiting direc-
tion becomes ¢, = 24q,(68%5). This curve lies entirely outside the

two first, more to the lefl.
Some points of the curve III follow.

g, =1T,]¢ "=061 |q,=2,20T, ||g,=8 T\|¢ " = 0,02 g, = 19,6 T,

2 0,37 4,78 , 10 ,, 0,01 23,8 ,,
4, 0,13 10,1 15 ., 0,00 34,0 ,
6 ,, 0,05 150 (i 20, 0,00 44,0 .,

d. The curve IV, i e.

, q’:_‘ig"_{_w N (:114|

1 -{—ea’

If ¢q, is smaler than the second member, the end of T'= f (&)
will be concave; these lines lie accordingly left of the curve; on
the right the lines 7"'=—= f(«') with convezr end are found.

For ¢, =0 again ¢, = 0 (initial direction q, = ¢, (45%)). If ¢, = o,
g9, evidently approaches asymplotically to q,=—4T,, just as the
curve I approached asymptotically to ¢, = 47',, when ¢, = . The
curve IV lies therefore only for a small part within the region of
the positive ¢,, and will therefore necessarily cut the g,-axis some-
where in S,, and yield a mazimun value M, for ¢, before that time.
This curve too lies therefore entirely outside the preceding curves,
and again more to the left.

The g¢,-axis is cut, when (7, =1/, T)

aT
91 +ql/ 1 — Tp
14e 20

or when
91/ 2T T
—2-2_=1.
¢ 2 5T,
This is satisfied by

D 1957, or ¢, =251T,.

2T,

-10 -
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The maximum is found in exactly the same way as in I, and is
determined by

0,-?"*:2%-—1, C e e .. (89
to which belongs :
—2¢, — 4 by 8
g, = 2¢, 7T, (84)
If T,="1/,T,, then (8¢c) yields:
6, ——6_01:: 0, '

from which 6, = 0,567, or ¢, == 1,137}. According to (8d) we have:
b q, = 2¢, — 2T, = 0,26 T,.
Further we have the following values for ¢, for increasing values

of ¢,. ! '

g =2T | =2,72q,= 0,16 T,||¢,==10T,|¢" =148|g,== — 1,84 T,
4, 739  —057,, 15, | 1810 —1,98,
6 4 20?1 - 1’24 ” |

Already at ¢, =157, the limiting dirvection ¢q,—=—47, (here
= —21T)) has been all but reached.

IV. So we have seen, that the four limiting curves (see fig.3),
which divide the g,, ¢,-space into different fields, radiate from the
origin (¢, =¢,=0) in the space. All of them touch in the origin
the straight line ¢, = ¢,, the former two on the right, the latter two
on the left. Only I is intersected by II; IV falls for the greater part
outside the positive region, I and IV show maxima.

Below I and on the right of II lies the field 4 of the convex
shaped meltingpoint-curves.

Between I and II on the left of the point of intersection .S, lies
a small region B,, where the end of 7'= f(z) has become concave;
on its right is the region B,, where the leginning of 7= f () has
become concave.

Between II and IIT (on the left of S,, between I and III) lies
the field C, where 7= f(2) is concave throughout its course, 7' = f(2’)
convex.

Between IIT and the g,-axis (below S, between III and IV) lies
the field D, where only the end of T'= f(2") is still convex.

Finally there is still a very small region between 1V and the
¢,-axis, where the mellingpoint curve —both I'= f(2) and 7'= f(2")—
is concave throughout its course.

If we assume a fixed value for ¢,, e.g. ¢, == 31, and vary ¢, from

-11 -
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0 tot o, we pass successively through the four regions 4, B, C
and D. For ¢, =10 7, eg. we should pass through the region B,
instead of through B,.

If ¢, is assumed to be constant, e.g. = 17, we pass successively
through the fields A, B,, C, D and E, when ¢, decreases from o tot 0.

Fig.4 gives a representation of the first mentioned transition, viz.
for ¢, = 37T..

Between the meltingpoint-curves, marked 2,4 and 2,8 (so holding
for ¢, =24 and 2,87)), the transition from A4 to B, (hatched) is
situated. Between 3,4 and 3,8 (see the hatched parts)is the transition
from B, to C. Between 7 and 8 (in this case for 7'= f(z’)) that
from C to D. Further the cases ¢, =1, ¢, =2 (4), ¢, = 5(C)and

Qa=3T1
a=| 1T oT, 1247, |2.87,|3.47,{3.87,| 57y | 77y | 87y | lo1;
2'==0.008 | 0.015| 0.012] 0.022] 0.028] 0.029| 0.038| 0.0t} 0.057| 0.06°
T=0.95 T,
©==0.03| 0.065| 0.07/ 0.00} 0.11 | 0.12 [ 0.16 | 0.21 | 0.94 | 0.28
o #==0.019| 0.03¢] 0.043{ 0.052| 0.055| 0.06¢] 0.080| 0.10 | 0.11 | 0.13
Q.

" le=0.07|014 | 0.16 ( 0.185( 0.22 | 0.25 | 0.30 | 0.99 | 0.43 | 0.50
0.5 +'==0.030{ 0.0%2 0.072| 0.082 0.09¢] 0.20 | 0.13 | 0.16 | 0.17 | 0.19
TP lp=o0.11¢] 021 [ 025 | 0.28 | 0.33 | 0.86 | 0.44 | 0.55 | 0.59 | 0.67
0.50 2'==0.05%{ 0.095/ 0,11 | 0.12 | 0.14 [ 0.15 | 0.18 | 022 | 0.93 | 0.255
TP 2 =0.16 [ 0.29 | 0.84 | 0.98 | 0.44 | 0.47 | 056 | 0.67 | 0.72 | 0.785
. 2'=0.08"] 0.14 | 0.16 | 0.18 | 0.20 | 0.215] 0.25 | 0.29 | n.80 | 0.82
5

" 1z=022|039 | 044|048 0.55]058](0.67] 018 | 0815|087
o0 2'=0.125] 0.20 { 0.23 | 0.25 | 0.28 | 0.29 | 0.83 | 0.56 | 0.38 | 0 39
T ? =099 0.48 | 0.54 | 0.59 | 0.65 [ 0.69 | 0.77 | 0.86 [ 0.83 | 0.998
o #=0.19 ] 0.20 { 0.82] 0.85 | 0.97 | 0.89 | 0.43 | 0.46 | 0.47 | 0.48
M 2 =0.98]0.59 | 0.65] 0.69 | 0.5 | 0.78 ] 0.85 | 0.918] 0.938] 0.96¢
0.6 2==0.305| 0.43 [ 0.46 | 0.43 | 0.51 | 0.525| 0.55¢] 0.58 | 0.5 | 0 60
P e =050 071 ] 0.7 [ 0.80 | 0.84 | 0.87 ] 0.915] 0.960| 0.971 0.98¢
" 2=0.52 | 0.64 | 0.665 0.695{ 0.71 [ 0.72 | 0.735| 0.75 | 0.756| 0.76
0.

" l2=068 |08 ] 087 | 0.918] 0.927] 0.940] 0.965| 0.985 0.99:] 0.997

-12 -
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g, =10 (D) have been traced. The curves 2,8 and 3,4 represent
therefore the type B, with convex beginning and concave end for
T = f(z). The calculations (according to formulae (4)) are summarized
in the annexed table, i.e. for 7, =14 7, to which fig.3 applies.

With this change of ¢, we do not enter the region E; therefore
g, would have to be smaller than 0,26 T) (see above).

V. It remains to answer the question, to what modifications the
fields and their limits drawn in fig. 3 are subjected, when 7, is
not § 7%, but eg. 0,9 T, or 0,1 7.

The initial directions of the curves I to IV remain quite the same,
also the final _directions, but between them there are some modifi-
cations; specially the place of the points of intersection and of the
maxima is changed.

a. It T, is no longer 0,5 T, but e.g. 0,9 T}, so that T, and P,

are very near to each other, we find for the maximum M, from
(8a) and (80):

g, — ¢ = 1*/, 5 gq,=2g,— 407,
yielding 4, = 1,45°, hence, as 6,2&(—1——i is mow i
: = ’ 2 \7, T, 18T,
g, =26,27,. For ¢, we find then ¢, =124 T,.

The maximum has now got quite outside the limits of the values
of ¢ which occur practically, so that the curve I now gradually rises
within these limits. (fig.5).

The point of intersection of 1 with II has not been displaced much.
We find now for itg, = 5,851, , ¢q, = 5,55 T,, so that the value of
g, has remained nearly constant.

The consequence of the modified course of the curves I and II
is, that the vegion B, has all but disappeared; on the left of S,
I and II nearly coincide; the region B, has strongly diminished.

But also C and D have considerably diminished, so that the greater
part of the space is left for 4 and Z.

The considerable increase of the region £ is due to the fact, that
the point of intersection of the curve IV with the ¢,-axis lies much
higher than in fig. 3, and that the maximum has moved considerably
to the right. In fact we find for the point of intersection mentioned :

gﬁ—%ﬂ pommend 198 Tl ’ or eq,./lsTl — 10 —-g-l- = 11
?l/lng ISTI
1+4e
from which TgT — 3,577, s0 g, = 64,4 7.
b

-13 -
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The maximum is given by (8¢c) and (8d), viz.

6,—e =08 ; g,=2¢ —3247T,
giving 6, =1,125, s0 ¢, =20,81,, ¢q,=827T,._
In the following table some more data -a;'—egx:en, which have been
used for the construction of fig.5.,
Curve I ®fr;=1 8 5 8 10 15 20 25 30 40 50 100 150
Q/7, =109 309 426 7,13 837107 119 123 1228 11,0 939 474 4,07‘

Curve II 9fp,=1 2 4 6 8 10 15 20 30 40 60 100}
92/T, =093 1,91 4,04 640 896 11,7 195 283 480 693 1125 196

Curve III %/z;=1 2 4 6 8 10 15 20 3 40 60 100 {
n/7, =114 233 4,88 765 108 138 225 821 532 754 120 203

Curve IV @fp;=1 8 5 8 10 15 2 2 30 4 5 100 150%
2/, =087 245 381 546 6,32 7,67 8,09 782 7,08 493 2,68 -28 -353

0. Let us now take 7, =0,1 T, so that the two temperatures

of melting lie wery jfar apart. This case (see fig.6) agrees more closely
with that for which 7, =0,5 7',; only the maximum of the curve
II has got nearer to 9, =4 T, and the point of intersection of II
with I has moved much farther to the right. This has made the field
B, considerably larger than in the case Z:/p;, = 0,5, which field had
nearly vanished for T3/y; = 0,9.

But nearly the whole of curve IV lies now outside the positive
region, so that the appearance of bi‘concave meltingpoint-curves is
almost excluded.

The maximum of I is determined by

62-—8—02:19 i =2¢,—4%/°T,
yielding 8, =19. As 6, = ,/ﬁ—, so g, = 4%/, T, ¢, being 4,0 7'.
971 -_— -
For the point of intersection of II with I we find, as ¢ is very

g
large and ¢ ' very small,

. =407, , ¢=2¢, — 41, =80T, —va T, =T767T,.
The curve IV cuts the ¢,-axis, when

04T
027, = Q1_“|_‘____: ,
Ql
1+82/0Tl
TN
so when 0,2 o1t — %‘ 40,2,
1
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9
or g 10 ¢

9 T,
This gives ’/311'1 = 0,208, hence ¢, = 0,045T,.
The maximum is found from
6, —¢ = — 083 q,=2q, — 0,0444T,.

This is satisfied by 8, = 0,1025, hence q,=0,02287,,¢,=0,0012 7.

We can further calculate the following points of the four curves.
Curve I  wfp,= s VR T S T
a/py=" 106 197 315 368 388 396 400

Curve I afp = &) L T O (R 3 4
Bfp = 0040 014 048 091 136 181 404 560 780

Curve III 0lp, = % %y I T 3
afp = 112 217 883 48 560 615 844 100

Cuwrve IV /gy, = % h e b % Ch T
9./, = — 0014 — 0,066 — 0,20 —0,30 —0,35 —0,38 — 040

¢. Hence when we draw near to the limiting case 7, = T}, all
four curves will evidently approach to the straight line ¢, =g,
which cuts the angle of the coordinates in two equal parts. Fig.5is
to a certain extent alveady a representation of this case.

If, however, T, 1s very small, sothat T2/7, approaches to 0, then I
passes evidently into the straight line ¢, = 4T, ; II into 4: = =_Eg_}_;
Il into ¢,=90, so into the ¢,-axis; IV into q, = — 47, =0, so
again into the ¢-axis. Of this fig.6 gives already an idea.

As to the two maxima and the two points of intersection, we
have finally the following summary.

M, M

Tjp=0 01 05 09 10 01 0,5 09 1
6/, =4 42 61 262 o |0 00012 026 82
nfp =4 40 42 124 o« |0 0,0228 1,13 20,3

Sl Sz
T/y,=0 01,05 09 1 |0 0,1 0,5 09 1
92/Tl:8 7,6 5,9 5,85 4 0 Q 0 0 0
afr, =4 40 42 555 4 [0 0,045 251 644 oo

And in this way I think that the ideal case a =<0, o' =0 has
been sufficiently elucidated.
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