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Physics.. — #Statistical Llectro-mechanics.” By Dr. J. D. vAN DER
Waars Jr. (Communicated-by Prof. van prr WaaLs).

Prof. Giees has newly published a treatise entitled #Elementary
principles in statistical mechanics”, in which he communicates some
considerations, belonging to a science, which he calls #Statistical
mechanics,” and of which he states that “on account of the
elegance and simplicity of its principles” it is eminently worthy
that the laws to which it is subjected, are studied. The laws relate
to the behaviour of a great number of systems, whose motions are
mutually independent. These systems quite agree with one another
as to their nature, and only differ in so far, that the integration
constants of the differential equations of motion have different values,
or, what comes to the same, that the values of ithe generalized coor-
dinates and of the generalized velocities at an arbitrary moment
(e.g. at the moment ¢{=0) differ for different systems. The laws,
which hold for such ensembles of systems have a very general
character, as (1BBs shows; yet in their application they are confined
to systems, consisting exclusively of ordinary matter. Now the
question arises whether such like, considerations might be applied
to electro-magnetic systems, and whether in doing so we might
extend our very limited knowledge of the phenomena of radiation in
connection with the laws of thermodynamies.

We cannot deny however that we must not expect foo much from
these considerations. The greater part of the theses deduced by GiBBs
are exclusively or principally applicable to ensembles of systems which
he calls canonical and which have such an important phace in his
considerations, because they vepresent the simplest law paossible of the
distribution ot the systems over the different #phases” *). Mathematical
simplicity, however, is not a trustworthy criterion, when we want
to investigate, what is actually to be found in nature. For our
mathematical representation e.g. the simplest motion, a vibrating
siring can perform, is an harmonic motion, yet we should be utterly-
mistaken if we should assume, that every vibrating string would
execute such a motion. Perhaps we run the risk of making similar
mistakes if we assume, that all syslems in nature will follow the
laws which we have deduced on the supposition of a canonical
distribution of the sysiems of an ensemble.

It is true that Gmes shows in his chapiers XI—XIII that the cano-

1) Two syslems are considered to be in the same phase when they are to be
found in the same element of extension in phase.
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nical distribution is the most probable one, provided the only condi-
tion, to which the ensemble is subjected, be that the mean value of
the encrgy of the systems is a prescribed guantity; but the main
difficulty happens to be to answer the question whether this is indeed
the only condition. Systems e.g., consisting of spherical, mutually
equal molecules, will not be distributed canonically, for they are still
subjected to another condition, namely the distance of two cenires of
molecules can never be less than the diameter. To assume the cano-
nical distribution comes therefore to the same as to neglect the volume
of the molecules, but it is not easy to decide svhether nothing else
is neglected. In fact choosing the distribution of the systems of an
ensemble is equivalent to choosing the cases, which we are to consider
as “cases of cqual probability” in a more direct application of the
ealeulus of probabilities. Both are subject to the chance, that the proba-
bility a posteriori will prove o be another than we had assumed a priori.

Yet such like considerations can be useful, in the Anown region
of thermodynamics, because they bring its laws very simply and
elegantly together under one point of view ; in the yel unknown region,
becaunse they may perhaps suggest formulae, for which comparison
with the experiments may decide, whether they are in accordance
with the phenomena of nafure or not.

Law of conservation of density-in-phase.

In an investigation, whether the considerations of Gisss ave also
applicable for eleciro-magnetic sysiems, “we have in the first place to
examine, whelher the #law of conservation of density-in-phase’ holds
also for them. In the bheginning we will confine onrselves to systems
devoid of material, electrical or magnetical masses.

Now we imagine an cnsemble of systems. The different sysiems
are congrucnt spaces, enclosed hy perfeetly reflecting walls. We divide
each sysiem into n cqual cubie clements of space dz dy dz. These
clements arc so small that the ecleciric and magnetic forces in them
may be considered {o be constant. The stale of each sysfem will be
perfectly defined, if in each element of space the components
f, g and % of the electric displaccment, and the components «, g and y
of the magnetic induction are given. So the stale is determined hy
means of 67 data; according to the assumption, that cleetric encrgy
is potential, magnetic encrgy kinetie, the 3 n components of the elecirie
displacement would represent coordinates, the 3 » components of mag-
nelic conduction genecralized momenia, or al least they would be
proportional to them.
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We mark the elements of space with successive nunfbers and
represent the components of the vectors in the " element by f, ¢,
hr, @, B and 7, Let us select from an ensemble those systems whose
data lie between the limits /, and f, 4 df,, /, and f, +df,....
fo and f; + df, and in the same way for the other components;
the number of these systems may be represented by : _

Ddf,...dfndg,....dgadhy....dhgde, ... .deydB, ....dB8dy,....dy,
or DIEANITEa)) - -« - o - o . ()

Here the brackets indicate, that also the other components, the
parentheses that the same quantities also for the other elements of
space are to be taken. We will call [(df,)] [(de,)] an element of

D
extension-in-phase, D the density-in-phase, P = 7 the coefficient of

probability-in-phase (.V representing the total number of systems in
the ensemble) and 7%, defined by the equation ”= ¢, the index of
probability-in-phase.

Let us consider the same ensemble after a short lapse of time ,
then the number of systems being in a certain phase, will have varied.
We may conceive the variation of that number to be composed- of
12 n parts, as the systems may enter or leave a certain phase by
passing one of 12 different limits, [(/)], [(/2 + dfV)], [(«)] and
[(e¢, + da,)]. -

The systems passing the limit f, contribute:

1
D%dtdf,,....dfnd{/l....dg,,dhl....d]z,,[(dal)].. )

to the total mimber with which the quantity D [(d7,)] [(e,)] increases.
The systems passing the limit f, 4- df, contribule a decrease
amounting to:

ll d] »
2+Mpquwrmmwm-u(m

Adding these quantities we get an increase with:

— f’ —:dt[(df)] (N T 71

Now we have:
clf1 _ oD (7)"1 dfl .
a_sz @\ of, d of, dt ° ©)

. . df;
The second term of the second member is zero, for 7);1 depends only
[£

on the rotation of the magnetie induction, and is independent of the
value of f,.



(25)

In the same way we find the inerease in consequence of the
systems passing the other limils, — {aking into account that all
. 0 da
yuantities of the form 5 _Fl are zero. — Taking the sum of all these
a
partial increases and dividing by [(1f)] [(de,)] we find:

O])__ 0.0 d7, 70D da, o
_07—-_[(5.7'1 czt)]‘[(aw)]' 0 0
0D " /0D df, 0D de,\T _dD

%t Kam‘ﬂ{(am)] =% =0 0

iy
Here 5 represenis the fluction of the density for a phasis whose

. Db, . e . .
limits are constant, - for a phasis whose limils partake of the motion
[¢

of the syvstems of the ensemble.

S0 the density proves to be constant for a phasis, partaking of
the motion of the systems, and as, of course, the sysiems can never
pass the limits of an extension-in-phase, when thesc limits move with
the systems, the total number of systems within every extension-in-
phase, i.¢. D [(d/)] [(de)] remains constant, and so also [({/1)] [(de,)].

This proof of the laws of conservation of density-in-phase and of
extension-in-phase cuite agrees with that one given by Gsss. In

our case, however, we have sfill to pay attention o one circumstance.
. 0D :
In calculating % LF)][(de,)], we have assumed, that this number
is the sum of the numbers of systgms passing the different limits.
This comes to the same as to say that no system will pass more
than one of the limits during the time dt, or at least, that the number
of the systems that pass more than one limit is so small, that it may
be neglected. In the proof of Gisss we may assume, that this is
really the case, provided we take ¢ so small, that %Z dt is small
compared with /g (where ¢ represents one of the gencralized coor-
dinates, and «/y one of the dimensions of an clement of extension-in-
Y phase). For our case however this proof is
incomplete. Be » and » two adjacent elements
of space, then [£] and [fs], [«] and [a] are
no independent quantities, but they must be
A approximately equal, as [ /] and [«] vary only
fluently from point to point.
In order to investigale the consequences of
o] X (his circumsiance we imagine an ensemble of
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gystems with only {wo coordinafes . and g, which are subjected
to the condition that @ and y must be equal and continue to be so. All
systems will then be found on the line (<1 and will move in the direction
of this line, so all systems leaving the element of space drawn in
the figure, ov entering info it, will pass the two limits iz and dy at the
same moment. If the condition is not thai .» and y must be rigorously
cqual, but only that their difference must be very small, then all
systems will be huddled up very near the line ()4 and a great part
of those that pass the limit e will also pass the limii /y. It is evident,
that this circumstance is cansed by the fact, that within the element
drdy the density is not homogencous. If we choose therefore the
the dimensions dr and dy so small, that the whole element lies with-
in a region, where the density may be considered as constant, then we
may again assume that the number of systems, passing both limits
may be neglecled, compared with the number of systems passing only
one of the two Ilimits.

If we choose therefore [(/f,)] and [(de,)] small compaved with the
mean value of L %‘i—fda:) and L(%a;‘ (7.1;>J, s0 e. g. having a finite
ratio to da?, and ¢ again small compared with the quantities [(df)]
and [(de,)], so e.g. having a finile ratio to du, it appears that in
fact the mumber of systems passing more than one of the limits may
be neglected. So the proof of the law of conservation of density-in-
phase is complefe.

The quasi-camonical distrilntion.

If we wish to distribute the systems of an ensemble over the
different phases in such a way, that the distribution does not vary
with the time, so that the state of the ensemble is stationary, it is
evident that we have to choose for /2 a function of the coordinates,
which is constant in time. Gisgs chooses for this purpose the function

b—z
T

e’ where & represents the energy of a system, and ¥ and 0 are
constant quantities for a given ensemble. 1lle calls this distribution
the canonical distribution. This simple law caunot be applied to
systems consisting of ether. If we assumed it, the quantities [ /] and
[¢] would vary abruptly from element to element instead of varying
fluently, and morcover the distribution would depend on the dimensions
of the elements of space, which we have arbitravily chosen. We
must therefore assume another distribution which secures a fluent
variation of the clectric and magnetic displacemebts.
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To this purpose we will assume a distribution closely resembling
those, discussed by GiBBs in his chapter IV as #other distributions
having the same properties as the canonical.” These distributions
have the characteristic property, that the index of probability % is a
linear function ot one or more functions Iy, F, etc. of the coordinates;
the functions F,, F, etc. are subjected to the condition that their
average value, taken over all systems of the ensemble must be a
prescribed quantity. We might form different distributions, all satisfying
the conditions. Now we seek the average value of = for all these
different distributions; this average value of % will be a minimum
for that ensemble where % is a linear function of F,, F, etc. This
is proved by Gies in his chapter XI. I shall call such a distribution
a quasi-canonical distribution. The canonical distribuiion is nothing
else but such a quasi-canonical distribution where there is only one
function J7, and that represents the emergy. As the canonical distri-
bution is of little application, e.g. not for systems of molecules with
finite diameter, it would perhaps have been preferable to give a
broader meaning to the word canonical and to use it in the sense,
in which I use quasi-canonical. As GiBBs has however used the word

. . —& .
canonical exclusively for ensembles for which 4 = IPT, I will use

the expression quasi-canonical for ensembles for which
n=1v— aF, — bF, — ete.
In the ether we cannot have canonical ensembles, and so we will
discuss only quasi-canonical ensembles. We -put:

_v—s gty 248, o .
=P e S

where, dr representing an element of space:
. A\ ? 0h  9f\? of 099’

v=| (a~ o) )t e o

. 08  Oy)? 0y Oa)? de 0P
=162 7" f (az @) +(a—§;) +(5; Bn.) ‘ de (10)

J Mﬂd 11
-t_f(az'—l— T.oo o e e e e e (11
y 2

Qm _f('é‘l—v- + 5; + 'a_z‘) d‘t . . . . . . . . PO . . (11b)

1
w:zﬁﬂ+f+mwm... ¢ £).

k, d, and d, ave constants, and d, and ¢, are infinitely small. The

T 4L
term — + —1 " has been added, that we should have only to
1

’
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deal with systems, consisting of free ether. Systems, containing electric
masses are not absolutely exclided, but still their number is very
small and may be neglected compared with that of the systems which

0 02
are devoid of these masses. As 5 + 52 + 3—3; is always zero, systems

for which this expression has another value can never occur; yet
we may admit them in such a small number, that they have no
influence on the results. Finally we cannot take into consideration
systems consisting of infinite space, for a finite quantity of energy
would spread in it and we could not have a stationary distribution
in the ensemble. Therefore it is necessary to enclose the electro-
magnetic energy within absolutely reflecting walls. But then it is
necessary to add a term to 7, which expresses, that the walls reflect
absolutely, i. e. the quantities [ £ are always zero at the walls. The

term — eXpresses this; 2 represenis a small line in a direction
2

normal to the swrface; we make this line decrease indefinitely ; do
represents an element of area.

If this distribution is to be for ether systems, what the” canonical
distribution is for material systems, then in the first place 1 must be
a constant in time. For the other terms this 1s immediately evident,
P+u

P
The relation, we have to prove may be written

dq) cl,(

so we have only to show it for the term

@ = (13)
We will make use of the 1'elati0ns
da . (09 Ok

i 1 /08 Oy
%*‘Z;(é?"é}) 3]

and of the following relations, that may be deduced from them :
&f of 0
= (v’—l—av/—{_ ) N e 1)
d’a a
= ( 5 5 ot a““)

and also of the corresponding relations for the other components.
Now we have:

dp 0g aﬁ)d dg Ok
=G5 @

a7
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Integrating partially we get:

d
_92 = a number of surface integrals —

R Mg\ dg¥y Vg ¥f ¥
] 3& 507 ?"aga:“away)Jr (Bz +—, 5207 ayaz)
dh(a”h 0%h 62f azg )

— — i — Y
% dt (19)

0y? +6w’ dadz 0Oyde

ar . .
In the coefficient of ch in the cubic-integral we have:

¥ g dfdg . o\ O
300z dady av(ay+az)”6.ﬁ -- @0
of

: dg : :
at least if we put, a+@+§;— 0, so if we neglect the systems in

. . . a
which electric masses occur. So we get for the coefficient of Ef the

2

Ve

df d*f N g Oy 03 oy _dy
V‘f[dt dt‘] "= " 16a Vf[( By)dt a_z"a_y)]d’“‘ﬁ'

d
As at the absolutely reflecting walls [ /] and therefore also l:?{]

expression and for the cubic integral :

continue to be zero, the surface integrals disappear; so equation (13)
is proved.

The quantities ¢ and jx which are introduced in order that the
variation of the electric displacement and the magnetic induction may
take place fluently, are defined as the sum of the squares of the
components of the rotations of those vectors, if we disregard the

. 1 . .
coefficient ——— introduced in order that equation (13) may be satisfied.

167 V*
This seems to me the simplest definition for ¢ and yx. It might,
0g or .
however, appear that we are not yet sure that 6 3 and % gét

convenient values. In order to show that this is not the case, we
will prove the following relations

- I
=t [| e -

where again the brackets indicate that we have to take also the cor-
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responding terms in which the other components occur, In order to
show this we expand the squares of equation (9) and consider sepa-
rately the terms:

a(] ah oL of Bf 0g
f% 50y T awae T2y abgd’ - - @)

0g 0k dg 0L 0y Oh

For 25:5»_ we write < Py 6 -+ 3 5—

partially according to z, the second according to y. The surface inte-
grals vanish again and we get:

0%k a”q af azj
S—*'fz”aJay I ) aﬂLfa a~+fabaJ+”a.vay e
E) a{[ I afl. q
S=f3f5;(5;+5;)+5’ay %13 ) )2 .‘(24)

o7
:—f[fg&é:ldr.‘..............(25)

By integrating once more partially, where once morve the smface

integrals vanish, we get:
o \?
-J1G)]e

so equation (21) is proved. Equation (22) is proved in the same way.

Three constants occur in the exponent 77 namely ¥, 0 and £. wis
a constant which must be chosen such, that integration of P over
all systems of the ensemble yields 1. The two constants 0 and %
determine therefore the state of the systems. This is connected with
the fact, that the nature of the radiation inside a closed surface, as
Lorentz ') has shown, depends besides on the temperature, also on
the charge of the electrons by which theradiation is emitted. The fact
that inside all bodies radiation of the same nature is formed, proves
that in all bodies the electrons have the same charge. The constant
quantily £ must depend on that charge; it will therefore have the
same value for spaces enclosed within all bodies as they are found in
nature at least if the temperature is the same and its value would
for a certain temperature only be different, if we imagined walls
with electrons whose charge was diffcvent from those actually occurring.

and integrate the first term

1) Lorenrz. Proceedings. Vol Ui, p. 430.



