Huygens Institute - Royal Netherlands Academy of Arts and Sciences (KNAW)

Citation:

W.H. Keesom, Isothermals of mixtures of oxygen and carbon dioxide V[a]. Isothermals of mixtures of the molecular compositions 0.1047 and 0.1994 of oxygen, and the comparison of them with those of pure carbon dioxide, in:

KNAW, Proceedings, 6, 1903-1904, Amsterdam, 1904, pp. 577-588

This PDF was made on 24 September 2010, from the 'Digital Library' of the Dutch History of Science Web Center (www.dwc.knaw.nl) > 'Digital Library > Proceedings of the Royal Netherlands Academy of Arts and Sciences (KNAW), http://www.digitallibrary.nl'

(577)

The following quantities are further found at the critical point, which are necessary for the comparison of the observations with the theoretical results of Comms. N^o. 75 and N^o. 81:

$$\begin{split} C_4 &= \frac{T_k}{T_o p_k v_k} = 3.45. \\ & \frac{T_k}{p_k} \left(\frac{dp}{dT}\right)_k = 6.712. \\ & \left(\frac{\partial^2 p}{\partial T \partial v}\right)_k = -422, \text{ hence } C_4 \frac{v_k T_k}{p_k} \left(\frac{\partial^2 p}{\partial T \partial v}\right)_k = -26.9. \end{split}$$

Here, in agreement with the value of the coefficient of expansion for the ideal gaseous state accepted in this Comm. III, p. 558 we have put: $T_0 = 273.04$.

Physics. — "Isothermals of mixtures of oxygen and carbon dioxide. V. Isothermals of mixtures of the molecular compositions 0.1047 and 0.1994 of oxygen, and the comparison of them with those of pure carbon dioxide". By W. H. KEESOM. Communication N^o. 88 (5th part) from the Physical Laboratory at Leiden by Prof. KAMERLINGH ONNES.

(Communicated in the meeting of October 31, 1903.)

§ 1. The following sections contain the tables about two mixtures of carbon dioxide and oxygen. For the meaning of v, p, v_{liq} and the determination of the *b.c.*- and the *e.c*-points I refer to this Comm. IV § 2. Of the end condensation point it should be remarked that over a definite area below and above the plaitpoint temperature the meniscus, in consequence of the effect of gravitation, disappeared in the tube.

The data about the plaitpoint were derived directly from the experiment. On the phenomena near the plaitpoint I find the following remarks among my notes of the observations: When the volume increases from the homogeneous (liquid) state a blue mist gradually forms itself. As the volume increases (small variations at a time) this becomes denser. If the volume increases still more, layers of different degrees of refrangibility suddenly appear, which quickly move among themselves. When we stir, however, they still dissolve into the thickening blue mist. At a given moment, after the volume has been increased again a little, these layers begin to concentrate towards the middle of the tube, at the top and at the bottom it (578)

becomes clear, small bubbles or drops are seen to move from below and from above towards a certain point in the tube. At last a meniscus appears there. This remains at that place. The temperature at which these phenomena were observed was adopted as the plaitpointtemperature of the mixture considered, the volume and the pressure as plaitpoint volume and pressure.

If the temperature is a little higher, the meniscus appears lower in the tube. The exact point where it appears cannot be observed with certainty: drops are seen to move from above to below, and bubbles from below to above more and more regularly towards one place; at this place the meniscus will appear, but this place is rising already before the meniscus has properly formed itself. When it is formed, it generally still rises. If the temperature is still higher the meniscus is distinctly seen to rise from the bottom of the tube. At the lower end a quantity of liquid is gathered by the drops which fall from the top to the meniscus. The same holds, mutatis mutandis, for temperatures below the plaitpoint temperature.

Of the data about the point of contact only the temperature could accurately be (to within $0^{\circ}.01$) derived from the experiment. To determine the pressure some points at the beginning and at the end of the condensation to within $0^{\circ}.1$ of the point of contact were observed; they were drawn and the point where the tangent is at right angles with the axis of temperature was found. This gave the pressure of the point of contact with sufficient accuracy. Then the point of contact volume was deduced from the isothermal.

The molecular proportion of oxygen will be représented by x, V_{thN} is the theoretical normal volume, for the meaning of $A_{K_{20}}$ comp. this Comm. II p. 552.

§ 2. First mixture of carbon dioxide and oxygen.

x = 0.1047.

Before	the	measurements :	$V_{thN} = 69.743$	cc.
After	,,	"	69.725	,,
			mean : 69.734	"

(579)

a. Border curve.

Beginning condensation.

Temp	v	p
17 535	0 008552	66.08
17.63	8483	66 40
19 48	7708	69.48
20 19	7362	71.59
20.28	7288	71.94
21 48	6709	74.85
$22 \ 06$	6456	76.24
22 38	6098	77 85
22 83	5860	79.14
22.87	5822	79 26
22.98	5697	79.95
23.23	5366	81.46

Temp.	v	p
11.68	0 002597	85 52
14 78	2757	87.09
17.525	2949 .	88.25
17.68	2986	88.29
19.38	3195	88.465
20,19	3292	88.35
20.28	3323	88.35
21.48	3664	87.35
22.09	3880	86.58
22.43	4069	86.03
22.80	4301	85.34
22.885	4324	85.12
22.98	4441	84.90
23.18	4663	84.16

End condensation.

b. Isothermal of 17°.60 C.

1

No.	v	p	pv	Vbiq.
1	0.011384	58 35	0.6642	
2	10695	60.46	0.6412	
3	0 009826	62.62	0.6153	
4	9047	64 84	0 5866	
5	8503	66.24	0.56325	bc
6,	74895	67.85	0 5 82	0 000338
7	67125	69.54	0 4668	571
8	6108	71 12	0 4344	826
9	5935	71.65	0.4252^{5}	879
10	5385	73.39	0 3952	0.001105
11	5157	74.26	0.3830	1194
12	44865	77.12	0.3460	1502
13	4379⁵	77.68	0.3402	1556
14	3482	83 35	0.2902	2189
15	2954	88 30	0.2608	ec
16	2848	91.715	0.2612	
17	27195	97.38	0.2648	
18	2572	109.13	0.2807	
19	2466	123.34	0.3042	

Proceedings Royal Acad. Amsterdam. Vol. VI.

38

•

No.	v	p	pv	Vliq.	
- 1	0.011099	58.80	0.6886		
2	11384	59 72	0.6798	· ·]	
3,	10605	61.94	0.6569		
4	0.009826	64.31	0.6319		
5	9047	66.62	0.6027		
6	8900	67.15	0.5976		۰.
7	8269	69.04	0.5709	r	
8	7490	71.41	0.5348		
9	7291	71.98	0.5248	bo i	
10	6713	73.07	0.4905	0.000267	
11	5935	75.32	0.4470	5965	
12	5157	77.94	0.40195	968	
13	4468	88,08	0.3614	0.001360	•
14	4379	81,39	0.3564	1445	
15	3640	85,85	0.3125	2230	
16	3501	86.91	0.3043	2540	
17	3335	88,28	0.2944	ec	-
18	3132	91.50	0.2866		
19	2959	95.64	0.2830		
20	. 2897	97.76	0.2832		
21	2759	104.46	0.28825		
22	2613	114.89	0.3002		
23	2527	125.12°	0.3162		
	3		,	,	L

c. Isothermal of 20°.29 C.

۰.

d. Plaitpoint isothermal (21°.99 C.).

						-
	No.	v	р	pv	. v _{jiq.}	
	1	0.012159	58.36	0.7096	· · .	ļ
ļ	2	11384	6052	0.6889		ļ
ļ	3	0.009826	65.32	0.6419		ļ
	4	8269	70.37	0.5849		
	5	6713	` 75.37	0.50595		
	6	6400	76.42	0.4891	60	ł
	7	5935	77.64	0.4608	0.000210	ł
	8	5157	80.34	0.4143	638	
	9	4379	83.76	0.3668	0,001169	
	10	3878	86.60	0.3358	pp	
ļ	11	3613	88.74	0.3206		į
1	12	3054	97.115	0.2966		
į	13	2769	109.26	0.3025		
į	14	2598	123,75	0.3215		
ļ		1	(()	١.

1 .

(581)

No.	v	p	po	v _{lıq}
1	0.012159	58 63	0 7129	
2	11384	60 90	0 6933	
3	10605	63 29	0 6712	
4	0.009826	65 76	0.64615	
5	9047	68 285	0.6178	
6	8269	70 92	0 5865	
7	74895	73 49	0 5504	
8	67125	76 09	0 5108	
9	5913	78 74	0 4656	bc
10	5546	79 97	0 4435	0.000198
11	5157	81.33	0.4194	400
12	4768	82 89	0 3952	59 7 °
13	4379	84 73⁵	0 3711	709
14	4309	85.05	0 3664	591
15	4278	85.22	0 3646	625
16	4258	85.35	0 3634	288
17	4243	85.40	0 36235	95 ¹)
18	4219	85.54	0 3609	125
19	4218	85 53	0 3608	ec
20	39915	87 03	0 3474	
21	3604	90 23	0 3252	
22	3049	99 19	0 2025	
23	2752	112 67	0 3101	
24	2612	124 50	0 3252	

e. Isothermal of 22°.68 C.

38*

¹) To explain the irregular course of v_{liq} here, we refer to this Comm. III, p. 562, while we remark that the variations of v_{liq} with the temperature and with the volume become very large in this area, so that a small error in the latter may give rise to a large error in the value of v_{liq} .

No.	ข	р.	pv		No.	v -	р	· pn
1	0.012159	58.95	0.7168		1	0.012159	59.81	0.7272
2	11785	60.04	0.7075%		2.	11384	62.14	0.7074
3	11384	61 21	0.6968		3	10605	64.59	0.6850
4	10605	63.59	0.6744		4	0.009826	67.23	0.6606
5	0.009826	66.09	0.6494		5	9047	69.97	0.6330
6	9047	68.70	0.6215	•• • •	6	8:69	72.78	.0:6018
7	8269	71.34	0.5899		7	7490	75.69	0.5669
8	7490	74.04	0.5545		8	67125	78.59	0.5276
9	6712₅	76.71	0.5149		9	5935	81.69	0 4848
10	. 5935	79.48	0.4717		10	51565	84.85	0.4376
11	5546	80.80	0 4431		11	4768	86.61	0.4130
12	5157	82.23	0.4241	,	12	4379	88.70	0.388
13	4768	83.78	0.3995		13	3.94*	91.40	0.364
14	4379	85.88	0.3761		14	3609	94 97	0 342
15	3094	87.97	0.3511		15	3229	101.13	0.326
16	3605	91.26	0.3290		16	2846	114.98	0.327
17	3046	101.03	0 : 077	r	17	2710	124.35	0.337
18	27915	112.40	0.3138			<u> </u>	<u> </u>	l
19	2646	124:08	0.3283	•	х ,			
Point	t of contact:						, - ,	
	0.005005	82.83		1		· · · ·		
			!					

f. Point of contact isothermal (23°.29 C.). g. Isothermal of 25°.20 C

This mixture has been prepared in a simpler mixing apparatus than that referred to in this Comm. II § 3, and the pressures are measured with an air manometer and then reduced to the indications of the hydrogen manometer used later, as said in III § 3.

Of the border curve it may be remarked that below 19°.38 O. the end condensation pressure decreases at a falling temperature, which has not been observed by VERSCHAFFELT in mixtures of carbon dioxide and hydrogen at the temperatures at which he observed.

Between the plaitpoint- and the point-of-contact-temperature there was retrograde condensation of the first kind (temporary liquid phase).

(583)

§ 3. Second mixture of carbon dioxide and oxygen.

$$x = 0.1994$$

 $A_{K_{20}} = 1.00413.$ Before the experiments : $V_{thN} = 69.608$ cc³. After ,, ,, 69.555 ,,

mean : 69.581⁵ ,,

a. Border curve.

Beginning condensation.

,,

"

End condensation.

,,

No.	Temp.	v	p		
1	10.06	0.0092335	66 35		
2	12.15	81905	71.57		
3	14 12	71255	77.29		
4	16.01	5803	86.02		
5	16.23	5530	87.84		
1					

No.	Temp.	v	p
1	10 09	0 003205	102.48
2	12 20	3633	100.05
3	14.11	39945	97.37¢
4	16.00	4784	92 57
5	16 22	5156	90.55
	l	l	

•

b. Isothermal of 9°.62 C.

No.	v	'n	pv	v _{liq.}
1	0.009795	64.05	0 6274	
2	9412	65.36	0.6152	bc
3	8792	66 89	0.5881	0.000124
4	7948	69.16	0.5497	308
5	7147	71.79	0 5131	470
6	6404	74.92	0.4798	672
7	5500	79.65	0 4381	909
8	4811	84 23	0.4052	0.001122
9	4022	91.55	0.3682	1464
10	3338	100 07	0 3340	2221
11	3164	$102 \ 67$	0.3248	ec.
12	2874	112.50	0 3233	
13	2742	121.35	0 3327	
14	2699	125 18	0 3379	
15	2632	129,33	0 3404	
16	2581	135 67	0 3502	
	1	L		1

(581)

Nc.	v	р	pv	v _{lıq}
1	0.010341	63.46	0.6562	
2	0.009505	66.25	0 6298	
3	8763	<u>68</u> 90₅	0.6038	
4	8629	69.37	0.5986	bc
5	7950	70.95	0.56405	$0.000\bar{2}17$
6	7203	73.53⁵	0.5297	384
7	6396	77 C2	0.4926	573
8	5608	81.14	0 4550	781
9	4829	86 40	0.4172	0.001097
10	4097	92.84	0.3504	1376
11	3712	96.79	0.3593	1707
12	3446	100.08	0.3449	2336
13	3397	100 89	0.3427	ec
14	3280	:03.21	0.3385	
15	3028	110.48	0.3345	
16	2853	419.11	0.3398	
17	2718	128 44	0 3491	
18	26.1	437.56	0.3605	

c. Isothermal of 11°:35 C.

d. Plaitpoint isothermal (12°.51 C.).

-

No.	v	p	, pv	vliq	
1	0.010259	64.42	0.6609		
2	0.009570	66.77	0.6390		
3	8741	69.74	0.6096		
4	8040	72 27	0.5811	bc	
5	7197	75.16	0.5409	0.000201	
6	6378	78.56	0.50105	439	
7	5597	82.66	0.4627	674	
8	4772	88.24	0.4211	0.001041	
9	3981	95.61	0.3806	1360	
10	3606	99.65	0.3593	pp	
11	3299	105.38	0.3476 ⁵		
12	3057	112.34	0 3434		
13	2870	121.71	0.3493		

(585)

e. Isothermal of 14°.04 C.

No.	v	v p pv		v _{l q.}	
1	0.010318	65.06	0.6713		
2	0.009504	67.91	0 6454		
3	8726	70.87	0.6184		
4	7926	74 06	0.5870		
5	7272	76 79	0.5584	bc	
6	7095	77.46	0.5496	0.000043	
7	6337	80.59	0.5107	0.000265	
8	5694	84 05	0.4786	457	
9	4761	90 15	0.4292	786	
10	4402	93.16	0.4101	888	
11	4066	96.35	0 3918	933	
12	3947	97.55	0.3850	ec ¹)	
13	3700	100 97	0 3736		
14	3287	109 15	0.3588		
15	3002	118.66	0.3562	(
16	2823	128.20	0.3619		

f. Isothermal of 15°.41 C.

No.	v	p	pv	v _{liq.}	
1	0 010276	66.02	0.6784		
2	0.009515	68.77	0.65435		
3	8763	71.71	0.6284		
4	7991	74.91	0 5986		
5	7159	78 62	05628		
6	6435	82.05	0.5280	bc	
7	5971	5971 84.325 0.5035		0.000139	
8	5604	86.34	0.4838	228	
9	5229	88.71	0.4639	327	
10	4997	90.31	0.4515	367	
11	4844	91.44	0.4429	387	
12	4667	92.81	0.4331	361	
13	4538	93.84	0.4258	273	
14	4460	94.43	0.42115	164	
15	4419	94.87	0.4192	ec	
16	4045	98.88	0 40 0 0		
17	3692	103 36	0.3816		
18	3253	113 06	0.3678		
19	3008	122 03	0.3671		
20	2821	133.17	0.3757		
21	2732	141.72	0.3872		

¹) Here we also had retrograde condensation of the first kind, although this does not appear from the values given.

•

1	ROC	١
	900)

No.	ט'	р	po		No.	v	р	pv
1	0.010312	66.345	0 68415		1	0.010273	67.26	0.6910
2	0.009519	69.28	0 6595		2	0.009510	70.17	0.6673
3	8701	72.58	0.6315		3	8683	73.60	0.6391
4	7955	75 77	0.6028		4	7920	76.98	0.6097
5	7163	79.87	0 5685		5	7161	80.58⁵	0.5771
6	6389	83.20	0.5316		6	6359	84 77	0 5390
7	5934	85.31	0.5105		7	5610	89.15	0 5001
8	5592	87.57	0.4897		8	4843	94 59	0.4581
9	5228	89 80	0.4695		9	4087	102.08	0.4172
0	4824	92.72	0.4473		10	3688	108.02	0.3984
	4434	96.05	0.4259		11	3280	117.36	0.3849
2	4031	100.54	0.4053		12	2973	129.44	0.3848
13	3647	106.62	0.3888		13	2816	141.18	0 3976
14	3284	14 28	0.3753		1	<u> </u>		
15	3053	122.29	0.3734					
16	2857	133.275	0.3808			,		
17	2759	140.71	0,3882					
 oint	t of contact:							
0 005322		89.20						

g. Point of contact isothermal (16°.27 C.). h. Isothermal of 17°.66 C.

§ 4. Comparison of the mixtures according to the law of corresponding states with carbon dioxide. In Comm. N°. 59, Proc. Sept. 1900 methods are discussed for a graphical comparison of isothermals of mixtures with those of a simple substance. Here as well for carbon dioxide as for the two mixtures $\log \frac{pv}{T}$) was drawn as a function of $\log v$ for the different temperatures. (For the absolute zero we accepted — 273°.04 C.). If the law of corresponding states also holds for mixtures of normal substances it must be possible to

¹) As the temperatures are so high that in the theoretical isothermals no negative pressures occur, the drawing of $\log \frac{pv}{T}$ offers no difficulty.

- 12 -

(587)

make the corresponding isothermals of the different diagrams coincide by shifting them only in the direction of the log v-axis.

I found that it was not possible to place the diagrams in such a way over each other that the isothermals of the whole system coincided; I, however, succeeded for the large volumes. According to KAMERLINGH ONNES this signifies that in the mixture the coefficients A,B,C,D,E,F of his series do not hang together with the coefficients of the pure substance at corresponding temperatures in such a manner as would follow from the law of corresponding states, but that for the volumes where the terms with D, E, F in comparison with the others are still so small that we may neglect the differences between these terms and those given by coefficients which would obey the law of corresponding states, the diagrams will coincide over such a large range of temperature that B and C may still be regarded as corresponding functions of temperature, hence a critical temperature and a critical pressure holding for this range of volume and temperature may be deduced from the law of corresponding states.

On the plate the diagrams are placed over each other so as to give the best agreement for the larger volumes. In the horizontal direction $\log v$ is drawn, in the vertical $\log \frac{pv}{T}$. The complete lines refer to carbon dioxide, the dash lines to the first mixture, the dash-dots lines refer to the second mixture. The points for carbon dioxide are enclosed in circles, those for the first mixture in triangles, for the second in squares. The different isothermals are indicated by the letters a, b, etc., with which they are communicated in IV § 2 and V §§ 2 and 3. The points at the beginning and the end of the condensation are marked by *b.c.* and *e.c.*; they are connected by curves which thus separate the homogeneous area from the area where separation occurs. Finally the plaitpoints and the points of contact are indicated by P and R, K is the point adopted according to IV § 5 for the critical point of carbon dioxide.

It appears that the agreement for volumes larger than the critical is very satisfactory. In the smaller volumes, however, considerable systematic deviations from the law of corresponding states occur. We have already used these diagrams to determine the critical temperature, pressure and volume in the sense as explained above for the different mixtures. Although these results are satisfactory they will not be given here, as more accurate results may be expected from the same operations with diagrams projected on double the scale for the part concerned.

If on a pT-diagram we draw the point of contact- and the plait-

(588)

point curves, they are seen to touch each other at the end (critical point of pure carbon dioxide) in agreement with Comm. N^o. 81 §§ 9 and 14 (Proc. Oct. 1902). In the investigated part the curves do not show the point of inflection found by VERSCHAFFELT with mixtures of hydrogen and carbon dioxide (Comm. N^o. 47 Proc. Feb. 1899); they are always concave towards the *T*-axis.

Physics. — "Isothermals of mixtures of oxygen and carbon dioxide.
V. Isothermals of mixtures of the molecular compositions 0.1047 and 0.1994 of oxygen, and the comparison of them with those of pure carbon dioxide." By W. H. KEESOM. Communication N^o. 88 (6th part) from the Physical Laboratory at Leiden, by Prof. KAMERLINGH ONNES.

(Communicated in the meeting of November 28. 1903).

§ 5. According to § 4 (p. 586) the observations allowed of a more accurate determination of the data for the critical point of the mixtures for the range of the larger volumes and the range of temperatures over which the observations have been made, in the sense as it has been explained there, than it was possible from the drawing given there. To this end diagrams were projected on double the scale for the points in the homogeneous area for which the volume is larger than 0.005; in these diagrams 0.0005 is represented by 1 mm. both for $\log \frac{pv}{T}$ and for $\log v$. To determine the relation of the critical pressures independently and to test the relation of the critical temperatures of mixtures to that of pure carbon dioxide, diagrams were constructed for the same area, where $\log \frac{pv}{T}$ is drawn as a function of $\log p$; here 1 mm. represents: on the $\log p$ -axis 0.00025, on the $\log \frac{pv}{T}$ -axis 0.0005.

§ 6. The diagram for the mixture which had been transferred on tracing paper and in the middle of which a cross of axes was drawn in order to permit an accurate judgment of the agreement of the systems of axes for the two diagrams, was placed over the diagram for carbon dioxide, so that the log v-, and log p-axes respectively coincided, and then they were shifted until to the eye the isothermals of the mixture coincided with the system for carbon dioxide.