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A more exact method may perhaps give numbers from which a
better formula might be deduced, and which at the same time might
give us some insight in the phenomenon.

I have tried to get more exact numbers by means of the Kunpr
dust-figures but I did not succeed, thongh others might. Yet the
oscillatory discharge of a Leyden jar through an inductive resistance
easily gave vegular dust-figures. The reason why the KunpT-method
proved refractory with the singing are, is not easy to be understood:
I can only suppose that the intensily of the sound is not large enough.

Physics. — Dr. J. E. VerscHAFFELT. ¥ Contributions to the knowledge of
VAN DER Waars' w-surface. VIL. The equation of state and
the w-surface in the immediate neighbourhood of the critical
state  for binary mwiztures with a small proportion of one of
the components”. Communication n°. 81 from the Physical
Laboratory at Leiden, by Prof. H. KaMerLiNgH ONNES. ?)

(Communicated in the meeting of June 28, 1902).
Introduction.

In Communication n°. 65 from the Physical Laboratory at Leiden ?)
I have given the first results of a treatment of my measurements on
mixtures of carbon dioxide and hydrogen ®) by the method which
Kameruingt Onnes 1) alone and with REmweanum °) used for the
measurements of KUueNeN on mixtures of carbon dioxide and methyl
chloride ®). They confirm KamerringH ONNES’ Opinion that the isothermals
of mixtures of normal substances may be derived, by means of the
law of corresponding states, from the general empirical reduced
equation of statefor which he has given in communications nrs. 717)
and 74°% a development in series indicated in communication 59a.
In this empirical reduced equation of state

- ~

__‘Jl )
p_29—|—- P + .oy

1) The iranslation of the first and second part of this article are treated as a
whole, hence some minor changes in text will he found.

%) Arch. Néerl.,, (2), 5, 644, 1900; Comm. phys. lab. Leiden, n0. 65.

8) Thesis for the doctorate, Leiden, 1899.

4) Proc. Royal Acad., 29 Sept. 1900, p. 275; Comm. 59a.

8) Ibid. p. 289; Comm., n% 59b.

6) Thesis for the doctorate, Leiden, 1892,

7) Proc. Royal Acad., June 1901; Comm., n". 71.

8) Arch, Néerl, (2), 6, 874, 1901; Comm., n®. 74,
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where U, 9 ete. represent series of the powers of the reduced abso-
Iute temperature ¢, with co-efficients which like A are the same for
all substances, we then put:
t = ~—2:-—, 9 :-——?f—, = ~U—,
e Dt Uzl
T, pu and vy, standing for the critical elements of the mixture
with molecular composition @, if it remained homogeneous, while

7 = Pzt 'U:rk-
Tor

It must therefore also be possible to find expressions for the
critical quantities of a mixturc — these are the elements pupi, Vzpi
T of the plaitpoint and pn, %, 7% of the critical point of
contact — in which only the co-efficients of the general empirical
reduced equation of state and further the quantities characteristic of
the mixture viz. T%x, pat, vak, occur, or the co-efficients of the develop-
ments in series of these quantities in powers of 2. In the ecase of
mixtures with small values of 2, it may, exclusive of exceptional cases,
suffice, to a first approximation, to introduce the co-efficients:

1 dTx 1 dpa
e T, ds and 8 =

A first step towards realizing this idea of KamerrineHE ONNES has
been made by Kzmsom ') who took for his basis the general equations
by which van DErR Waars in his Théorie moleculaire and following
papers has expressed the relation of the ecritical quantities and the
composition; he has found what these equations would become for
infinitely small z-values and has introduced inlo them the co-efficients
a and B mentioned above, besides others which might be derived from
the co-efficients of the general empirical equation of state. I have now
tried to work out this idea in a method which is more closely con-
nected to the treatment of the -surface, namely by developing the
co-efficients of the equation of state and the equation of the y-surface in
the powers of 2. On account of the great complication mvolved by
the introduction of the higher co-efficients into the calculation, I have
confined myself to the lower powers of z. However, the method
followed Dby me can also be used to find the co-efficients of higher
powers.

As T have confined myself to states in the neighbourhood of the
critical point I could use mstead of Kamrrumweu ONNES' empirical
reduced equation of state the more simple one which it becomes within
narrow limits of temperature and volume on developing the different

1) Proc. Royal. Acad., 28 Dec. 1901, p. 293; Comm., n?, 75.
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terms in powers of the small quantities y—1 and —1. According
to VAN DER Waars’ method ') I wrote this new equation:

0 0’
=1+5:~(t—1)+ ..... +5—L——a%—(n—1)(t-—1)+. Y

2

0
where the co-efficients i, 2
Ot” Opot

those of the above mentioned empirical reduced equat.ion of state.

etc. can be immediately derived from

1. The p,v, T diagram for a simple substance in the neighbourhood
of the critical point.

In order to limit the number of the continually re-occurring factors
as much as possible, I shall not write the equation of state of the
pure substance in a reduced form, but thus:

p=hy A by (o) £ by (=) - By =) + ... =FE). - (2)
where %, £,, k, etc. are temperature functions which can be developed
in powers of T—7}; as for instance:

ky =k, + &y, (T_Tk) + by (P—T0) + . . . . (2’)
and it is evident that k,, — pi while %£,, and £,, are zero.

We might clearly find the equations of several curves in this
diagram, such as: the border curve, the curve of the maximum or
minimum pressures, the curve of the points of inflection etc. I shall
derive the former only, chiefly in order to apply to a simple case
the method of calculation to be wused afterwards for finding the
pressure, volume and composition of the co-existing phases with

mixtures. ]
If v, and v, represent the molecular volumes of the vapour and of

the liquid, co-existing at the temperature 7" under the pressure p,,
then these 3 unknown quantities will be determined by the equations:

n=f@)y p=FfC@ . . - . .- . 6

and by MaxweLL’s criterium
2y
pl(v,—-vl):fpdv. B )
v

The two unknown quantities v, and v, I shall, however, replace by the
o1 1
two infinitely small quantities 3 (vy-+v,) —vi== and E(v,—vl)zgx ()

is therefore the abscissa of the diameter of the border curve for
chords parallel with the v-axis, and ¢ is the half chord.

1y Zeitschr. f. physik. Chem., 13, 694, 1894,
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Equation (4) after division by 2 ¢ yields:
1 - 1
pr=horthy BHh(B29%) by BB 97) b (P20 = )+ (5)

where for completeness I have not regarded the order of the differ-
ent terms. Also taking equation (3) once for v, and once for », and
adding together, yields
Pr=kyH ey Dy (DL 97) by (D 307) 4 (B4 -6 27 pY) +-...(6)
and subtracling and dividing by 2 ¢ gives
0=k, +-2k,P+E, (8 P*+¢*) +4 k,D(P Fo*)+ . . . (7)
while the, at least to a first approvimation sunpler equation:

0:;k,-{-2k3117+4k4((13’+—}-(p’)—{-. C . (8)
o

follows from (5) and (6).
The equations (6), (7) and (8) now determme the quantities &, ¢

and p,—ps, for we find -
k
P=—2T=T)—. . . . . .. O

. 1/1 9 by, kg
b — k. —— T—TpH -3 . . . (1
k,o (3 21 5 kao ( k) ) ( 0)

==k, (T—T)+ . . . . . . (11
Along the border curve v = wr -+ @ 4 ¢, so that we may write the
equation of the border curve:
0=(v—uvp)*—2(v—w) P+ P*—¢* . . . . (12
and to the first approximation this represents a parabola *).

1) Just as v. p. Waars (Arch. Néerl. (1), 28, 171) from the reduced equation

8t 3el—t . _—
of state p = -1 % has derived % (5p—n) =212 (1—t), I have also

derived % (vg -3 from the same equation by means of the reduced formula (10)
and have found for it:
3 (o to)=1+472(1—),
whence, if 5 and ¢, stand for the liquid and vapour densities:
Yot )= [1 408 1—1)]
From Amaear’s data for carbon dioxide I find- .
A=} (o3 ) = 0,464 4 0,001181 (T, — T,
or reduced 1 0,775 (1—t), and for isopentane (S. Youwne's data)
a=p [1-+0,881 (1—1)].

The above equation of state, therefore, represents the diameter numerically in a
satisfactory manner.

2) The same problem with regard to ¢ has been treated by v. p. Waars (loc. cit.)
in a somewhat different way; only ¢ is determined accurately by his method and
the border curve can be derived from his formulae only to a first approximation.
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2. The p, v, T diagram of a mizture with a small value
of ® near the critical point of the homogeneous mizture.

From the consideration we have started from it follows immediately
that we obtain the system of isothermals of the mixture by moving
8l that of the pure substance to an infinitely small amount parallel to
itself so that the critical point (py, 1) is brought on to the critical point
of the homogeneous mixture (ps, vzk), and at the same time by
expanding it infinitely little parallel to its co-ordinates in multi-

plying the ordinates by Pak.nd the abscissae by % Moreover an isother-
Pk %
mal, belonging to the temperature T in the first system will belong

T
;’“ T after we have moved and magnified the system.
lc

| to the temperature
We put again:

p=1l, + 1 (v—var) + I, 0—vz)* + I, 0—vzp)* + . . (18)

where [, /,, [, etc. are once more functions of the temperature, thus:

b=l by (T—Tg) + by (T—Tw) + . . . . (13)

According to the derivation from the reduced equation of state

@ by means of Tor, prk, vk the co-efficients /., 4, ....4,, 4, etc. are
only functions of z. Putting:

Ta=Tr(1+ az+da* +....)
px=pr(+Br+f*+...) . . . . . (14
vae= vl +yr4vya®4...)

where
y=a—8, y'=d—f—af+p ctc., . . . . (14)
we find

loo=pk[1+l3‘1"+"']7 lo:.:ko1[1—(a_ﬁ)‘”+"']! lnz=koz[1_(2a_ﬂ)w+"‘]""
= ==y, [1—2(a~B)a+...], b, =k, [ 1—(Ba-23)a 4 .. ]y
¥ . —0 b=k, [1—8(a-B)z -+ ], e
W 1=, [1—(Ba—4B)zt ]y

0 =k [1—(de—58)at i « o e e e e e . .. (1)

B where all co-efficients / are expressed in co-efficients £ as well as in
#l Kameruiven Onnes’ o’s and §s.

From the values of Tyx, Pz, vor, With mixtures of carbon dioxide
fl with small quantities of hydrogen for 2 =0, #=10,05and 2 =10,1, ?)
8 1 find:

1) Clomm., n% 65.

e |
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Tp= Tp 1 — 1,17 & + 1,58 27)
pa=pr (1 —1,622+42452%. . . . . (16)
v = v (1 4 0,62 2 — 0,95 2%), 1)
while from (14") would follow:
var = v, (1 -+ 0,45 » + 0,08 o).

Although‘ the agreemeni between the two expressions for u,; is
not quile satisfactory, it yet by no means indicates that the law of
corresponding states does not liold; it may very well be a result of the
unceriainty of the critical data of the homogeneous mixtures, chiefly
of the »,7’s. Besides from the second formula for »,; I find:

for £ = 0,05 v, = 0,00432 and for x = 0,1 v, = 0,00441, ~
and these values deviale from those delermined directly (0,00434 and
0,00444) not more than the amount of the error that can be made
in these determinations. Besides, smce the law of corresponding
stales does mnot hold entirely with pure substances, it is not likely
to do so for mixtures.

3. The p, v, x, diagram jfor mtures with a small value of =,
at a temperature differing little from Tr.

We shall now consider different mixtures at the same temperature
T; the system of isothermnals in the p, v, 2 diagram, at that tem-
perature is represenied by the equation of state (13), where, however,
7 must now be taken as constant and @ as variable. We will now
put this equation in another and more suitable form.

Among all the mixtures there is one for which the critical tempera-
ture would be 7' if this mixture remained homogeneous; the com-
position @7y, of this mixture, and also the critical elements p7; and
vy are determmed by equation (14). (In this equation we must put-
Tu="1T, x=am, pa=pn. and v, = v).

Hence we find to a first approximation

T—1Ty B vi(e—B)
=7 — T-T)), v = L (T=T). (17
ZTh a T PTE=pi + aTk( Wy vl =vr+ o T, (I=-T%). (17)

It will be seen that to a first approximation the value @z is
either positive or megative according as 7’—77% and ¢ have the same
or opposite signs, that is to say

a>0 a0
T>T,| xm>0; figs. Land7 | wp <0, figs. 3, 5, 9andil

TLTy| 2 <<0; figs. 2and8 | ag, >0; figs. 4, 6, 10 and12

—_

2) Comp. also Keesom, luc. cit., p. 12.



J. E. VERSCHAFFELT. “Contributions fo the knowledge of van der Waals' 1[)-surface! VIL .The e

quation of state and the W-surface in the immediate neighbourhood of the eritical state for binary
mixbures with a small proportion of one of the components,” - - -

g

gy >0 >0, Rk, a < wiy T 1

Fig. 1. ‘

<0, RI% kb a Py, T T
Fig. 4.

Mgy >0, @<L 0, RI% by 6 iy T T Mgy >0,
Yig. 2. - ’

| Fig. 3.
i

gy >0, @< 0y RI% ku'a Saudyy P> g >0, <0, R0 e >;r‘n’“, VR myy <0 >0, BTk, a<lm*, T T} my, <0, @
! . Tig. 6. : .

>0, RI% by a <y, T < T
Tig. 8.

Fig. 5.

Fig. 7.

o 0, U, R by g 05> T i <0, @0, BTk a

" Mgy <Oy @< 0, BTk a>my,, T3> T, my, <0y @< 0, BTk, 0 >mdy, T< T
Fig. 9. . - lgod0. ) o Fig. 1L ! Fig. 12.
. ;
R x i
! :
NN
i L Iy
| .
: [ ('3
iy
m“:(:), a0, T m, <y
Mg, 13, .
4 5 Fig. 15.

Proceedings Royal Aead. Amsterdam. Vol. V.



( 327)

[

Although from a physical point of view x can only take positive
values, in these considerations even the case @7 < 0 is not impos-
sible; for the point pgx, v7r has only a mathematical meaning.

In general, equation (13) may now be written thus:

p =m, + m, (v—o71) + m, 0—v7R) + My (0—op)’ +...., . (18)
where m,, m, etc. are functions of # which. can be developed in
powers of z—zry; for instance:

my = my, + mg, (@—aTr) + my, (@—2mR)* +.... . . (18)

The co-efficients m are functions of the temperature which is here

considered constant; it will be obvious that m,, = pr, while m,,

and m,, = 0. By equalization of (18) with (13) we can express all
the m’s in the &’s, and in KaMERLINGH ONNES’ o’s and §’s ; for we find :

R R L [
o
it = — ko [t — (2. - 1) 8] — Ft Tt — (4 1) hag 130 (¢ — B) 04 oy et (19)

so: that to a first approximation :

Mpp == knO -

man:ksn’ mw:]c“,,....

my, = prfi-ky, The, myy, = — &y, Thet, my, = — k,, Tha-38%,01(a—f), ete. (19')

HarTvAN ') has given a diagrammatical representation of the p, v, z
diagram. This representation completely resembles a p, v, 7" diagram;
but this resemblance is not necessary. It follows directly from the
p,v, T' diagram that k,, is positive, while %,, and £,, are negative;
in the p,v,x diagram m,, is negative, but according to (19), m,, and
m,, may be either positive or negative. The circumstance m,,<C0 does not
indeed influence the general shape of the diagram; it indicates that
the isothermals of the mixtures lie below those of the pure substance
as is the case at the upper limit (x = 1) of HARTMAN’S representation ?).
But while in the p,v, 7' diagram the isothermals with maximum
and minimum pressure occur under the critical, the opposite may be
the case in the p, v, 2 diagram, if m,, and m, have the same sign.
The four cases which may now present themselves, leaving out very
particular values of the coefficients, are given in the following table:

1y Thesis for the doctorate, Leiden 1899, p. 6; Journ. of Phys. Chem., 5, 425, 1901,
%) From a mathematical point of view we may imagine the p, v, % diagram to be
continued outside the limits x=0 and x==1. It is also obvious that z, if diffe-
ring little from 1, means the same as % infinitely small and that £ > 1 means
the same as z < O,
22
Proceedings Royal Acad. Amsterdam. Vol. V.,
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BTk B _ T
myy >0 or ;>—p_kk01 my; < 0 or ;<E ky,

m,;, >0 or e¢>0 figs. 1 and 2 ( figs. 7 and 8 ‘
|
figs. 9, 10, 11 and 12.‘

my, <0 or <0 | figs. 3,4, 5 and 6

HartMaN’s diagram represents at the lower limit the case m,, >0
and m,, <0, at the superior m,, < 0and m,, >0. The case ¢ >0
will in general occur when the ‘second is less volatile than the first
substance; this for instance is the case when methyl chloride is
added to carbon dioxide ?). On the other hand we shall find the case
a <0 when the second substance is the more volatile, when for
instance hydrogen is added to carbon dioxide (comp. formulae 16) or
carbon dioxide to methyl chloride °).

A p, v, x diagram based on observations has, so far as 1 know,
not yet been published. A diagram of this kind which Ihave drawn
from my measurements on mixtures of carbon dioxide and hydrogen
perfectly resembles the p, v, T diagram after HartmaN, so that in
the neighbourhood of pure carbon dioxide we must have m,, >0
and m,, <O0; according to formula (16) « is really negative, while
with %, = 1,61 (comp. Kumsom loc. cit., p. 14) I find m,, = 454,
and positive. For carbon dioxide with a small quantity of methy] chloride?)
e =0,378 and g = 0,088, and hence m,, << 0 and m, > 0;and for
methyl chloride with a small quantity of carbon dioxide, @ = — 0,221
and 8==0,281 so that m,, >0andm,,< 0. At temperatures between
the critical temperatures of the two pure substances, the p, v,  diagram
for mixtures of carbon dioxide and methyl chloride will probably
correspond to HArTMAN’s drawing.

While two neighbouring isothermals (7, 7'+ dT) never intersect

0
in the p,v, T diagram (the (—a—g) never being zero) this may be

[

the case in the p, », & diagram for two neighbouring mixtures

1) Figs. 1—13 represent diagrammatically p, v, 2 curves for infinitely small values
of  and 7—7T%, such as they appear in reahty for finite values of x and T—T%.
They are moreover theoretically extended into the imaginary region x < 0. All
lines lying within the region of negative x are dotted; the isothermal =0 is
represented by a dot-dash line. The line x =y (erroneously marked z, in figs.
1—12) would be the critical isotherm of the homogeneous mixture.

%) Comp. Kameruwen Onnes and Reweawuy, loc. cit., p. 35.

8) Ibidem.

4) Comp. Keesow, Comm. n% 79, p. 8.
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(vand & + dr). If this point of intersection is situated at a finite distance
from the point pri, vry, it lies outside the limits we are con-
sidering; but if it lies infinitely near this point, then it practically
co-incides with it; then m,, =0 and all the isothermals in the
neighbonrhood will intersect each other approximately at the point
Pris vre This case is shown in fig. 13, where I have also supposed
a <0 and "< T}. The isothermals intersect in pairs, and the curve
formed by all the points of mfersection of two consecutive isother-
mals, also passes through the critical point (prx vw); this is repre-
sented in fig. 13. The connecting line of the points of contact enve-
lops the isothermals; its equation is found by eliminating z from

0
equation (18) and from —23-—0, where we also put m, = 0; hence

dw
we find to the first approximation :
1 m? .
P—pTh=— 7 — (o)

02
This parabola is turned upwards (as in fig. 13) if m,, is negative.

4.  The -surface.

In order to find from equation (18) the phases co-existing at the
temperature 7', I shall make use of the properties of the y-surface
of van per Waatls. The equation of that surface is:

Y=— | pdv+ BT [2lga + (1—a)log(1—2) ],

where R is the gas constant for a gramme molecule, hence the
same quaniity for all substances. Neglecting the linear functions of 2,
we may write:
1 1 , 1 \
P = -m, (v-vps) - 3 m, (v-v71)® — 3 my (v-v7r)* — 1 my (v-vTR)* + ...
1 1
—l—RT[.’clogm—{—-ém“-{— -67:“—{—] ey e e e e e e (20)

5. The co-existing phases.

The co-existing phases are now determined by the co-existence
conditions:

) 0 ] 0
)= (), mmee o

if u represents the thermodynamic potential :

! _w—va-—wa;.
22%
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ead of the third condition I find it however better to use an-
which follows from all three, viz. .

My=M, . . . . . .. .. @l

0 0
M=v9— (v—vm) E%P — (v—azTz) a_;_p .

esponding to a former transformation now I write -
J,+v)—vm=® and }(o,—v)=¢
ually
(@, ta) —emp =8 and §(z,—2)=§,
consider the infinitely small quantities @, ¢, 5 and § as func-
f the same variable, viz. p,—prw. Thus I find to the first
imation )

_ 1 _]; mam L P01y 2 4m4o /m? 01+m PPk
Omy| 3 B*T* ' RT '3 B m \RT my,

1 4
T [ 0 L —m"‘m‘“’]m. C .. (22

" 2RTm,|3 RT 5 m,,
1 [m? pi—pme  m
2 01 1 01
=] =2 7ty . - (23
¢ m,,,[RT+ ™  RTm, "™ (23)
g:__f’_l.—_?_TE, Y 7))

My i

m, —PTk
g:ﬁq;[“—m&—wm]; N (1))
01

eri, and p7r may be replaced by their expression (17).
6. The plaitpoint.

e plaitpoint the co-existing phases become identical. If we
t the elements of the plaitpoint by #7,;, pry and v, then

four equations from which I derive the relations (22)—(25) are :

(o) (3) =5 mer=n G 50

. Z
first equations contain the expression log m—’; as all the other terms are
1

small, this must also be the case with log —’, in other words, the ratio ;’-
1 1
only infimtely Little from 1; § must therefore be of a higher order than 5|

50 [0 Ty may be developed in a series in powers of o—————
0 T ’ P Bton
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at that poinl &> =ry,; ~vrp, ¢ =0, E=aru—ap, and § = 0, while
p,=p71,; thus we obtam, from the equations (22), (23) and (24),

RTm
.'07),1:7;2———— LS BTy « « .« .+ . . (26)

N X))
and

2
le’l:ka—}_me(m?r—‘il-l-[\i.’fm“)[g My Mgy — '1—m Dlmn_mgn:][ch ")(28)
If @7, pr, and wyy ave replaced by their expressions (17), the
clements of the plaitpoint are thereby determed to the first approxi-
mation as functions of the temperature 7', R7m,, may then be
replaced by RZym,,.
From equations (26) and (27) follows immediately :
POl Tk .. (29)
&Tpl — XTI
In order {o see how this relation holds for mixtures of carbon
dioxide and hydrogen I consider the temperature 27,10° C. at which the
mixture &= 10,05 has its plaitpomt (p7, = 91,85 atm.), at that tem-
perature a7 = 0,011 and pz; = 72,4 atm. so that 24— L% _ 500,
GTpl — &Th
in good agreemeni with-the value 454 which I have found for m,,.
It follows from cquation (26) that @7, can be positive or negative.
As arx <0 is not mmpossible, this is equally the case with agy;.
It is true that from a purely physical point of view the y-surface,
only exists between the limits 2 =0 and 2 =1 (in our case z > 0),
but from a mathematical pomt of view we can imagine this surface
to extend also beyond those limits ?). If we consider a temperature
lying above the ecritical temperatures of the iwo components of a
mixture, then there are, exceptional cases excluded (HarTaan’s 34
type), no co-existing phases, that is to say the real w-surface does
not show a plait, although formula 26 shows that there is a plait-

}) If we take the value of xyy. from the eguation (26), insert it in (27) and (28),
and finally introduce the k's, «'s and f's, the formulae (27) and (28) become
Keeson’s formulae (20) and (%¢) (Comm. n® 75), while (26) corresponds to
Keesom's formula (2a). \

% Outside the mits =0 and =1 {§ is imaginary owing lo the presence of
terms with log @ and log (1—a). Although this 1s the case the co-existing phases
beyond those limits are real, as the co-existence conditions contain the necessarily
1 -2,

Zg
real expressions {0og — and lo 3
P g Z; g l—z
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point on the imaginary part of it. If the temperature is lower than
the ecritical {emperatures of the two components the plait oceurs
between the limits @ =0 and =1, but, excepl for mixiures of ihe
second {ype, according to formula 26 the plaitpoint lies oniside these
limits. Hence the case is physically not without significance, but the
plaitpoint cannot be observed.
Equation (26) may be written:
RTvk

prl:m‘?ﬂt (T—TW, . . - . (26)
and this form shows that ary will be positive or negative as 7'—17;
and R7?_k,a—m’,, have different or the samesigns. R1™; k,a>m?,,
is only possible if «<C0; RI%; ke < m?,, will always be the case
if >0, but may occur with «<0. The different cases that may
occur are shown in the following {able.

RT?, ]b'u a>m201 i' RTﬂkku a<m201

a>0 a<l0

0> app > am || ame > amp >0 app > 0> an

T7>1T:
figs. 5 and 11 || figs. 1 and 7 | figs. 3 and 9

arpr > > 010 > an > amy | are >0 2> o
figs. 6 and' 12 || figs. 2 and 8 | figs. 4 and 10

~

T<T

7. The border curve in the p,v,x dingram at the temperatre 7.

Along the border curve v=wr, 4 P4, 50 that the equation of

the border curve may be written
0=@—om)—2D(-vp) + P'—¢*. . . . (30)

where < and ¢ must be replaced by the expressions as functions
of p,. To the first approximation we can take therefor the expres-
sions (22) and (23) and neglect 7-%; the equation (30) then repre-
sents a parabola of the second degree. The apex of this parabola does
not, as in the p,w, diagram of a simple substance co-incide with
the critical point (pri, v7r), but with the plaitpoint.

Along that parabola

d’p 2 m,, m,, R1% 2 my, Ry RTY

—— e~ — - = — — . . . (81
dv? m?y, 4+ Rlymy,  RI' ka—m?,
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This expression is either positive or negative; thai is {o say that
the border curve may be turned witlh its convex side towards the

v-axis, while in the g, », diagram for a simple substance the bor-
2,

. . d . e i
der curve is always concave to the v-axis. —li: will be positive if m
wy

and RT"pk,a—m?,, have different signs, and will be negalive in
the other case:
RT by e >m?y, I BT by o <y,

m >0 ‘7 figs. 5 and 6 i figs. 1—4

my, <0 | figs. 11 and 12 l figs. 7—10 |

|

8. The projection of the connodal ling on the z, v plane.

The cquation of this curve has been given by Korrewre?). In
connection with our preceding formulac it is most easily derived
from equation (30) by expressing p in terms of 2 and v by means of
the equation of state (18). I shall now bring it in a form analo-
gous to (30).

The border curve intersects the isothermal of the mixture z at
two points (p’,, v'y), and (p’y, v',) which indicate the phases where
the condensation begins and ends. I again make :

O, Y) — e =2, 3 (¢, — v)=¢

Y, + 1) — pru=Mand 4 (p', — p) =,
and conmsider the four infinitely small quantities @', ¢/, II' and =’ as
tunctions of w.

By cxpressing that the two poinfs are situaled on the isothermal
(18) and on the border curve (30), 1 obtain four cquations from
which the relations we want can be devived. In this way I obtain
to the first approximation,

. 1 [ 1 /m, 2wy, 2 4m“, m?,,
(ﬁ——zmao[ (R.l‘+ 1) 'gRgT) 3 m21- 5 3 +m11)J +

‘ 1 ['my, dmy my,
+2m30[m01(RT+mu)+ Mgy — 5 :l.zn. <. (32)

30
1
¢r= — [ L m”:( z + — &T/c, N (1))

My

O=m (e —a1t), « « « « « « . (34

and
a=m, @—em)e.. « . . . . . (8))

1) Wien. Ber. 98, 1159, 1889.
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Now we may again write for the equation of the connodal line

0 = (v—v71)’—2 &' (v—v11) + P*—9" . .7 . (386)
To the first approximation along this curve
@: _ 2mg, BTy, _ 2k, BTy U
& m?y, + BTpm,, RI*%k,a—m’,

and this expression has the opposite sign to RT°yk,; a—m?;,,. Here
therefore we distinguish only two cases.

1. RT% &k, a > m'y; j{"j< 0, i.e. the connodal line turns its
. 11 LA y L. €.

concave side towards the v-axis (fig. 14);

3

&
2. RI% k, a<lm,; d—;> 0 and the connodal line is convex to
v

the v-axis (fig. 15).

9. The critical point of contact.

The characteristic of the critical point‘of contact is that there the
two phases with which the condensation begins and ends comcide.

If #7,, pr, and vz, represent the elements of that point we have there

Y = vp—vqh ' =0, I' =pp,—pri, a' = 0and 2 =27~

and from (33) it follows that

BTy my,
o BT BT+ o« « - . (38)
that is to say to the first approximation the composition al the critical
point of contact is the same as at the plaitpoint (ef. 26) The diffe-
rent cases which may occur now follow.

ZT, =

1. BT k,, ¢ >m?, (fig. 14).

a). T>T.3 = is negative and there is no connodal line inside
the region that can be observed. This corresponds to the position of
the border curve in figs. 5 and 11.

6y 7= T}, a1, = 0 and the formula (30) represents a connodal line
which touches the v-axis.

¢) T< Ty @1, >0 and there is a connodal line in the region of
positive z, (see also figs. 6 and 12).

2. RT% kel m*, (fig. 15).

@) T>T); x>0 and the connodal line lies entirely within
the region that can be observed; (figs. 1, 3. 7 and 9).

) T=1T.; =0 and the connodal line touches the v-axis ;
¢) T Tk; 27, >0 and the connodal line can only be completed
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by prolonging it in the vegion of the negative z (fig. 2, 4, 8 and 10).
Equation (34) gives :

3

m®,
Tt RT
so that also to the first approximation pr, = p1. (comp. equation 27).

And from the equation (32) we derive in connection with (38)

PTy = pTk + My, (@1 — @T) = pTI — —aq, . (89)

1 m 01 molmll)
—u aTL, - . (40
it Y 3 myy(m?y, +RTym,,) ( » T RTy (*9)
from which by comparison with (28) we find
1 molmll 1 ]cll m(‘ll
— oy = — ¢ = T—1T . (41
O == g = 8= — g - (110 (41)

The difference vy, — w7, may be positive or negative, that is to
say the critical point of contact may be situated on the vapour or
on the ligmd branch of the border curve (or of the connodal line).
In the first case, as it is well-known, we have retrograde conden-
sation of the first type for all mixtures comprised between x7. and
@y, in the second case retrograde condensation of the second type:

I>1:
T< 1},

v, < w7 1. ¢. 11, figs. 1,3 andb

vy Sv,;r.c.I;figs.7,9 zmdii,

v > v e I figs. 2, 4and6

o<l vT,,z;r.c.II;ﬁgs.B,:lOaud12i

Expressing that the plaitpoint and the critical point of contact lie
on the connodal line and subtracling the equations thus obtained
we find {o the second approximation -

1 mam m211

4 R1y m,, (m*,, + BRI m,)
this expression is positive if R1% &, « >m?, (fig. 14), and negative
if BTk, a<lm?%, (fig. 15). In the same way we find by means
of the border curve

BT, —&T,] = Sy . . (42)

; _ 1 my m'yy 43
PO=PI = 4 BT my, (m*y, -+ RI} mu) vk - (89)
so that My, > 0 my, < 0

BT kyy « > m?yy (pr, < paye, figs. 5 and 6| pr > prw; figs. 11 and l2l

RT? by a < m?y, (p1 > prs figs. 1—4 {pry < prui; figs. 7—10 ‘

(To be continued).




